Skip to main content
Log in

A new generalization of lifetime distributions

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In the current study, we set out to extend the three-parameter Modified Weibull (MW) distribution in an attempt to propose a four-parameter distribution named the Modified Weibull Poisson (MWP) distribution including such noticeable submodels as Exponential Poisson, Weibull Poisson, and Rayleigh Poisson known as the distributions subsumed under the umbrella term MWP. Depending on its parameter values, this overarching distribution was demonstrated by this work to exhibit some hazard rates like decreasing, increasing, bathtub, and upside-down bathtub ones. In addition to the hazard rates of the MWP, the mathematical properties as well as the properties of maximum likelihood estimations were brought to the forefront, and the very capability of the quantile measures to be explicitly expressed in terms of the Lambert W function was vigorously discussed. To shed light on the functioning of the maximum likelihood estimators and their asymptomatic results for the finite sample sizes, some numerical experiments were carried out leading to two data sets intended chiefly to illustrate or explicate the higher levels of importance and flexibility of the MWP in comparison with its standard counterparts, namely the Weibull, Gamma, and MW distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aarset MV (1987) How to identify bathtub hazard rate. IEEE Trans Reliab 36(1):106–108

    Article  MATH  Google Scholar 

  • Barlow RE, Campo RA (1975) Total time on test processes and application to failure data analysis, research report no. ORC 75-8, University of California

  • Carrasco JMF, Ortega EMM, Corderio GM (2008) A generalized modified Weibull distribution for lifetime modeling. Comput Stat Data Anal 53:450–462

    Article  MathSciNet  MATH  Google Scholar 

  • Chen G, Balakrishnan N (1995) A general purpose approximate goodness-of-fit test. J Qual Technol 27(2):154–161

    Google Scholar 

  • Corless RM, Gonnet GH, Hare DEG, Jeffrey DJ, Knuth DE (1996) On the Lambert W function. Adv Comput Math 5:329–359

    Article  MathSciNet  MATH  Google Scholar 

  • Gradshteyn IS, Ryzhik IM (2000) Table of integrals, series, and products, 6th edn. Academic Press, San Diego

  • Kus C (2007) A new lifetime distribution. Comput Stat Data Anal 51:4497–4509

    Article  MathSciNet  MATH  Google Scholar 

  • Lai CD, Xie M, Murthy DNP (2003) A modified Weibull distribution. Trans Reliab 52:33–37

    Article  Google Scholar 

  • Lawless JF (2003) Statistical models and methods for lifetime data. Wiley, New York

    MATH  Google Scholar 

  • Silva GO, Ortega EMM, Cordeiro GM (2010) The beta modified Weibull distribution. Lifetime Data Anal 16:409–430

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the two anonymous referees and the Associate Editor, for their helpful comments and suggestions specifically on the numerical experiments which helped improve the content of the first, second and third drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Delgarm.

Appendix

Appendix

The Fisher observed information matrix for the parameter vector \(\varvec{\theta } \) whose elements are given by:

$$\begin{aligned} U_{\alpha \alpha }&= -n\alpha ^{-2}+\lambda \sum \limits _{i=1}^n \left( {x_i^\gamma e^{\beta x_i }} \right) ^{2}e^{-u_i },\\ U_{\alpha \beta }&= U_{\beta \alpha } =-\alpha ^{-1}\sum \limits _{i=1}^n x_i u_i \left[ {1+\lambda \left( {1-u_i } \right) e^{-u_i }} \right] ,\\ U_{\alpha \gamma }&= U_{\gamma \alpha } =-\alpha ^{-1}\sum \limits _{i=1}^n u_i \left[ {1+\lambda e^{-u_i } \left( {1-u_i } \right) } \right] \log x_i , U_{\alpha \lambda } =U_{\lambda \alpha } \\&= -\alpha ^{-1}\sum \limits _{i=1}^n u_i e^{-u_i }\\ U_{\beta \beta }&= -\sum \limits _{i=1}^n x_i^2 \left( {\gamma +\beta x_i } \right) ^{-2}-\sum \limits _{i=1}^n x_i^2 u_i \left[ {1+\lambda e^{-u_i } \left( {1-u_i } \right) } \right] ,\\ U_{\gamma \beta }&= U_{\beta \gamma } =-\sum \limits _{i=1}^n x_i \left( {\gamma +\beta x_i } \right) ^{-2}-\sum \limits _{i=1}^n x_i u_i \left[ {1+\lambda e^{-u_i } \left( {1-u_i } \right) } \right] \log x_i ,\\ U_{\beta \lambda }&= U_{\lambda \beta } =-\sum \limits _{i=1}^n x_i u_i e^{-u_i },\\ U_{\gamma \gamma }&= -\sum \limits _{i=1}^n \left( {\gamma +\beta x_i } \right) ^{-2}-\sum \limits _{i=1}^n u_i \left[ {1+\lambda e^{-u_i } \left( {1-u_i } \right) } \right] \left( {\log x_i } \right) ^{2}\\ U_{\gamma \lambda }&= U_{\lambda \gamma } =-\sum \limits _{i=1}^n u_i e^{-u_i }\log x_i \hbox { and } U_{\lambda \lambda } =-n\lambda ^{-2}+ne^{-\lambda }\left( {1-e^{-\lambda }} \right) ^{-2}\\ \end{aligned}$$

