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Abstract

Quantile regression is a powerful statistical methodology that complements the classical
linear regression by examining how covariates influence the location, scale, and shape of
the entire response distribution and offering a global view of the statistical landscape. In
this paper we propose a new quantile regression model for longitudinal data. The proposed
approach incorporates the correlation structure between repeated measures to enhance the
efficiency of the inference. In order to use the Newton-Raphson iteration method to obtain
convergent estimates, the estimating functions are redefined as smoothed functions which
are differentiable with respect to regression parameters. Our proposed method for quantile
regression provides consistent estimates with asymptotically normal distributions. Simula-
tion studies are carried out to evaluate the performance of the proposed method. As an
illustration, the proposed method was applied to a real-life data that contains self-reported
labor pain for women in two groups.
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1. Introduction

Longitudinal data are very common in many areas of applied studies. Such data are
repeatedly collected from independent subjects over time and correlation arises between
measures from the same subject. One advantage of longitudinal study is that, additional to
modeling the cohort effect, one can still specify the individual patterns of change. In order
to take the correlation into consideration to not only avoid loss of efficiency in estimation
but also make correct statistical inference, a number of methods are developed to evaluate
covariate effects on the mean of a response variable (Liang and Zeger, 1986; Qu et al.,
2000; Jung and Ying, 2003). Sutradhar (2003) has proposed a generalization of the quasi-
likelihood estimation approach to model the conditional mean of the response by solving
the generalized quasi-likelihood (GQL) estimating equations. A general stationary auto-
correlation matrix is used in this method, which, in fact, represents the correlations of many
stationary dynamic models, such as stationary auto-regressive order 1 (AR(1)), stationary
moving average order 1 (MA(1)), and stationary equi-correlation (EQC) models.

Quantile regression (Koenker and Bassett Jr, 1978) has become a widely used technique
in applications. The effects of covariates are modeled through conditional quantiles of the
response variable, rather than the conditional mean, which makes it possible to characterize

Preprint submitted to Computational Statistics and Data Analysis September 11, 2013

ar
X

iv
:1

30
9.

26
27

v1
  [

st
at

.A
P]

  1
0 

Se
p 

20
13



any arbitrary point of a distribution and thus provide a complete description of the entire
response distribution. Compared to the classical mean regression, quantile regression is more
robust to outliers and the error patterns do not need to be specified. Therefore, quantile
regression has been widely used, (see Chen et al., 2004; Koenker, 2005; Reich et al., 2010;
Farcomeni, 2012, among others).

Recently quantile regression has been extended to longitudinal data analysis. A simple
way to do so is to assume working independence that ignores correlations between repeated
measures, which, of course, may cause loss of efficiency, see Wei and He (2006); Wang and He
(2007); Mu and Wei (2009); Wang and Fygenson (2009); Wang (2009); Wang et al. (2009).
Jung (1996) firstly developed a quasi-likelihood method for median regression which incor-
porates correlations between repeated measures for longitudinal data. This method requires
estimation of the correlation matrix. Based on Jung’s work, Lipsitz et al. (1997) proposed
a weighted GEE model. Koenker (2004) considered a random effect model for estimating
quantile functions with subject specific fixed effects and based inference on a penalized like-
lihood. Karlsson (2008) suggested a weighted approach for a nonlinear quantile regression
estimation of longitudinal data. Geraci and Bottai (2007) made inferences by using a ran-
dom intercept to account for the within-subject correlations and proposed a method using
the asymmetric Laplace distribution (ALD). Geraci and Bottai’s work was generalized by
Liu and Bottai (2009), who gave a linear mixed effect quantile regression model using a mul-
tivariate Laplace distribution. Farcomeni (2012) proposed a linear quantile regression model
allowing time-varying random effects and modeled subject-specific parameters through a la-
tent Markov chain. To reduce the loss of efficiency in inferences of quantile regression, Tang
and Leng (2011) incorporate the within-subject correlations through a specified conditional
mean model.

Unlike in the classical linear regression, it is difficult to account for the correlations be-
tween repeated measures in quantile regression. Misspecification of the correlation structure
in GEE method also leads to loss of inferential efficiency. Moreover, the approximating
algorithms for computing estimates could be very complicated, and computational prob-
lems could occur when statistical software is applied to do intensive re-samplings in the
inference procedure. To overcome these problems, Fu and Wang (2012) proposed a combi-
nation of the between- and within-subject estimating equations for parameter estimation.
By combining multiple sets of estimating equations, Leng and Zhang (2012) developed a
new quantile regression model which produces efficient estimates. Those two papers extend
the induced smoothing method (Brown and Wang, 2005) to quantile regression, and thus
obtained smoothed objective functions which allow the application of Newton-Raphson iter-
ation, and the latter automatically gives both the estimates of parameters and the sandwich
estimate of their covariance matrix.

In this paper, we propose a more general quantile regression model by appropriately
incorporating a correlation structure between repeated measures in longitudinal data. By
employing a general stationary auto-correlation matrix, we avoid the specification of any
particular correlation structure. The correlation coefficients can be iteratively estimated
in the process of the regression estimation. By using the induced smoothed estimating
functions, we can obtain estimates of parameters and their asymptotic covariance matrix

2



by using Newton-Raphson algorithm. The estimators obtained using our proposed method
are consistent and asymptotically normal. The results of the intensive simulation studies
reveal that our proposed method outperforms those methods based on working independence
assumption. Furthermore, our approach is simpler and more general than other quantile
regression methods for longitudinal data on theoretical derivation, practical application and
statistical programming.

The remainder of this paper proceeds as follows: In Section 2 we develop the proposed
quantile regression method and the algorithm of parameter estimation. The asymptotic
properties of the proposed estimators are discussed in Section 3. Intensive simulation studies
were carried out and results are presented in Section 4. Application of our method to the
labor pain data is presented in Section 5. The paper is concluded in Section 6 with some
concluding remarks.

2. Proposed quantile regression models

Suppose, in a longitudinal setup, we collect a small number of repeated responses along
with certain multidimensional covariates from a large number of independent individuals.
Let yi1, . . . , yij, . . . , yini denote ni ≥ 2 repeated measures observed from the ith subject, for
i = 1, . . . ,m where m is a positive integer. Let xij = (xij1, . . . , xijp)

T be the p-dimensional
covariate vector corresponding to yij. Suppose that responses from different individuals
are independent and those from the same subject are dependent. Let the conditional τth
quantile of yij given xij be

Qτ (yij|xij) = xTijβτ .

In quantile regression we are interested in estimating βτ consistently and as efficiently as
possible.

