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Abstract 

Forecasting temperature in time and space is an important precondition for both the design of 

weather derivatives and the assessment of the hedging effectiveness of index based weather insur-

ance. In this article, we show how this task can be accomplished by means of Kriging techniques. 

Moreover, we compare Kriging with a dynamic semiparametric factor model (DSFM) that has been 

recently developed for the analysis of high dimensional financial data. We apply both methods to 

comprehensive temperature data covering a large area of China and assess their performance in 

terms of predicting a temperature index at an unobserved location. The results show that the DSFM 

performs worse than standard Kriging techniques. Moreover, we show how geographic basis risk 

inherent to weather derivatives can be mitigated by regional diversification. 

Keywords: weather insurance, semiparametric model, factor model, Kriging, geographic basis risk 

JEL classification: C14, C53, G32 

1 Introduction 
Weather constitutes an important risk factor for many industries, such as agriculture, the energy 

sector, and tourism. Firms in these sectors are naturally concerned about unfavorable weather con-

ditions and are interested in the development of risk management tools that can allow them to bet-

ter cope with weather perils. An important strategy to mitigate negative financial consequences of 

weather perils is insurance. In fact, in the last decade the insurance industry has developed products 

that offer protection against weather risks, namely weather derivatives and weather index based 

insurance. These products are either traded at exchanges, such as at the Chicago Mercantile Ex-

change (CME), or over the counter (OTC) and can be written on a variety of weather variables such as 

temperature, rainfall, snow, wind, or indices based on these various parameters. A payoff is granted 

if a specific weather event occurs at a predetermined weather station. For example, a farmer insured 

against drought would receive a payoff if the total amount of rainfall reported at an independent 

weather station undercuts a predetermined threshold. Hellmuth et al. (2009) and Balzer and Hess 

(2010) provide a comprehensive overview about the characteristics and applications of these instru-
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ments. While a considerable market potential for weather insurance has been predicted by many 

(e.g., Barnett and Mahul 2007; Skees et al. 2008), thus far the actual acceptance of these products 

falls short of expectations. A major obstacle for the implementation of weather insurance is the ex-

istence of basis risk, which occurs if the insurance payoff does not exactly match the actual losses of 

the insured (see Deng et al. (2007) and Woodard and Garcia (2008)). Basis risk can occur either be-

cause the underlying weather index and losses are not perfectly correlated (production basis risk) or 

because the weather conditions at the reference station and the location of the policyholder deviate 

(geographic basis risk). Geographic basis risk can be considerable depending on the weather variable 

and the geographic situation (Miranda and Vedenov 2001). Knowledge of the geographic basis risk is 

important from the viewpoint of buyers and sellers of weather insurance products. The insured want 

to know if and to what extent their weather risk exposure can be reduced by buying weather insur-

ance. In other words, they want to assess the hedging effectiveness of the instrument. Insurers are 

also interested in assessing geographic basis risk since it helps them to predict the potential demand 

for weather insurance as well as to estimate if it makes sense economically to launch such a product 

at a given location (cf. Paulson and Hart (2006) and Paulson et al. (2010)). 

Geographic basis risk is mainly a result of two factors. The first is spatial variability of weather condi-

tions and the second is unavailable weather data at locations where this information is needed to 

assess weather risk. The desire to estimate and to forecast meteorological events is very general and 

goes beyond the estimation of geographic basis risk. Thus, it is not surprising that a variety of statisti-

cal tools exist that support this task. Sluiter (2009) provides an overview of current spatial interpola-

tion methods for climate data. Caruso and Quarta (1998) compare four commonly used methods for 

point interpolation. They find that Kriging outperforms the other approaches if locations are situated 

further away from each other. A similar finding is reported by Stahl et al. (2006).  

Temperature, however, varies in space and time and thus temporal variation must be taken into ac-

count. This can also be achieved by Kriging techniques, such as local space-time Kriging (Gething et al. 

2007), or by dynamic models for non-stationary spatio-temporal data (Stroud et al. 2001). As an al-

ternative to standard Kriging procedures, we consider a dynamic semiparametric factor model (DSFM) 

which has recently been suggested by Song et al. (2010, 2013) for analyzing high dimensional data. A 

DSFM is able to smooth high dimensional data via dimension reduction and to forecast in both time 

and space (see Park et al. (2009)). The nature of a DSFM is based on parametric estimation in time 

and nonparametric estimation in space. So far, DFSMs have been mainly applied to financial data 

(Fengler et al. 2007; Giacomoni et al. 2009; Choroś-Tomczyk et al. 2013). DSFMs allow us to study 

dynamics of temperature in the time level as well as high dimensionality in the space level. In this 

paper, the Kriging technique is applied as the standard procedure. 