Using the \(X^{\gamma }e^{\beta X}\sim EP(\alpha ,\lambda )\), the Fisher information matrix can be obtained as:

$$\begin{aligned} E\left( {-\frac{\partial ^{2}\ell \left( \theta \right) }{\partial \alpha ^{2}}} \right)&= n\alpha ^{-2}-0.25 n\lambda e^{-\lambda }\alpha ^{-2}\left( {1-e^{-\lambda }} \right) ^{-1} F_{3,3} \left( {\left[ {2,2,2} \right] , \left[ {3,3,3} \right] ,\lambda } \right) \\ E\left( {-\frac{\partial ^{2}\ell \left( \theta \right) }{\partial \alpha \partial \beta }} \right)&= n I\left( {\gamma +1,0,1,0} \right) +n\lambda I\left( {\gamma +1,0,1,1} \right) -n\lambda I\left( {2\gamma +1,0,2,1} \right) \\ E\left( {-\frac{\partial ^{2}\ell \left( \theta \right) }{\partial \alpha \partial \gamma }} \right)&= nI\left( {\gamma ,1,1,0} \right) +n\lambda I\left( {\gamma ,1,1,1} \right) -n\alpha \lambda I\left( {2\gamma ,1,2,0} \right) \\ E\left( {-\frac{\partial ^{2}\ell \left( \theta \right) }{\partial \alpha \partial \lambda }} \right)&= 0.25 n\lambda e^{-\lambda } \left[ {\alpha \left( {1-e^{-\lambda }} \right) } \right] ^{-1}F_{2,2} \left( {\left[ {2,2} \right] , \left[ {3,3} \right] ,\lambda } \right) ,\\ E\left( {-\frac{\partial ^{2}\ell \left( \theta \right) }{\partial \beta \partial \lambda }} \right)&= nI(\left( {\gamma +1,0,1,1} \right) \\ E\left( {-\frac{\partial ^{2}\ell \left( \theta \right) }{\partial \beta ^{2}}} \right)&= nJ\left( {2,2} \right) +n\alpha I\left( {\gamma +2,0,1,0} \right) +n\alpha \lambda I\left( {\gamma +2,0,1,1} \right) \\&-n\alpha \lambda I\left( {2\gamma +2,0,2,1} \right) \\ E\left( {-\frac{\partial ^{2}\ell \left( \theta \right) }{\partial \beta \partial \gamma }} \right)&= n J\left( {1,2} \right) +n\alpha I\left( {\gamma +1,1,1,0} \right) +n\alpha \lambda I\left( {\gamma +1,1,1,1} \right) \\&+n\alpha \lambda I\left( {2\gamma +1,1,2,1} \right) \\ E\left( {-\frac{\partial ^{2}\ell \left( \theta \right) }{\partial \gamma ^{2}}} \right)&= n J\left( {0,2} \right) +n\alpha I\left( {\gamma ,2,1,0} \right) +n\alpha \lambda I\left( {\gamma ,2,1,1} \right) \\&-n\alpha ^{2}\lambda I\left( {2\gamma ,2,2,1} \right) \\ E\left( {-\frac{\partial ^{2}\ell \left( \theta \right) }{\partial \gamma \partial \lambda }} \right)&= n\alpha I(\left( {\gamma ,1,1,1} \right) , E\left( {-\frac{\partial ^{2}\ell \left( \theta \right) }{\partial \lambda ^{2}}} \right) =n\lambda ^{-2}-ne^{-\lambda }\left( {1-e^{-\lambda }} \right) ^{-1}, \end{aligned}$$

where \(F_{v,w} \left( {\left[ {a_1 ,\ldots ,a_v } \right] , \left[ {b_1 ,\ldots ,b_w } \right] ,\gamma } \right) \) is the generalized hypergeometric function with the following definition provided by Gradshteyn and Ryzhik (2000).

$$\begin{aligned} F_{v,w} \left( {\left[ {a_1 ,\ldots ,a_v } \right] , \left[ {b_1 ,\ldots ,b_w } \right] ,\gamma } \right) =\sum \limits _{k=0}^\infty \frac{\gamma ^{k}\mathop \prod \nolimits _{i=1}^v {\Gamma }\left( {a_i +k} \right) {\Gamma }^{-1}(a_i )}{{\Gamma }\left( {k+1} \right) \mathop \prod \nolimits _{i=1}^w {\Gamma }\left( {b_i +k} \right) {\Gamma }^{-1}(b_i )}, \end{aligned}$$

and \( I\left( {i,j,k,l} \right) =E\left[ {X^{i}\left( {\log X} \right) ^{j} e^{k\beta X-l\alpha X^{\gamma }e^{\beta X}}} \right] \), \(J\left( {i,j} \right) =E\left[ {X^{i}\left( {\gamma +\beta X} \right) ^{-j}} \right] \) are expectations which can be computed numerically.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgarm, L., Zadkarami, M.R. A new generalization of lifetime distributions. Comput Stat 30, 1185–1198 (2015). https://doi.org/10.1007/s00180-015-0563-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-015-0563-0

Keywords

Navigation