If we assume the working independence (WI) between repeated measures of responses
among each individual, we can obtain β̂WIτ , an estimate of βτ , by minimizing the following
objective function

S(βτ ) =
m∑
i=1

ni∑
j=1

ρτ (yij − xTijβτ ), (1)

where ρτ (u) = u(τ − I(u ≤ 0)) (Koenker and Bassett Jr, 1978). Estimating equations can
be derived from function (1) by equating the differentiation of S(βτ ) with respect to βτ to
0. That is

U0(βτ ) =
∂S(βτ )

∂βτ
=

m∑
i=1

XT
i ψτ (yi −Xiβτ ) = 0, (2)

where ψτ (u) = ρ′τ (u) = τ − I(u < 0) is a discontinuous function, and ψτ (yi − Xiβτ ) =
(ψτ (yi1 − xTi1βτ ), . . . , ψτ (yini − xTiniβτ ))

T is a ni × 1 vector. An efficient algorithm to obtain
an estimate of βτ by solving the equation (2), U0(βτ ) = 0, was given by Koenker and D’Orey
(1987), which is available in statistical software R (package quantreg). Parameter estima-
tor β̂WIτ is derived from estimating equation (2) under working independence assumption,
therefore the efficiency of β̂WIτ may not be satisfactory.
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To take the within correlations into consideration when constructing quantile regression
models for longitudinal data, a quasi-likelihood (QL) method was introduced by Jung (1996).
Let εi = (εi1, . . . , εij, . . . , εini)

T , where εij = yij − xTijβτ which is a continuous error term
satisfying P (εij ≤ 0) = τ and with an unknown density function fij(·). In least squares,
or mean regression model, Bernoulli distributed ψτ (εi) = ψτ (yi −Xiβτ ) can be treated as a
random noise vector. Using this fact, the QL can be generalized into quantile regression by
estimating the correlation matrix of ψτ (εi). Let the covariance matrix of ψτ (εi) be denoted
as

Vi = cov(ψτ (yi −Xiβτ )) = cov

 τ − I(εi1 < 0)
...

τ − I(εini < 0)

 ,

and

Γi = diag[fi1(0), . . . , fini(0)] =

fi1(0)
. . .

fini(0)

 ,

be an ni × ni diagonal matrix with jth diagonal element fij(0). Jung (1996) derived the
derivative of the log-quasi-likelihood l(βτ ; yi) with respect to βτ , which can be used to
estimate βτ by solving

U1(βτ ) =
m∑
i=1

∂l(βτ ; yi)

∂βτ
=

m∑
i=1

XT
i ΓiV

−1
i ψτ (yi −Xiβτ ) = 0. (3)

In estimating equation (3), the term Γi describes the dispersions in εij and its diagonal
elements can be well estimated by following Hendricks and Koenker (1992):

f̂ij(0) = 2hn[xTij(β̂τ+hn − β̂τ−hn)]−1,

where hn → 0 when n → ∞ is a bandwidth parameter. In some cases when fij is difficult
to estimate, Γi can be simply treated as an identity matrix with a slight loss of efficiency
(Jung, 1996).

However, the estimation of the covariance matrix Vi becomes much complicated when
QL method is applied. Whatever correlation matrix that εi follows, the correlation matrix
of ψτ (εi) is no longer the same one, and its correlation structure may be very difficult to
specify.

Here, we propose a new method based on the following estimating equations

U(βτ ) =
m∑
i=1

XT
i ΓiΣ

−1
i (ρ)ψτ (yi −Xiβτ ) = 0, (4)

where Σi(ρ) is the covariance matrix of ψτ (εi) that can be expressed as Σi(ρ) = A
1
2
i Ci(ρ)A

1
2
i ,

with Ai = diag[σi11, . . . , σ1nini ] being an ni × ni diagonal matrix, σijj = var(ψτ (εij)) and
Ci(ρ) as the correlation matrix of ψτ (εi), ρ being a correlation index parameter. Suppose
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the matrix Σi(ρ) in equation (4) has a general stationary auto-correlation structure such
that the correlation matrix Ci(ρ) takes the form of

Ci(ρ) =


1 ρ1 ρ2 · · · ρni−1
ρ1 1 ρ1 · · · ρni−2
...

...
...

...
ρni−1 ρni−2 ρni−3 · · · 1


for all i = 1, . . . ,m, where ρ` can be estimated by

ρ̂` =

∑m
i=1

∑ni−`
j=1 ỹij ỹi,j+`/m(ni − `)∑m
i=1

∑ni
j=1 ỹ

2
ij/mni

for ` = 1, . . . , ni − 1 (Sutradhar and Kovacevic, 2000; Sutradhar, 2003) with ỹij defined as

ỹij =
ψτ (yij − xTijβτ )√

σijj
.

To estimate σijj = var(ψτ (yij − xTijβτ )), we apply the fact that ψτ (εij) = ψτ (yij − xTijβτ ) =
τ − I(yij < xTijβτ ). Hence we have

σijj = var[ψτ (εij)] = var[τ − I(yij < xTijβτ )] = var[I(yij < xTijβτ )]

= Pr(yij < xTijβτ )(1− Pr(yij < xTijβτ )),

where Pr(yij < xTijβτ ) is the probability of the event {yij < xTijβτ}. If βτ is the true
parameter, we know that xTijβτ is exactly the τth quantile of the variable yij, hence Pr(yij <
xTijβτ ) = τ , which leads to an estimator of σijj, σ̃ijj = τ(1 − τ). Consequently, Ai matrix
can be calculated at the true βτ as

Ãi = diag[σ̃i11, . . . , σ̃1nini ]

=

τ(1− τ)
. . .

τ(1− τ)


ni×ni

,
(5)

indicating a constant diagonal matrix for a certain τ . We denote the parameter estimator
obtained from this proposed quantile regression (PQR) model as β̂PQRτ .

Notice that in the expression Σi(ρ) = A
1
2
i Ci(ρ)A

1
2
i , if we set Ai as the one at the true

βτ which is given by (5), Ci(ρ) becomes the only part in Σi(ρ) containing the information
about the data and the parameter βτ . However in practice, the estimated parameter may
never be exactly the true βτ . Thus, the elements of the diagonal matrix Ai may differ from
the constant value τ(1 − τ). Moreover, we expect the matrix Ai to be also related to the
parameter estimates, which becomes crucial when we use an iteration method to estimate
parameters where the estimates β̂τ need to be updated within each iteration step. In this
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case, as long as the sample size is large enough, we can estimate the diagonal elements of
Ai by the following

σ̂ijj = Pr(yij < xTijβτ )(1− Pr(yij < xTijβτ ))

=
1

m

m∑
i=1

I(yij < xTijβτ )(1−
1

m

m∑
i=1

I(yij < xTijβτ )),

for all j = 1, . . . , ni and i = 1, . . . ,m. By using σ̂ijj to estimate Σi, the solution-finding
iteration converges faster. The solution of estimating equations (4) leads to an adjusted
estimate of βτ . We call this method as adjusted quantile regression (AQR).