The contribution of this paper is twofold: First, we adapt a DSFM to a comprehensive set of tempera-

ture data and compare this new method with the standard methods of interpolation and forecasting 

of weather data. Second, we assess the geographic basis risk and the hedging effectiveness of tem-

perature based index insurance for China. In doing so, we provide information on the market poten-

tial of weather derivatives in China. Agriculture plays an important role in China, and farmers are 

highly exposed to weather risks. The need for insurance in the agricultural sector is reflected by the 

24.06 billion Yuan insurance premium volume in 2012, which was 38.8% higher than in 2011 (Peo-

ple’s Bank of China 2013). In March 2013, new agricultural insurance regulations came into force and 

a weather index based insurance pilot project had been launched in the province of Anhui (Balzer 
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and Hess 2010). It is, however, difficult to estimate the market potential for weather index based 

insurance because the hedging effectiveness of the insurance products is unclear to market partici-

pants. It is particularly difficult to quantify geographic basis risk because of the low density of weath-

er stations and the lack of reliable historical weather data. Against this background, our objective is 

to provide statistical methods that allow the spatial interpolation and prediction of temperature data. 

This would enable the quantification of geographic basis risk and support an assessment of the will-

ingness to pay for weather insurance.  

This paper is structured as follows: In the following section, we provide a formal definition of geo-

graphic basis risk and describe methodologies for interpolating and forecasting temperature. In Sec-

tion 3, we apply the models to Chinese temperature data and compare their performance. Further-

more, we analyze the geographic basis risk for an exemplary buyer of a weather derivative in China. 

Further discussions and conclusions are in Section 4.  

2 Methods 

2.1 Geographic Basis Risk 
To define geographic basis risk, we consider the revenue      of a weather-dependent producer (e.g., 

a farmer) at location   at time  . The revenue can be modelled as the product of the weather-

dependent production function          and the product's market price  , where      denotes a 

weather index measured at time   at location  , which is assumed to describe a producer’s weather 

dependency. The specific form of the index will be introduced later in Section 3.1. The producer can 

hedge his/her weather risk by buying a weather derivative or index based weather insurance. The 

payoff of the weather derivative depends on the weather index      measured at a reference location 

 . At time  , the producer pays a premium      for the derivative and receives a payoff         . Thus, 

the discounted revenue of the producer holding the weather insurance is given by (cf. Mußhoff et al. 

(2011) and Ritter et al. (2013)): 

         (    )      (    )   
          , (1) 

where       is a discount factor. Basis risk arises from two facts. First, production revenues        

and the weather-dependent insurance payoff   (    ) are not perfectly (negatively) correlated. In our 

paper, we ignore this source of basis risk called production basis risk because it is producer specific 

and difficult to generalize. Second, if the production location   and the reference station   are not 

the same, the weather at the two locations might be different, and thus      and      differ. In turn, 

the producer faces geographic basis risk.  

If the weather derivative was offered at location  , the hypothetical revenue would be: 

  ̃       (    )      (    )   
           (2) 
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The deviation of the hypothetical revenue from the real revenue is a measure of geographic basis risk. 

We quantify this deviation by the quadratic loss function: 

 (       ̃   )
 

  (3) 

 ([{  (    )      (    )}   
          ]  [{  (    )      (    )}   

         ])
 

 (4)  

 ({  (    )    (    )}⏟            
 ifference of payoffs

        (         )⏟         

 ifference of prices

)

 

  (5) 

Since the prices of the hypothetical derivative are not reachable on the market, the difference in 

prices is ignored in this paper. Hence, we want to minimize the (quadratic) difference between the 

payoffs to reduce the geographic basis risk: 

    (  (    )    (    ))
 

 (6) 

From an ex-ante perspective, the actual payoffs          and the hypothetical payoff          have to 

be predicted with information available at time  . Thus, assessing geographic basis risk requires a 

forecasting procedure. Moreover, while weather data are available at the reference station  , this 

may not hold for the production location  , particularly in developing countries where the density of 

weather stations is generally low. This means that the calculation of geographic basis risk also re-

quires a spatial interpolation technique. In the next subsection, we describe the approaches support-

ing these tasks, i.e., forecasting in time and interpolation in space. 