The difficulty of solving the estimating equation (4) is caused by the non-convex and non-
continuous objective function U(βτ ) which is not differentiable. Though several methods can
be applied to estimate βτ from equation (4) without requiring any derivatives and continuity
of the estimating function, they may become very complicated and cause a high burden
of computation. To overcome these difficulties, the induced smoothing method has been
extended to the quantile regression for longitudinal data assuming a working correlation by
Fu and Wang (2012). The smoothing method is asymptotically equivalent to its original
counterpart, see Lemma 3.1 below. Here, let Ũ(βτ ) = EZ [U(βτ +Ω1/2Z)], with expectation
taken with respect to Z, where Z ∼ N(0, Ip), and Ω is updated as an estimate of the
covariance matrix of parameter estimators. After some algebraic calculations, a smoothed
estimating function Ũ(βτ ) is obtained as

Ũ(βτ ) =
m∑
i=1

XT
i ΓiΣ

−1
i (ρ)ψ̃τ (yi −Xiβτ ) (6)

where

ψ̃τ =


τ − 1 + Φ(

yi1−xTi1βτ
ri1

)
...

τ − 1 + Φ(
yini−x

T
ini
βτ

rini
)


and rij =

√
xTijΩxij for j = 1, . . . , ni. Thus the differentiation of Ũ(βτ ) with respect to βτ

can be easily calculated, and we can use ∂Ũ(βτ )/∂βτ as an approximation of ∂U(βτ )/∂βτ as

∂Ũ(βτ )

∂βτ
= −

m∑
i=1

XT
i ΓiΣ

−1
i (ρ)Λ̃iXi,

where Λ̃i is an ni×ni diagonal matrix with the jth diagonal element φ((yij−xTijβτ )/rij)/rij.
Generally, let β̂WIτ be the estimate under the working independence assumption and Ip be
a identity matrix of size p, smoothed estimators of βτ and its covariance matrix Ω can be
obtained from the following Newton-Raphson iteration:

Step 1. Given initial values of βτ and the symmetric positive definite matrix Ω as β̃τ (0) =
β̂WIτ and Ω̃(0) = 1

m
Ip respectively.
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Step 2. Using β̃τ (r) and Ω̃(r) given from the rth iteration, update β̃τ (r + 1) and Ω̃(r + 1)
by

β̃τ (r + 1) = β̃τ (r) +

[
−∂Ũ(βτ )

∂βτ

]−1
r

×
[
Ũ(βτ )

]
r

and

Ω̃(r + 1) =

[
−∂Ũ(βτ )

∂βτ

]−1
r

×
[
cov(Ũ(βτ ))

]
r

×

[
−∂Ũ(βτ )

∂βτ

]−1
r

,

where []r denotes that the expression between the square brackets is evaluated at
βτ = β̃τ (r) and cov(Ũ(βτ )) =

∑m
i=1X

T
i ΓiΣ

−1
i (ρ)ψ̃τ (εi)ψ̃

T
τ (εi)Σ

−1
i (ρ)ΓiXi.

Step 3. Repeat step 2 until convergence.

This method provides consistent estimates of βτ and its covariance matrix Ω. Furthermore,
compared with other techniques, our method based on Newton-Raphson algorithm is much
faster.

3. Asymptotic properties

In this section, we derive asymptotic distributions of the proposed estimates obtained
from both the original estimating equation (4) and smoothed estimating equation (6).

Theorem 3.1. Under regularity conditions A1-A5 listed in Appendix, the estimator β̂τ based
on the original estimating equation (4) is

√
m-consistent and asymptotically normal,

√
m(β̂τ − βτ )→ N(0, G−1(βτ )V {G−1(βτ )}T ),

where, in the variance-covariance matrix, G(βτ ) = limm→∞
1
m

∑m
i=1X

T
i ΓiΣ

−1
i (ρ)ΓiXi and

V = limm→∞
1
m

∑m
i=1X

T
i ΓiΣ

−1
i (ρ) cov{ψτ (yi −Xiβτ )}Σ−1i (ρ)ΓiXi.

Lemma 3.1. Under regularity conditions A1-A5 listed in Appendix, the smoothed estimating
functions Ũ(βτ ) are asymptotically equivalent to the original estimating functions U(βτ ) in
the sense that,

1√
m
{Ũ(βτ )− U(βτ )} = op(1).

Theorem 3.2. Under regularity conditions A1-A5 listed in Appendix, the estimator β̃τ based
on the smoothed estimating equation (4) is

√
m-consistent and asymptotically normal,

√
m(β̃τ − βτ )→ N(0, G−1(βτ )V {G−1(βτ )}T ),

where G(βτ ) and V have the same expressions as in Theorem 3.1.

Note that, Lemma 3.1 indicates the asymptotic equivalence of the smoothed estimating
functions and their original counterpart. Theorems 3.1 and 3.2 illustrate the asymptotic
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equivalence of the two corresponding estimators. From Theorem 3.2, we can obtain a natural
sandwich form estimator of the variance-covariance matrix of

√
m(β̃τ − βτ ) as

ĉov(
√
m(β̃τ − βτ )) = Ĝ−1(β̃τ )Ṽ {Ĝ−1(β̃τ )}T , (7)

where in the covariance matrix, we have G̃(β̃τ ) = 1
m

∑m
i=1X

T
i ΓiΣ

−1
i (ρ)ΓiXi and Ṽ =

1
m

∑m
i=1X

T
i ΓiΣ

−1
i (ρ) cov{ψ̃τ (yi −Xiβ̃τ )}Σ−1i (ρ)ΓiXi. Based on this formula, we update ma-

trix Ω̃ in the Newton-Raphson iteration on page 7.
Proofs are deferred to the Appendix.

4. Simulation studies

In order to examine the small sample performance of the proposed method, we conducted
extensive simulation studies. A part of the simulation results are reported in this section.

The random samples are generated from the model

yij = β0 + xij1β1 + xij2β2 + εij (8)

for i = 1, . . . ,m and j = 1, . . . , ni, where xij1 are sampled from the Bernoulli distribution
with probability 0.5, Bernoulli(0.5), and xij2 are generated from a standard normal distribu-
tion. In this simulation study, we set the sample size m = 500 and a balanced design ni = 4
for all i = 1, . . . , 500. Let the variance-covariance matrix of εi with an AR(1) structure be
expressed as

Σε(ρ) =


1 ρ ρ2 . . . ρni−1

ρ 1 ρ . . . ρni−2

...
ρni−1 ρni−2 . . . 1

 ,

where ρ is set to be 0.1, 0.5, or 0.9 respectively, to generate errors with low, medium and
high correlation. Three different distributions are considered for the random error εi:

Case 1. Normal distribution, assume that εi follows a multivariate normal distribution with
mean −qτ , or the τth quantile of 0 and covariance Σε(ρ), Np(−qτ , Σε(ρ)), where qτ
is the τth quantile of the standard normal distribution.

Case 2. Chi-squared distribution, assume that εi = ε′i − qτ , where ε′i follows a multivariate
Chi-squared distribution with two degrees of freedom (χ2

2), where qτ is the τth
quantile of the χ2

2 distribution.

Case 3. Student’s T distribution, suppose that εi = ε′i − qτ , where ε′i follows a multivariate
T distribution with three degrees of freedom (T3), where qτ is the τth quantile of
the T3 distribution.

The values of parameters used in the simulation are β0 = −0.5, β1 = 0.5 and β2 = 1.
Quantiles of τ = 0.25, 0.5 and 0.95 are chosen to study the performance of the quantile
regression estimators for the response distribution.
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Table 1: Biases and relative efficiencies to the estimators of β0, β1 and β2 using different
methods at quantiles 0.25, 0.5, 0.95 are reported for Case 1 when ρ = 0.1, 0.5, 0.9.

β0 β1 β2

τ ρ Method Bias EFF Bias EFF Bias EFF

0.25 0.1 AQR 0.0019 1.046 0.0015 1.041 -0.0001 1.069
PQR -0.0005 1.040 0.0014 1.044 -0.0001 1.069

WI 0.0000 1.000 0.0020 1.000 -0.0002 1.000
0.5 AQR 0.0043 1.098 -0.0017 1.191 0.0015 1.236

PQR 0.0017 1.111 -0.0017 1.194 0.0015 1.242
WI 0.0025 1.000 -0.0019 1.000 0.0016 1.000

0.9 AQR 0.0048 1.186 -0.0006 2.811 0.0000 2.707
PQR 0.0013 1.195 -0.0008 2.816 0.0000 2.706

WI 0.0028 1.000 -0.0023 1.000 0.0006 1.000
0.5 0.1 AQR 0.0022 1.050 -0.0020 1.054 0.0006 1.049

PQR 0.0022 1.050 -0.0020 1.053 0.0006 1.049
WI 0.0019 1.000 -0.0017 1.000 0.0008 1.000

0.5 AQR 0.0002 1.059 0.0018 1.260 0.0010 1.247
PQR 0.0002 1.059 0.0018 1.260 0.0010 1.247

WI -0.0000 1.000 0.0025 1.000 0.0006 1.000
0.9 AQR -0.0003 1.256 -0.0005 3.135 0.0001 3.026

PQR -0.0003 1.256 -0.0005 3.136 0.0001 3.026
WI -0.0004 1.000 -0.0013 1.000 0.0015 1.000

0.95 0.1 AQR -0.0094 1.066 0.0047 1.069 0.0029 1.099
PQR 0.0033 1.092 0.0046 1.071 0.0028 1.118

WI -0.0004 1.000 0.0032 1.000 0.0031 1.000
0.5 AQR -0.0142 0.988 -0.0008 1.136 -0.0018 1.257

PQR 0.0001 1.092 -0.0016 1.144 -0.0015 1.248
WI -0.0039 1.000 -0.0039 1.000 -0.0017 1.000

0.9 AQR -0.0136 1.212 -0.0003 2.152 -0.0015 2.187
PQR 0.0037 1.244 -0.0001 2.155 -0.0017 2.129

WI -0.0021 1.000 0.0052 1.000 -0.0002 1.000

The results of 1, 000 simulation runs of quantile regression using different estimation
methods are analyzed. We report the average bias (Bias) and relative efficiency (EFF ) of
the estimates of β0, β1 and β2 using different quantile regression methods (quantile regression
method assuming working independence (WI), proposed quantile regression method (PQR),
and adjusted quantile regression method (AQR)) in the attached Tables. For each estimator,
we use SD to denote the standard deviation of 1000 parameter estimates, SE the average of
1000 estimated standard errors. For our proposed estimators, P0.95 denotes the percentage of
simulation runs when the true parameter falls into the 95% confidence intervals constructed
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Table 2: Simulation Results with Normal Errors (case 1).

β0 β1 β2

τ ρ Method SD SE P0.95 SD SE P0.95 SD SE P0.95

0.25 0.1 AQR 0.043 0.042 0.951 0.060 0.060 0.949 0.029 0.030 0.950
PQR 0.043 0.042 0.953 0.060 0.059 0.951 0.029 0.030 0.949

0.5 AQR 0.047 0.046 0.947 0.055 0.055 0.947 0.028 0.027 0.952
PQR 0.047 0.046 0.950 0.054 0.055 0.946 0.027 0.028 0.952

0.9 AQR 0.054 0.053 0.944 0.038 0.036 0.939 0.019 0.018 0.949
PQR 0.054 0.053 0.945 0.038 0.036 0.939 0.019 0.018 0.947

0.5 0.1 AQR 0.040 0.040 0.943 0.055 0.055 0.945 0.027 0.027 0.956
PQR 0.040 0.040 0.943 0.055 0.055 0.945 0.027 0.027 0.956

0.5 AQR 0.044 0.043 0.948 0.050 0.049 0.949 0.025 0.024 0.955
PQR 0.044 0.043 0.948 0.050 0.049 0.949 0.025 0.024 0.955

0.9 AQR 0.045 0.050 0.947 0.032 0.033 0.948 0.017 0.016 0.950
PQR 0.045 0.050 0.947 0.032 0.033 0.948 0.017 0.016 0.950

0.95 0.1 AQR 0.066 0.062 0.926 0.090 0.088 0.945 0.046 0.043 0.934
PQR 0.066 0.063 0.933 0.090 0.089 0.944 0.045 0.044 0.939

0.5 AQR 0.070 0.065 0.924 0.090 0.084 0.923 0.044 0.041 0.935
PQR 0.068 0.066 0.939 0.089 0.085 0.931 0.044 0.042 0.943

0.9 AQR 0.080 0.079 0.926 0.063 0.058 0.919 0.031 0.028 0.928
PQR 0.080 0.079 0.920 0.063 0.059 0.925 0.031 0.028 0.929

based on the sandwich estimate of the covariance matrix of β̂τ , at quantiles 0.25, 0.5, 0.95.
Where ρ is specified as 0.1, 0.5, and 0.9 respectively.