2.2 Statistical Approaches 
To predict the future index values at an unobserved location, we apply four different approaches: A 

dynamic semiparametric factor model (DSFM, Section 2.3) and Kriging (Section 2.4) are combined 

with daily modelling and index modelling. A DSFM allows for interpolating in space and time, where-

as Kriging techniques only interpolate spatially. Hence, it has to be combined with forecasting meth-

ods in time such as a stochastic temperature model (Section 2.4.1) or Burn Analysis (Section 2.4.2). 

Applying daily and index modelling allows us to additionally evaluate these two different data pro-

cessing approaches.  

Figure 1 depicts the four procedures in detail: When applying DSFM, one can interpolate historical 

daily temperatures directly, forecast temperatures at the unobserved location, and derive the index 

values at the end (Daily DSFM approach). Alternatively, the index values can be calculated first for 

each location before they are used for interpolating and forecasting the index values at the unob-

served location using a DSFM (Index DSFM approach). The two approaches applying Kriging are simi-

lar: For the Daily Kriging approach, historical daily temperatures are interpolated using Kriging and 

then future temperatures for all locations are forecasted using a temperature model. The index val-

ues are then derived from the forecasted temperature values. In the Index Kriging approach, derived 

index values for all locations are interpolated by Kriging. The expected index value at the unobserved 

location is then obtained by averaging the historical index values (burn analysis).  
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Fig. 1: Flow chart of computational procedures 

2.3 Dynamic Semiparametric Factor Model (DSFM)  
Factor models are usually applied to high-dimensional data. Fengler et al. (2007) and Park et al. (2009) 

generalize a dynamic semiparametric factor model for high-dimensional time series, in which linear 

combinations of factors are utilized for a low-dimensional representation of the data. The estimated 

factors and factor loadings are driven by historical observations and reflect the dynamics of time 

series and the spatial, time-invariant component, respectively. 

The dynamic semiparametric factor model has the form: 

                 ∑     
  

   
                                             (7) 

The index   denotes the time evolution,   reflects the spatial variation, and   is the number of or-

thogonal factors. For our dataset,      are temperature observations on each day  , and       denotes 

the coordinates of each station  , which are in the form of longitude and latitude and remain con-

stant over time. Therefore,   does not depend on    We can rewrite this equation as: 

        
                , (8) 

where      is a tuple of unknown smooth functions (              
 , called basis functions, which 

reflect the time invariant (factor) structure and can be estimated directly from the data;   = (1, 

    , . . . ,     ) is a multivariate time series with a dynamic structure; and      are errors that have zero 

means, finite second moments, and are independent of      .    and     are also known as common 

factors and factor loadings, respectively. 

The basis functions are estimated via B-spline series (Park et al. 2009): 

           ∑    
 
              (9) 

where          is a B-spline basis function and     are coefficients.   describes the number of series 

expansion functions and serves as bandwidth in the Kernel estimation. 

DSFM 

Daily DSFM appoach: 

•interpolate and forecast 
(DSFM+Season+AR) 

•calculate indices 

Index DSFM approach: 

•calculate indices 

•interpolate and forecast 
(DSFM+VAR) 

Kriging Model 

Daily Kriging approach: 

•interpolate (Kriging) 

•forecast (temperature model) 

•calculate indices 

Index Kriging approach: 

•calculate indices 

•interpolate (Kriging) 

•forecast (burn analysis) 
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Then, the least square estimator is defined as: 

    ̂
 
  ̂            

∑ ∑ {                  }
  

   
 
     (10) 

where   =       is an         matrix, which is used to estimate   by  ̂    ̂   

As noted in Park et al. (2009), the estimates of    and    are not uniquely defined since their product 

in Eq. (10) can be obtained by different functions. Nevertheless, there always exists a random matrix 

  which gives     ̂  asymptotically the same covariance structure as   . Then, one can estimate 

 ̂    ̂  such that  ̂ is orthonormal in       , which implies that   is also an orthogonal matrix. The 

calibration procedure is implemented in the following way: First, the initial estimate of    is set as a 

white noise sequence to estimate the initial  ̂  . Then, with the fixed alpha, we perform an estima-

tion of  . Finally, the procedure is iterated until it converges. For more details, refer to Park et al. 

(2009).  

For forecasting, the time-variant factors    have to be extrapolated for the forecasting horizon. For 

this purpose, the distinct patterns underlying these factors are predicted using functions for the 

trend, seasonality, and an autoregressive component for the Daily DSFM approach. For the Index 

DSFM approach, VAR processes are used to predict these factors.  