Table 1 shows the results when εi follows a multivariate normal distribution (Case 1)
with an AR(1) correlation structure where the value of ρ is specified as 0.1, 0.5 and 0.9
respectively. As we can see, when the correlation is low (ρ = 0.1), the average biases
and relative efficiencies of quantile regression estimators β̂PQRτ and β̂AQRτ are comparable,
and these two estimators perform slightly better than the quantile regression estimator
assuming working independence (β̂WIτ ). When the correlation is higher (ρ = 0.5, or ρ =
0.9), the proposed estimators β̂PQRτ and β̂AQRτ are equally efficient with small biases and
much smaller variances than the working independence estimator. Moreover, the estimators
β̂PQRτ and β̂AQRτ become more efficient as the correlation (ρ) increases. In general, these
two proposed methods provide more efficient estimates of β1τ and β2τ than the intercept
parameter β0τ . Similar performances are observed when εi is χ2

2 (case 2) or T3 (case 3)
distributed except that the proposed estimators are more efficient at higher quantiles when
the random effect follows a χ2

2 distribution (case 2). The results are not reported.
Another observation was made to compare the sample standard deviation (SD) and the

average asymptotic standard errors (SE) of the proposed and adjusted estimators when εi
is normally distributed. In Table 2 we can see that each value of SD is very small and
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Table 3: Simulation Results of Linear Mixed Effect Model and Median Regression Models

β0 β1 β2

Err ρ Method Bias EFF Bias EFF Bias EFF

Nor 0.1 LME 0.0015 1.542 -0.0020 1.546 0.0004 1.543
PQR 0.0022 1.050 -0.0020 1.053 0.0006 1.049

WI 0.0019 1.000 -0.0017 1.000 0.0008 1.000
0.5 LME 0.0008 1.517 0.0022 2.088 0.0006 2.048

PQR 0.0002 1.059 0.0018 1.260 0.0010 1.247
WI -0.0000 1.000 0.0025 1.000 0.0006 1.000

0.9 LME -0.0021 1.729 0.0007 7.979 0.0001 7.605
PQR -0.0003 1.256 -0.0005 3.136 0.0001 3.026

WI -0.0004 1.000 -0.0013 1.000 0.0015 1.000
Chi 0.1 LME 0.6193 0.011 -0.0024 1.008 0.0005 1.002

PQR 0.0084 1.030 -0.0059 1.037 0.0015 1.042
WI 0.0069 1.000 -0.0060 1.000 0.0018 1.000

0.5 LME 0.6159 0.011 0.0014 1.148 -0.0005 1.020
PQR 0.0064 1.033 0.0008 1.061 -0.0004 1.084

WI 0.0051 1.000 0.0006 1.000 0.0001 1.000
0.9 LME 0.6149 0.018 0.0003 2.802 -0.0002 2.406

PQR 0.0053 1.188 -0.0019 1.982 0.0004 1.864
WI 0.0024 1.000 0.0010 1.000 0.0008 1.000

T 0.1 LME 0.0016 0.613 0.0001 0.650 -0.0007 0.631
PQR 0.0004 1.031 -0.0007 1.052 -0.0001 1.046

WI 0.0005 1.000 -0.0009 1.000 0.0001 1.000
0.5 LME 0.0008 0.583 -0.0002 0.849 -0.0009 0.831

PQR 0.0006 1.122 0.0003 1.234 0.0004 1.301
WI 0.0005 1.000 0.0009 1.000 0.0001 1.000

0.9 LME 0.0034 0.591 -0.0012 2.863 0.0006 3.338
PQR 0.0020 1.223 -0.0003 2.916 0.0002 2.740

WI 0.0031 1.000 -0.0015 1.000 0.0010 1.000

close to the corresponding SE value, which means our estimators perform very well and the
estimate of the standard deviation of β̂τ works very well also. Furthermore, the percentages
of simulation runs (P0.95) when the true parameters fall into the 95% confidence intervals are
all very close to their nominal level, evidencing the asymptotic normality of the estimators.
Hence inferences based on it are reliable. The results for Cases 2 and 3 are similar.

Simulation results comparing the linear mixed effects model (LME) and the proposed me-
dian regression models are reported in Table 3. Biases(Bias) and relative efficiencies(EFF )
to each estimator are reported for three different error distributions(case 1, 2 and 3).

As we have expected, quantile (Median) regression outperforms mean regression when

11



Figure 1: Histogram of measured labor pain for all 83 women.

the random error distribution is skewed or heavy-tailed. When the error term follows a
normal distribution, the LME and the proposed quantile method have comparable bias,
but the LME is more efficient than the median regression according to the average of the
estimated efficiencies of the three βτ -parameters. However, when the error follows chi-
square distribution (χ2

2) or student’s t distribution (T3), the LME performs worse than our
proposed median regression method, particularly in estimating the intercept parameter β0τ .
The median regression model is more robust to model mis-specification, while LME can only
provide misleading results in those cases.

5. A real data example

In this section, we illustrate the proposed method for quantile regression by analyzing
the labor pain data, reported by Davis (1991) and successfully analyzed by Jung (1996). The
data set arose from a randomized clinical trial on the effectiveness of a medication for labor
pain relief. A total of m = 83 women were randomly assigned to either a pain medication
group (43 women) or a placebo group (40 women). The response is a self-reported measure of
pain measured every 30 minutes on a 100-mm line, where 0 = “no pain” and 100 = “extreme
unbearable pain”. The maximum number of measures for each women was 6, but at later
measurement times there are numerous values missing with a nearly monotone pattern. In
Figure 1, a histogram of all the pains shows that the data is severely skewed. Therefore mean
regression may not be appropriate. In Figure 2, a box-plot shows the mean and median of
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Figure 2: Box-plot of measured labor pain for all women in placebo and medication groups.
The thick solid lines represent the median, while the means are connected with thin dashed
lines.

the pain over time for all 83 women and those in two different groups. Statistical dependence
on the temporal course of the quartiles of the response is evident to some extent, especially
for the placebo group.