2.4 Kriging procedure 

2.4.1 Ordinary Kriging 

Kriging is a geostatistical interpolation method introduced by Krige (1976) and generalized by Math-

eron (1965). The spatial relationships are estimated through a semivariogram. Then, the weighted 

combinations of neighbors are used for interpolation.  

We assume that the random data       at certain points {           } exhibit "intrinsic station-

arity", which follows the formula: 

                     (11) 

The intrinsic hypothesis is a weaker form of stationarity than the strong stationarity or the second-

order stationarity. It means that the expected value of                  is zero for all vectors 

which are any two points separated by the distance  . Even if the assumption might be not fulfilled 

for the whole dataset, it can be relaxed to a rather homogenous search neighborhood (Holdaway 

1996). 

Then, according to Matheron (1965), the classic semivariogram estimator is given by: 

  ̂    
 

     
∑                 

  
     (12) 

where       denotes the value at location    and      is the number of experimental pairs separat-

ed by the distance   between each pair. Based on Eq. (12), one can compute the experimental vario-

gram from the data. 

In practice, there are a number of different theoretical variogram models. The most commonly used 

models are Gaussian, spherical, power, exponential, and cubic (Olea 1999). There are, however, no 
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statistical tests to evaluate an experimental variogram and to determine how closely the theoretical 

variogram is approximated. In this paper, to do automatic fitting we use the least square method and 

the Akaike information criterion (AIC) over the sum of the squares between the sample variogram 

and the fitted variogram model (Olea 1999). For our data, the Stein-Matern parameterization devel-

oped by Stein (1999) yields the best fit:  

      
 

 
  

     (  
 

 
)   

               , (13) 

where    is a modified Bessel function,   is a additional smooth parameter,  > 0, and   is the range.  

According to Cressie (1993), Ordinary Kriging is defined as:  

               , (14) 

where     is unknown and      is a white-noise process with mean zero and variance   
    

which describes the spatial random effect. 

Estimation of the Ordinary Kriging predictor requires the following conditions (Cressie and Wikle 

2011): 

(1) Linearity:  

  ̂     ∑         
 
   , (15) 

where  ̂     is the estimator at the new location   ,       are the random variables at locations   , 

and    are weights (Kriging coefficients) assigned to each location    that are derived from the vario-

grams. 

 

(2) Unbiasedness:  

 ∑       
    (16) 

Subject to the unbiasedness condition, we minimize the mean square prediction error over a set of   

and obtain the following Lagrange function: 

   ∑         
 
          

      ∑       
      (17) 

where   is the Lagrange multiplier and   the number of locations. The mean square prediction error 

is given by 

   
     [       ̂    ]

 
 (18) 

We adopt the cross validation procedure for the estimation, i.e., for each station, the actual mean 

square prediction error can be derived by the true observation and the estimator. 
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2.4.2 Daily Temperature Model 

In the Daily Kriging approach, Kriging is used to interpolate historical temperatures day by day for the 

unobserved location. Then, a daily temperature model can be fitted to historical and interpolated 

data to predict temperatures at each location on the time scale.1 

In standard temperature models, the time series of temperature is decomposed into four compo-

nents: trend, seasonality, an autoregressive component, and the residuals with a seasonal variance. 

For the trend analysis, we use a simple linear trend as Benth and Šaltytė‐Benth (2005) and Campbell 

and Diebold (2005). To capture the seasonality, Campbell and Diebold (2005) use a low ordered Fou-

rier series, Benth and Šaltytė‐Benth (2005) prefer a truncated Fourier series, and Härdle et al. (2011) 

propose a local smoothing technique. In this paper, we follow Benth and Šaltytė‐Benth (2005) and 

Okhrin et al. (2012) to use a simple cosine function for seasonality. Hence, detrending and deseason-

alizing of the temperature    is conducted using the following method:2  

         , (19) 

                ( 
        

   
)  (20) 

The function    denotes the combination of the long-term average temperature   , the linear trend 

   , and seasonality which is captured by the 365-periodic cosine term. Another factor is the auto-

regressive component, which we capture by an AR( ) process: 

    ∑         
 
        , (21) 

with            . The maximum lag   is determined by the AIC and    denotes temperature volatility 

which Campbell and Diebold (2005) model as a seasonal GARCH process. In this paper, however, we 

follow Benth and Šaltytė‐Benth (2005), who explain temperature variance by the distinctive seasonal 

pattern: 

   
       ∑ (        (

    

   
 )         (

    

   
 ))

 

   
 (22) 

To estimate variance from the observed residuals, we average the squared residuals on the same day 

of each year for all 365 calendar days and then model the expected squared residuals. After detrend-

ing, deseasonalizing, and removing the autoregressive part and the seasonal variance, the residuals 

are assumed to follow a standard normal distribution         

2.4.3 Burn Analysis 

In the Index Kriging model, Ordinary Kriging is directly applied to a temperature index that underlies 

temperature insurance. In this approach, we follow common actuarial practice and take the average 

of the interpolated historical indices as the expected index value at the unobservable location for the 

next year, i.e., we conduct a “burn analysis”. 