Let yij be the amount of pain for the ith patient at time j, Ri be the treatment indicator
taking 0 for placebo and 1 for medication, and Tij be the measurement time divided by 30
minutes. Jung (1996) considered the median regression model

yij = β0 + β1Ri + β2Tij + β3RiTij + εij, (9)

where εij is a zero-median error term. Note that (β0 + β1) + (β2 + β3)Tij is the median for
the treatment group and the median for the placebo group is β0 + β2Tij.

Our proposed quantile regression model was fit for three quartiles, τ = 0.25, 0.5 and 0.75,
respectively. We report the estimated parameters (β̂), their asymptotic standard errors (SE)
and the 95% confidence intervals (CI) in Table 4. Here we also list the results of the usual
quantile regression method assuming working independence for comparison. At the 0.25th
quantile, we see that our proposed method gives smaller standard errors, although these two
methods produce comparable estimates of parameters. Note that all parameter estimates
are significant at 5% level, meaning that each covariate has effect on the 25% quantile labor
pain. Parameter estimates to the median regression methods have similar properties, except
that the usual quantile regression method assuming working independence gives insignificant

13



Table 4: Estimated parameters (β̂), their standard errors (SE) and corresponding 95%
confidence intervals (CI) from fitting both the proposed quantile regression model and usual
quantile regression assuming working independence at three quartiles, τ = 0.25, 0.5, 0.75.

Proposed Method WI

τ β β̂ SE CI β̂ SE CI

0.25 β0 -10.32 0.42 (-11.13, -9.50) -10.83 2.20 (-15.14, -6.52)
β1 9.08 0.42 (8.27, 9.90) 10.83 2.20 (6.51, 15.15)
β2 17.72 0.41 (16.92, 18.51) 10.83 2.20 (6.52, 15.14)
β3 -15.58 0.41 (-16.38, -14.79) -10.83 2.20 (-15.15, -6.51)

0.5 β0 -10.44 1.54 (-13.45, -7.43) -6.20 7.95 (-21.77, 9.37)
β1 8.96 1.54 (5.95, 11.97) 12.20 8.88 (-5.21, 29.61)
β2 21.05 1.27 (18.56, 23.53) 17.20 2.35 (12.60, 21.80)
β3 -12.25 1.27 (-14.74, -9.77) -16.20 2.72 (-21.53, -10.87)

0.75 β0 1.02 4.08 (-6.97, 9.02) 58.67 14.83 (29.60, 87.74)
β1 20.42 4.08 (12.43, 28.42) -42.67 16.30 (-74.61, -10.72)
β2 22.84 0.68 (21.51, 24.17) 7.67 3.44 (0.93, 14.40)
β3 -10.46 0.68 (-11.79, -9.13) -2.67 4.02 (-10.54, 5.21)

estimates of β0 and β1, indicating similar baseline pain among two groups. While, for the
third quartile (0.75th quantile), our proposed method and the WI method have very different
parameter estimates with the proposed method giving much smaller standard errors of the
estimates. The insignificant β3 in WI method indicates similar time effects on the amount of
pain in groups of placebo and medication, which contradicts our medical knowledge, while
the significance of β3 in our proposed method provides a perfect interpretation.

To investigate how treatment and time affect the amount of labor pain at three quartiles
(0.25, 0.5, 0.75), we use our proposed method to compare the estimated values of β0 with
β0 + β1 and β2 with β2 + β3 at each quartile, respectively. The result is visualized in Figure
3. In Figure 3, we can easily see that medication treatment do help women relieve their
labor pain, and the pain of women in the placebo group grows faster with time than that in
the treatment group. Moreover, the amount of pain tends to grow slightly faster at higher
quantiles than that at lower quantiles. These conclusions are consistent with the box plots
shown in Figure 2 and results in Jung (1996) and Leng and Zhang (2012).

6. Conclusion

In this paper, we have proposed a new quantile regression model for longitudinal data,
incorporating the correlations between repeated measures. We applied a general stationary
auto-correlation structure to the estimating equations. To reduce the computational burden
caused by the non-continuous estimating functions, we have employed the induced smooth-
ing method of Fu and Wang (2012) for quantile regression. The estimates of the regression
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Figure 3: Labor pain obtained by using proposed quantile regression method at three quar-
tiles 25%, 50% and 75%.

parameters and their covariance matrix are then obtained using Newton-Raphson iteration
technique. It can be seen that our proposed method is a simple and efficient way to account
for within-subject correlations in quantile regression for longitudinal data. This approach
drew the inferential methods of quantile regression and the classical mean regression much
closer. It reveals that the techniques in GEE’s are applicable in quantile regression model-
ing. Our simulation studies indicate that the proposed method performs better than other
methods assuming working independence especially when the within correlation is high.
Furthermore, a comparison is also made between the proposed median regression estimator
and the corresponding mean regression estimator, where the former is found to be better in
analyzing heavy-tailed or skewed data. Finally, the proposed quantile regression estimator
is applied to a real data set where the labor pain of two groups of women are reported,
which reveals how treatment and time affect the amount of labor pain at three quartiles.

We were trying to take the within-subject correlation into consideration of quantile re-
gression modeling, while the effects of unobserved covariates which may be different from
individual to individual have not been captured. For instance, in our real data application,
the personal perception of labor pain may vary from one to another. Therefore, like what
has been done in Koenker (2004), we may extend our proposed model to a penalized version
allowing individual specific effects by adding subject specific parameters and a penalty term.
Further developments of our proposed method include extending quantile regression to well
studied research areas in mean regression for longitudinal data such as mixed models for

15



count and binary data (Sutradhar, 2011), nonlinear models (He et al., 2003), semi-parametric
models (Lin and Carroll, 2006), and nonparametric models (Wu and Zhang, 2006; Qu and
Li, 2006). Further results will be reported in forthcoming papers.
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Appendix.

In the appendix we give a set of regularity conditions and outline the proofs of the
theorems in Section 3.

A1. For each i, the number of repeated measures ni is bounded and the dimension p of
covariates xij is fixed. The cumulative distribution functions Fij(z) = P (yij − xTijβτ ≤
z|xij) are absolutely continuous, with continuous densities fij and its first derivative
being uniformly bounded away from 0 and∞ at the point 0, i = 1, . . . ,m; j = 1, . . . , ni.

A2. The true value βτ is an interior point of a bounded convex region B.

A3. Each xi satisfies the following conditions
(a) For any positive definite matrix Wi,

1
m

∑m
i=1X

T
i WiΓiXi converges to a positive

definite matrix; where Γi is an ni × ni diagonal matrix with the jth diagonal
element fij(0).