                                                           
1
 The procedure could also be conducted in the opposite way: First, daily temperature models are fitted to the historical 

data at all locations to forecast the temporal scale. Then, Kriging is used to interpolate the forecasted data for the left-out 

location on the spatial scale. Although the RMSE results show no significant difference between the two sub-models, the 

computational effort is much higher.  

2
 Note that the temperature model and all coefficients depend on the specific location. To simplify notation, however, we 

omit the location index   in this section.  
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3 Application to Chinese Temperature Data 

3.1 Data 
Observations of daily temperature from 1957 to 2009 are provided by the China Meteorological Data 

Sharing Service System. We select 100 stations which are distributed in a rectangular area with lower 

density towards the north-west (see Fig. 2). Because a temperature index can only be measured once 

per year, 53 observations are available for each station in the two index models. To reduce computa-

tional burden for the daily models, however, we constrain the dataset to the last 11 years to 4.015 

observations between 1999 and 2009 for each station. For all models, the data is split into two parts: 

Data until December 31, 2008 are used for estimation whereas data from 2009 are retained to evalu-

ate forecasts. Moreover, we conduct leave-one-out cross validation to evaluate the methods, i.e., 

each time we leave one station out of the sample as the unobserved location, interpolate historical 

values based on data at the other 99 stations in 2008, and forecast for 2009. This procedure is re-

peated 100 times, so that each location is left out once. In the end, we compare the resulting  ̂      
         

for each location   with the observed index        
  calculated from the observations at the bench-

mark location in 2009 using the root mean square error (RMSE): 

     ( ̂    
        

      
 )  √ 

 
∑ ( ̂      

        
        

 )
 

 
    (23) 

Note that Eq. (23) refers to our primary objective, i.e., minimizing the quadratic differences between 

the insurance payoffs (Eq. (6)). Weather derivative payoffs are usually derived by multiplying the 

index value with a constant tick value. 

 

Fig. 2: Map of Chinese weather stations in the study area  

(The blue squares show the three reference stations: 1=Beijing, 2=Wuhan, and 3=Guangzhou. The 

black square shows Lushi and is used for illustrating geographic basis risk.) 
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The weather index used in this paper is the growing degree days (GDD) index, which has a similar 

structure as the commonly used heating degree days index (HDD) or the cooling degree days index 

(CDD). Its relevance for agriculture comes from the fact that the accumulation of heat is one of the 

main factors influencing the development of crops. The GDD index at location   over a growing sea-

son is defined as (World Bank 2005): 

             ∑               ̂ 
  
    

  (24) 

where      denotes the daily average temperature in degree Celsius at location   at time  .    and 

   are the first and the last day of the growing season from March 1st to October 31st. We assume 

that the base temperature  ̂ is 5 °C. 

3.2 Results  

3.2.1 Kriging 

To apply Kriging, we first compute the experimental semivariogram according to Eq. (12) and then fit 

the theoretical Stein-Matern semivariogram (Eq. (13)). Spatial data often exhibit an anisotropic spa-

tial pattern, which means that the experimental semivariogram varies in different directions. Figure 

A1 shows the directional difference of the experimental semivariogram on January 1st, 1999. As 

shown, the directional experimental semivariograms show a similar structure except the direction is 

east-west. The semivariance strongly increases with increasing distance between each pair in most 

directions, but it rises only slightly in the east-west direction. However, to simplify the subsequent 

calculations, we ignore this anisotropic pattern and apply Kriging to the data irrespective of the direc-

tion. Figure 3 displays the fit of the experimental and the theoretical Stein-Matern semivariogram for 

the same day.  

 
Fig. 3: The experimental (circle) and the theoretical Stein-Matern variogram (line) on January 1st, 

1999 

Figure 4 depicts the Kriging results for the study area. The left panel shows the optimal ordinary 

Kriging predictor. From south to north, the temperature predictors decrease gradually. The right 

panel visualizes the corresponding prediction errors   
  according to Eq. (18). As one can expect, the 

uncertainty of the predictors is high in regions with a low density of weather stations.  
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Fig. 4: Ordinary Kriging prediction (left) and prediction error (right) 

(results for January 1st, 1999; blue crosses denote observed locations) 

3.2.2 Daily Temperature Model 

Estimation results for data from 1999 to 2008 indicate a positive trend for most stations, which might 

be due to development and air pollution, which is discussed by Campbell and Diebold (2005). Never-

theless, the estimated trend coefficients are small, between            and            leading 

to a temperature increase between 0.14 °C and 0.75 °C in the observation period 1999-2008. In con-

trast, a negative trend occurs in a few stations: In Beijing, for example, the average temperature de-

creased by 0.57 °C.  

Temperatures at all stations show the typical seasonal pattern and a strong autoregressive behavior. 

The orders   of the autoregressive process vary between 3 and 20 for all stations with no distinct 

geographical pattern. Although Šaltytė‐Benth and Benth (2012) mention that choosing large lags is 

not meaningful from a statistical and a meteorological point of view, we keep using the original lags 

individually for each station to account for data differences between stations. 

Figure A2 illustrates the observed temperature at Quzhou and the fitted conditional mean function 

(Eq. (20)). The estimated residuals after removing the trend, seasonality, and AR process still have a 

strong nonlinear dependence (Fig. A3). This behavior is captured by a seasonal variance function 

(Eq. (22)). Fig. A4 shows the empirical variance and the fitted Fourier series for Quzhou. With the 

estimated temperature models at hand, we can forecast the (out-of sample) temperatures for 2009. 

The GDD indices for 2009 can be calculated from the forecasts. 

3.2.3 DSFM 

For computation convenience, we transform the initial space of the rectangular coordinates area to a 

unit square       . Moreover, we normalize the index data by subtracting the mean and dividing by 

the standard deviation calculated over all stations and all years. After the model is estimated, the 

mean and the standard deviation are incorporated again. To choose the number of factors for DFSM, 

we use the value of      , which can be interpreted as the explained variation of the model among 

the total variation and is expressed as follows: 

          
∑ ∑ {       ̂          ∑  ̂   

  

   
 ̂         }

 
 
   

 
   

∑ ∑ {       ̅}
  

   
 
   

 (25) 

The explained variation for the Index DSFM approach is listed in Tables 1 and 2 depending on the 

values of  ,  , and the order of the splines  . Although the values of    get larger with increasing K 



12 

and    we estimate  = 3 basis functions, K = 9 knots, and set the order of splines   equal to 3. Show-

ing an EV of 0.85, this combination is a good compromise between computational time and model 

accuracy. Setting L=3 is common in the literature (e.g., Giacomini et al. (2009)), and three factors can 

sufficiently capture the regional variation of temperatures. In the Daily DSFM approach, we chose 

K=9, P=2, and L=3. For this parameter choice, the explained variance amounts to 95.9% (see Table 3) 

and indicates that the model fits the data well. 

   =2   =3   =4   =5 

K = 7 0.611 0.613 0.614 0.614 

K = 8 0.734 0.736 0.737 0.737 

K = 9 0.848 0.850 0.851 0.851 

K = 10 0.920 0.922 0.923 0.924 
K = 11 0.962 0.964 0.965 0.965 

Table 1: Explained variance of the Index DSFM approach for  =3  

   =2   =3   =4   =5 

K = 7 0.354 0.355 0.355 0.356 

K = 8 0.483 0.484 0.484 0.485 

K = 9 0.592 0.594 0.594 0.595 

K = 10 0.718 0.719 0.720 0.720 
K = 11 0.811 0.813 0.813 0.814 

Table 2: Explained variance of the Index DSFM approach for  =4  

   =2   =3   =4   =5 

K = 6, P = 2 0.954 0.959 0.965 0.968 

Table 3: Explained variance of the Daily DSFM approach  

Figure 5 displays the estimated factor functions  ̂   to  ̂  in the transformed estimation space.  ̂  is 

the intercept function and depicts the regional differences in the average temperature. The factors 

 ̂   and  ̂   are complementary factors which determine the main structure of the stochastic varia-

tions of the temperature index. The function  ̂  allows for fine tuning of the model structure. 

Figure 6 shows the estimated loading factors series  ̂  from 1999 to 2000, which reflect the dynamics 

on the time scale. Obviously, the loading factors follow seasonal patterns. To model trend and sea-

sonality in the loading factors, we use the same mean function that we elicited from the daily tem-

perature model in Section 2.4.2. The AIC is used to determine the order of the AR process. This pro-

cedure translates the high dimensional problem into a low dimensional analysis of  ̂ . Finally, based 

on predictions of the loading factors for the year 2009, we obtain temperature forecasts for each 

location. 