(b) supi‖xi‖< +∞, where ‖·‖ denotes the Euclidean norm.

A4. Matrix Ω is positive definite and Ω = O( 1
m

).

A5. The differentiation of negative Ũ(βτ ), −∂Ũ(βτ )/∂βτ , is positive definite with proba-
bility 1.
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Proof of Theorem 3.1. Let HT
i = XT

i ΓiΣ
−1
i (ρ) and ψi = ψτ (yi − Xiβ̂τ ), therefore U(β̂τ ) =∑m

i=1H
T
i ψi. Let Ū(β̂τ ) =

∑m
i=1H

T
i ϕi, where ϕi = (τ − P (yi1 − xTi1β̂τ ≤ 0), . . . , τ − P (yini −

xTini β̂τ ≤ 0))T . We can obtain

1

m
(U(β̂τ )− Ū(β̂τ )) =

1

m

m∑
i=1

HT
i (ψi − ϕi)

=
1

m

m∑
i=1

HT
i

 P (yi1 − xTi1β̂τ ≤ 0)− I(yi1 − xTi1β̂τ ≤ 0)
...

P (yini − xTini β̂τ ≤ 0)− I(yini − xTini β̂τ ≤ 0)


=

1

m

m∑
i=1

ni∑
j=1

hij[P (yij − xTijβ̂τ ≤ 0)− I(yij − xTijβ̂τ ≤ 0)],

where hij is a p× 1 vector and (hi1, . . . , hini) = HT
i . According to the uniform strong law of

large numbers (Pollard, 1990), under condition A3 we have

sup
β̂τ∈B

∣∣∣∣∣ 1

m

m∑
i=1

ni∑
j=1

hij[P (yij − xTijβ̂τ ≤ 0)− I(yij − xTijβ̂τ ≤ 0)]

∣∣∣∣∣ = o(m−1/2) a.s..

Therefore,

sup
β̂τ∈B
‖ 1

m
(U(β̂τ )− Ū(β̂τ ))‖ = o(m−1/2) a.s..

Now,

Gm(βτ ) = − 1

m

∂Ū(β̂τ )

∂β̂τ

∣∣∣∣∣
β̂τ=βτ

=
1

m

m∑
i=1

HT
i ΓiXi

is positive definite and, with probability 1, Gm(βτ ) → G(βτ ) when m → +∞. Because
P (yij − xTijβτ ≤ 0) = τ , βτ is the unique solution of the equation Ū(β̂τ ). Together with

U(β̂τ ) = 0 and condition A3, implies that β̂τ → βτ as m→∞.
Because ψi are independent random variables with mean zero, and var{U(βτ )/m} =

1
m

∑m
i=1X

T
i ΓiΣ

−1
i (ρ) cov(ψi)Σ

−1
i (ρ)ΓiXi, the multivariate central limit theorem implies that

1√
m
U(βτ )→ N(0, V ).

For any β̂τ satisfying ‖β̂τ − βτ‖ < cm−1/3,

U(β̂τ )− U(βτ ) =
m∑
i=1

HT
i (β̂τ )ψi(β̂τ )−

m∑
i=1

HT
i (βτ )ψi(βτ )

=
m∑
i=1

HT
i (β̂τ ){ψi(β̂τ )− ψi(βτ )}+

m∑
i=1

{HT
i (β̂τ )−HT

i (βτ )}Tψi(βτ ).
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The first term can be written as

m∑
i=1

HT
i (β̂τ ){ψi(β̂τ )− ψi(βτ )}

=
m∑
i=1

HT
i (β̂τ )ϕi(β̂τ ) +

m∑
i=1

HT
i (β̂τ ){ψi(β̂τ )− ψi(βτ )− ϕi(β̂τ )}

=
m∑
i=1

HT
i (β̂τ )ϕi(β̂τ ) +

m∑
i=1

HT
i (β̂τ ){P (yij − xTijβ̂τ ≤ 0)− I(yij − xTijβ̂τ ≤ 0)

+ I(yij − xTijβτ ≤ 0)− τ}

The Lemma in Jung (1996) tells us that

sup

∣∣∣∣∣
m∑
i=1

HT
i (β̂τ ){P (yij − xTijβ̂τ ≤ 0)− I(yij − xTijβ̂τ ≤ 0) + I(yij − xTijβτ ≤ 0)− τ}

∣∣∣∣∣
= op(

√
m).

Therefore,

m∑
i=1

HT
i (β̂τ ){ψi(β̂τ )− ψi(βτ )} =

m∑
i=1

HT
i (β̂τ )ϕi(β̂τ ) + op(

√
m)

= Ū(β̂τ ) + op(
√
m)

From the law of large numbers (Pollard, 1990) the second term

m∑
i=1

{HT
i (β̂τ )−HT

i (βτ )}Tψi(βτ ) =
m∑
i=1

ni∑
j=1

(hij(β̂τ )− hij(βτ ))[P (yij − xTijβτ ≤ 0)

− I(yij − xTijβτ ≤ 0)]

= op(
√
m).

Hence, U(β̂τ )− U(βτ ) = Ū(β̂τ ) + op(
√
m). Using Taylor’s expansion of Ū(β̂τ ), we have

1√
m
{U(β̂τ )− U(βτ )} =

1

m

∂Ū(β̂τ )

∂β̂τ

∣∣∣∣∣
β̂τ=βτ

√
m(β̂τ − βτ ) + op(1).

Because β̂τ is in the m−1/3 neighborhood of βτ and U(β̂τ ) = 0, we have

√
m(β̂τ − βτ ) = G−1m (βτ )

1√
m
U(βτ ) + op(1).