Figure 7 illustrates the interpolation results for the year 2008 using the Index DSFM approach. The 

irregular surface reflects the regional variation in the temperature index. Index values are higher in 

the south, where the climate is subtropical, and lower in the north and northwest. The figure also 

displays the true index observations at all 100 weather stations.  
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Fig. 5: Estimated factor functions             for the Daily DSFM approach 

 

 

 

 

 
Fig. 6: Time series of the weights  ̂     ̂     ̂    for the years 1999-2000 from the Daily DSFM ap-

proach 
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Fig. 7: Interpolation surface for the Index DSFM approach in 2008 
(Red dots describe index values 2008 at the observed locations and blue dots describe values from 

the Index DSFM model) 

3.3 Comparing the Approaches 
Model performance is based on an out-of-sample forecast of the GDD index values for 2009. Figure 8 

depicts absolute forecast errors from the four models. Errors from the Daily Kriging approach differ 

only slightly from those from the Index Kriging model. Absolute errors from the DSFM models, how-

ever, are generally much higher than those in the Kriging models. Moreover, at least for some sta-

tions there are large differences between the Daily DSFM and the Index DSFM. Irrespective of the 

underlying model, stations with large forecast errors, such as station 57 (Wuqiaoling) and 58 (Pingli-

ang), are located in the northwest where temperature data are sparse.  
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Fig. 8: Absolute forecast errors from Index Kriging, Daily Kriging, Index DSFM, and Daily DSFM for all 

stations compared to true observations in 2009 

Table 4 lists the RMSE related to the four models. For daily and index modelling, Kriging clearly out-

performs the DSFM. One reason for the poor performance of the DSFM is because the DSFM is a 

semiparametric approach, whereas Kriging is fully nonparametric. Another reason is the high season-

ality in temperature data, which is not sufficiently captured in the factors of the DSFM. This explana-

tion is supported by the fact that the Index DSFM approach, in which seasonality plays a minor role, 

obtains better results. Nevertheless, the RMSE is also rather high for this model. This problem could 

be mitigated by increasing the number of factors  , however, this would increase the computational 

effort. Another option is detrending and deseasonalizing the data beforehand and applying a DSFM 

to the residuals. In our case, modelling the residuals leads to the problem that the seasonality for the 

unobserved location is unknown and hence forecasts for the temperature cannot be derived. Never-

theless, if seasonality is known, such as from a nearby location or if interpolating is used to fill in 

missing data, a DSFM may perform better than it did here.  

Another finding is that index modelling outperforms daily modelling for the DSFM, whereas the op-

posite is true for the Kriging model. The difference, however, is rather small and not significant ac-

cording to Welch’s t test (t-statistic = -0.35 and p-value = 0.5919). Nevertheless, the daily model has a 

considerable advantage because the forecasts change when the time of calculation is closer to the 

accumulation period of the index. In the index model, however, we use the average of the past years 

as the forecast which is just updated once per year after the accumulation period. This means that 

the forecast from the index model remains the same if we do the same procedure on March 31, 2009 

instead of December 31, 2008, but that the forecast from the daily model probably improves. 

 Kriging Model DSFM 

 Index model Daily model Index model Daily model 
GDD 418.4436 406.3998 644.4340 910.8132 

Table 4: Root mean square errors for the four approaches 
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3.4 Illustration of Geographic Basis Risk 
Finally, we use the Daily Kriging model to quantify the geographic basis risk that is inherent to a 

weather insurance based on the GDD index. We prefer to use the daily model because of its flexibility 

and because it is commonly used for derivative pricing. We start by selecting three hypothetical ref-

erence stations in our study area: Beijing (116’28, 39’48), Wuhan (114’08, 30’37), and Guangzhou 

(113’20,23’10) (shown in Fig. 2). This choice is based on the economic importance of these cities and 

because of their varying climate conditions. We assume that weather derivatives based on the GDD 

index are offered for these three stations. Furthermore, we assume that a farmer situated in Lushi 

(111’02, 34’03), a county in Henan province, wants to insure his production against weather risk by 

buying a GDD index contract. Henan province is China's major wheat-growing area and accounts for 