Therefore
√
m(β̂τ − βτ )→ N(0, G−1(βτ )V {G−1(βτ )}T ) as m→ +∞.
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Proof of Lemma 3.1. Let ψij = ψτ (yij−xTijβτ ), ψ̃ij = ψ̃τ (yij−xTijβτ ) and dij = εij/rij, where

εij = yij − xTijβτ , rij =
√
xTijΩxij. Since ψ̃ij − ψij = sgn(−dij)Φ(−|dij|), where sgn(·) is the

sign function, we have

1√
m
{Ũ(βτ )− U(βτ )} =

1√
m

m∑
i=1

XT
i ΓiΣ

−1
i (ρ)

 sgn(−di1)Φ(−|di1|)
...

sgn(−dini)Φ(−|dini |)


=

1√
m

m∑
i=1

ni∑
j=1

zij sgn(−dij)Φ(−|dij|),

where zij is the jth column of XT
i ΓiΣ

−1
i (ρ). Because

E(ψ̃ij − ψij) =

∫ +∞

−∞
sgn(−dij)Φ(−|dij|)fij(ε)dε

=

∫ +∞

−∞
Φ(−|ε|/rij){2I(ε ≤ 0)− 1}fij(ε)dε

= rij

∫ +∞

−∞
Φ(−|t|){2I(t ≤ 0)− 1}[fij(0) + f

′

ij(ζ(t))rijt]dt,

where ζ(t) is between 0 and rijt. Because
∫ +∞
−∞ Φ(−|t|){2I(t ≤ 0) − 1}dt = 0, we have

rij
∫ +∞
−∞ Φ(−|t|){2I(t ≤ 0)− 1}fij(0)dt = 0. Since

∫ +∞
−∞ |t|Φ(−|t|)dt = 1/2, and by condition

A1, there exists a constant M such that supij|f
′
ij(ζ(t))|≤M . Therefore,

|E(ψ̃ij − ψij)| ≤ r2ij

∫ +∞

−∞
|t|Φ(−|t|)|f ′

ij(ζ(t))|dt

≤Mr2ij/2.

Under regularity conditions A3 and A4, when m→ +∞,∥∥∥∥ 1√
m
E{Ũ(βτ )− U(βτ )}

∥∥∥∥ ≤ 1√
m

sup
i,j
|zij|

m∑
i=1

Mr2ij/2 = o(1).

Moreover,

1

m
var{Ũ(βτ )− U(βτ )} =

1

m

m∑
i=1

var

{ ni∑
j=1

zij sgn(−dij)Φ(−|dij|)
}
.

By Cauchy-Schwartz inequality,

1

m
var{Ũ(βτ )− U(βτ )} ≤

1

m

m∑
i=1

ni∑
j=1

zijz
T
ij var(ψ̃ij − ψij)

+
1

m

m∑
i=1

ni∑
j=1

ni∑
k 6=j

zijz
T
ik

√
var(ψ̃ij − ψij) var(ψ̃ik − ψik).
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Hence for each j = 1, . . . , ni,

var(ψ̃ij − ψij) ≤ E(ψ̃ij − ψij)2 =

∫ +∞

−∞
{sgn(−dij)Φ(−|dij|)}2fij(ε)dε

= rij

∫ +∞

−∞
Φ2(−|t|)fij(rijt)dt

= rij

∫
|t|>∆

Φ2(−|t|)fij(rijt)dt+ rij

∫
|t|≤∆

Φ2(−|t|)fij(rijt)dt

≤ Φ2(−∆) + rij∆fij(ζ),

where ∆ is a positive value, and ζ is in the interval (−rij∆, rij∆). Let ∆ = m1/3. Under
condition A4, because rij = O(m−1/2), we have rij∆ = O(m−1/6). Moreover, both Φ2(−∆)
and rij∆fij(ζ) converges to 0 as m → +∞. By conditions A2 and A3, it can be easily
obtained that 1

m
var{Ũ(βτ ) − U(βτ )} = o(1). Therefore, for any βτ , we have 1√

m
{Ũ(βτ ) −

U(βτ )} → 0 as m→ +∞.

Proof of Theorem 3.2. From the results in Theorem 3.1 along with supβ̂τ∈B‖m
−1{U(β̂τ ) −

Ū(β̂τ )}‖= o(m−1/2) a.s., and by the triangle inequality, we have supβ̂τ∈B‖m
−1{Ũ(β̂τ ) −

Ū(β̂τ )}‖= o(m−1/2). If we denote βτ as the unique solution of equation Ū(β̂τ ) = 0 and β̃τ
solving Ũ(β̂τ ) = 0, we can obtain that β̃τ → βτ as m→ +∞.

Before proving the asymptotic normality of β̃τ , we first prove that m−1{G̃(βτ ) −
G(βτ )}

p−→ 0, where G̃(βτ ) = −∂Ũ(βτ )/∂βτ =
∑m

i=1X
T
i ΓiΣ

−1
i (ρ)Λ̃iXi. If we denote HT

i =
XT
i ΓiΣ

−1
i (ρ) = (hi1, . . . , hini), where hij is a p× 1 vector, we can obtain that

E{G̃(βτ )} −G(βτ ) =
m∑
i=1

ni∑
j=1

hij

{
1

rij
Eφ

(
εij
rij

)
− fij(0)

}
xij.

Because ∣∣∣∣ 1

rij
Eφ

(
εij
rij

)
− fij(0)

∣∣∣∣ =

∣∣∣∣ 1

rij

∫ +∞

−∞
φ

(
ε

rij

)
fij(ε)dε− fij(0)

∣∣∣∣
=

∣∣∣∣∫ +∞

−∞
φ(t){fij(0) + rijtfij(ξt)}dt− fij(0)

∣∣∣∣
=

∣∣∣∣rij ∫ +∞

−∞
φ(t)tfij(ξt)dt

∣∣∣∣
≤ rij

∫ +∞

−∞
|φ(t)tfij(ξt)|dt,

where ξt lies between 0 and rijt. By condition A1, there exists a constant M such that
fij(ξt) ≤M . Furthermore, according to condition A4, we have∣∣∣∣ 1

rij
Eφ

(
εij
rij

)
− fij(0)

∣∣∣∣ ≤
√

2

π
rijM → 0.
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By the strong law of large numbers, we know that m−1G̃(βτ ) → E{m−1G̃(βτ )}. Using the
triangle inequality, we have

|m−1{G̃(βτ )−G(βτ )}|≤ |m−1{G̃(βτ )− EG̃(βτ )}|+|m−1{EG̃(βτ )−G(βτ )}|→ o(1),

which is equivalent to m−1{G̃(βτ )−G(βτ )}
p−→ 0.

By Taylor series expansion of Ũ(β̂τ ) around βτ gives us

Ũ(β̂τ ) = Ũ(βτ )− G̃(β̂∗τ )(β̂τ − βτ ),

where β̂∗τ lies between β̂τ and βτ . Let β̂τ = β̃τ . Because Ũ(β̃τ ) = 0 and β̃τ → βτ , we therefore

obtain β̂∗τ → βτ and G̃(β̂∗τ ) → G̃(βτ ). By Lemma 3.1 and m−1{G̃(βτ ) − G(βτ )}
p−→ 0, we

thus have √
m(β̃τ − βτ ) = G−1m (βτ )

1√
m
U(βτ ) + op(1).

Therefore
√
m(β̃τ − βτ )→ N(0, G−1(βτ )V {G−1(βτ )}T ) as m→ +∞.
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