1/4 of China’s wheat production (Ye et al. 2007). Wheat is also the main crop in Lushi, which is a 

mountainous area with shallow soil tilth. Therefore, weather fluctuations strongly influence yields 

there. In our hypothetical example, there is no weather station adjacent to the farm in Lushi. This 

means that historical weather data must be constructed via an interpolation of data from existing 

weather stations. Since Lushi is remote from the three reference weather stations, the farmer will 

likely face geographic basis risk. In what follows, we consider the geographic basis risk for different 

portfolios of weather derivatives: A farmer can either buy a single contract for Beijing (Station 1), 

Wuhan (Station 2), or Guangzhou (Station 3). Alternatively, the farmer can build a portfolio consisting 

of two or three derivatives. To derive appropriate portfolio weights, we follow Ritter et al. (2013) and 

forecast index values for the farm’s location and the three reference stations 10,000 times using the 

temperature model and approximate the farmer’s index value via linear regression. Hence, we obtain 

optimal portfolio weights and can compare the simulated index outcome at the farmer’s place with 

the index outcome of the combined reference stations to assess geographic basis risk for the differ-

ent scenarios. 

Table 5 shows the resulting RMSE for the different scenarios. Based on this simulation, the farmer 

faces a geographic basis risk between 32 and 39 when buying a GDD derivative based on one refer-

ence station. By combining two or three reference stations with optimal weights, the geographic 

basis risk can be reduced to approximately 28. Therefore, these calculations show that the best op-

tion for lowering geographic basis risk is to combine reference stations where derivatives are availa-

ble. Note that these results are based on an in-sample comparison. For longer time periods, the per-

formance of weights based on training data can be evaluated for testing data (see Ritter et al. (2013)). 

Our results provide a first impression of how geographic basis risk can be mitigated.  

Station(s) RMSE 

 1 (Beijing) 39.12 
 2 (Wuhan) 36.75 
 3 (Guangzhou) 31.89 
 1+2 36.09 
 1+3 30.09 
 2+3 28.52 
 1+2+3 28.32 

Table 5: Expected geographic basis risk of a farmer in Lushi in 2009 for different combinations of the 

three reference stations  
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4 Conclusion 
This paper examines the performance of two general statistical procedures for interpolating and 

forecasting spatio-temporal data. From a statistical view, the approaches differ in the following way: 

the Kriging approach interpolates the data by the weighted sum of the neighbors with the help of a 

semivariogram; forecasting is then conducted by applying time series analysis. On the other hand, 

the DSFM approach decomposes spatio-temporal data into the principal spatial and temporal factors. 

In this paper, these different methods are evaluated for a long time period and over a large area of 

China, so the analysis is based on a broad database. 

When insuring weather risk with weather derivatives, the problem of geographic basis risk occurs 

because the payoff depends on the weather at the reference station. To assess geographic basis risk, 

interpolating and forecasting are required. Interpolating is needed if the buyer of a temperature de-

rivative is not situated next to a weather station and thus lacks current and/or historical weather 

data, whereas forecasting is used to estimate future payoffs and calculate prices of temperature 

derivatives. The new approach DSFM is able to conduct both tasks at the same time. This approach is 

compared to the standard interpolation method Kriging, which is combined with a stochastic tem-

perature model. Moreover, we compare daily and index modelling. The results show that because 

the DSFM fails to capture the strong seasonality present in temperature data, the Kriging approach 

outperforms the DSFM. For the Kriging approach, we find no significant differences between the 

daily model and the index model. Furthermore, we illustrate how geographic basis risk can be quanti-

fied when insuring temperature risk with the GDD index and three potential reference stations. A 

combination of two or three suitable weather stations can significantly reduce the expected geo-

graphic basis risk. 

Nevertheless, the application of the DSFM in the context of temperature modelling should be further 

investigated. The precision of the forecasts could be increased by having a greater number of factors 

or by modelling the detrended and deseasonalized residuals instead of the raw data (not applicable 

in our context). The DSFM provides a better understanding of the geographical factors that are driv-

ing the temperature, which can be evaluated on the basis of the   functions. Being semiparametric 

by nature, it allows for a fully parametric specification of the temporal evolution of the underlying 

factors. A denser network of data stations together with more flexible parameters would allow for a 

better understanding of the data. 
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Appendix 
 

 

Fig.A1: Directional experimental semivariogram on January 1st, 1999. 

 

 

 

 

Fig. A2: Ten years of temperature data (black) with the fitted conditional mean function (red) in sta-

tion Quzhou 
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Fig. A3: Estimated model residuals in station Quzhou after removing the trend, seasonality, and the 

AR components 

 

 

 

 

Fig. A4: Empirical and fitted volatility function in station Quzhou. 
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