Skip to main content
Log in

Functional coefficient seasonal time series models with an application of Hawaii tourism data

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this article, motivated by an analysis of the monthly number of tourists visiting Hawaii, we propose a new class of nonparametric seasonal time series models under the framework of the functional coefficient model. The coefficients change over time and consist of the trend and seasonal components to characterize seasonality. A local linear approach is developed to estimate the nonparametric trend and seasonal effect functions. The consistency of the proposed estimators is obtained without specifying the error distribution and the asymptotic normality of the proposed estimators is established under the \(\alpha \)-mixing conditions. A consistent estimator of the asymptotic variance is also provided. The proposed methodologies are illustrated by two simulated examples and the model is applied to characterizing the seasonality of the monthly number of tourists visiting Hawaii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Andrews DWK (1991) Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59:817–858

    Article  MATH  MathSciNet  Google Scholar 

  • Auestad B, Tjøstheim D (1990) Identification of nonlinear time series: first order characterization and order determination. Biometrika 77:669–687

    Article  MathSciNet  Google Scholar 

  • Box GEP, Jenkins GM, Reinsel GC (1994) Time series analysis, forecasting and control, 3rd edn. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  • Brockwell PJ, Davis RA (1991) Time series theory and methods. Springer, New York

    Book  MATH  Google Scholar 

  • Burman P, Shumway RH (1998) Semiparametric modeling of seasonal time series. J Time Ser Anal 19:127–145

    Article  MATH  MathSciNet  Google Scholar 

  • Cai Z (2002) Two-step likelihood estimation procedure for varying-coefficient models. J Multivar Anal 82:189–209

    Article  MATH  Google Scholar 

  • Cai Z (2007) Trending time varying coefficient time series models with serially correlated error. J Econ 136:163–188

    Article  Google Scholar 

  • Cai Z, Chen R (2006) Flexible seasonal time series models. In: Fomby T, Terrell D (eds) Advances in econometrics volume honoring Engle and Granger, Econometric analysis of financial and economic time series 20:63–87

  • Cai Z, Fan J, Yao Q (2000) Functional-coefficient regression models for nonlinear time series. J Am Stat Assoc 95:941–956

    Article  MATH  MathSciNet  Google Scholar 

  • Cai Z, Li Q, Park JY (2009) Functional-coefficient models for nonstationary time series data. J Econom 148:101–113

    Article  MathSciNet  Google Scholar 

  • Cai Z, Ould-Said E (2001) Local robust regression estimation for time series. Manuscript

  • Cai Z, Tiwari RC (2000) Application of a local linear autoregressive model to BOD time series. Environmetrics 11:341–350

    Article  Google Scholar 

  • Chen R, Fomby T (1999) Forecasting with stable seasonal pattern models with an application of Hawaiian tourist data. J Bus Econ Stat 17:497–504

    Google Scholar 

  • Chen R, Tsay RS (1993a) Functional-coefficient autoregressive models. J Am Stat Assoc 88:298–308

    MATH  MathSciNet  Google Scholar 

  • Chen R, Tsay RS (1993b) Nonlinear additive ARX models. J Am Stat Assoc 88:955–967

    Article  MathSciNet  Google Scholar 

  • Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition procedure based on loess. J Off Stat 6:3–73

    Google Scholar 

  • Fan J, Gijbels I (1996) Local polynomial modelling and its applications. Chapman and Hall, London

    MATH  Google Scholar 

  • Fan J, Yao Q (2003) Nonlinear time series: nonparametric and parametric methods. Springer, New York

    Book  Google Scholar 

  • Fan J, Yao Q, Cai Z (2003) Adaptive varying-coefficient linear models. J R Stat Soc Ser B 65:57–80

    Article  MATH  MathSciNet  Google Scholar 

  • Franses PH (1996) Periodicity and stochastic trends in economic time series. Cambridge University Press, New York

    MATH  Google Scholar 

  • Franses PH (1998) Time series models for business and economic forecasting. Cambridge University Press, New York

    Google Scholar 

  • Gorodetskii VV (1977) On the strong mixing property for linear sequences. Theory Probab Appl 22:411–413

    Article  Google Scholar 

  • Ghysels E, Osborn DR (2001) The econometric analysis of seasonal time series. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  • Härdle W, Hall P, Ichimura H (1993) Optimal smoothing of single index models. Ann Stat 21:157–178

    Article  MATH  Google Scholar 

  • Härdle W, Lütkepohl H, Chen R (1997) A review of nonparametric time series analysis. Int Stat Rev 65:45–72

    Article  Google Scholar 

  • Härdle W, Marron S (1985) Optimal bandwidth selection in nonparametric regression function estimation. Ann Stat 13:1465–1481

    Article  MATH  Google Scholar 

  • Härdle W, Müller M, Sperlich S, Werwatz A (2004) Nonparametric and semiparametric models. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Härdle W, Vieu P (1992) Kernel regression smoothing of time series. J Time Ser 13:209–232

    Article  MATH  Google Scholar 

  • Hastie TJ, Tibshirani R (1993) Varying-coefficient models (with discussion). J R Stat Soc Ser B 55:757–796

    MATH  MathSciNet  Google Scholar 

  • Hylleberg S (1992) The historical perspective. In: Hylleberg S (ed) Modelling seasonality. Oxford University Press, Oxford

    Google Scholar 

  • Jones MC, Marron JS, Sheather SJ (1996) A brief survey of bandwidth selection for density estimation. J Am Stat Assoc 91:401–407

    Article  MATH  MathSciNet  Google Scholar 

  • Lu Z (1998) On the ergodicity of non-linear autoregressive model with an autoregressive conditional heteroscedastic term. Stat Sin 8:1205–1217

    MATH  Google Scholar 

  • Lu Z, Tjøstheim D, Yao Q (2007) Adaptive varying-coefficient linear models for stochastic processes: asymptotic theory. Stat Sin 17:177–198

    MATH  Google Scholar 

  • Masry E, Tjøstheim D (1995) Nonparametric estimation and identification of nonlinear ARCH time series: strong convergence and asymptotic normality. Econom Theory 11:258–289

    Article  Google Scholar 

  • Masry E, Tjøstheim D (1997) Additive nonlinear ARX time series and projection estimates. Econom Theory 13:214–252

    Article  Google Scholar 

  • Newey WK, West KD (1987) A simple, positive-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55:703–708

    Article  MATH  MathSciNet  Google Scholar 

  • Pena D, Tiao GC, Tsay RS (2001) A course in time series analysis. Wiley, New York

    MATH  Google Scholar 

  • Roussas GG (1989) Consistent regression estimation with fixed design points under dependence conditions. Stat Probab Lett 8:41–50

    Article  MATH  MathSciNet  Google Scholar 

  • Roussas GG, Tran LT, Ioannides DA (1992) Fixed design regression for time series: asymptotic normality. J Multivar Anal 40:262–291

    Article  MATH  MathSciNet  Google Scholar 

  • Ruppert D (1997) Empirical-bias bandwidths for local polynomial nonparametric regression and density estimation. J Am Stat Assoc 92:1049–1062

    Article  MATH  MathSciNet  Google Scholar 

  • Shumway RH (1988) Applied statistical time series analysis. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Shumway RH, Stoffer DS (2000) Time series analysis and its applications. Springer, New York

    Book  MATH  Google Scholar 

  • Tjøstheim D (1994) Non-linear time series: a selective review. Scand J Stat 21:97–130

    Google Scholar 

  • Tong H (1990) Nonlinear time series: a dynamic system approach. Clarendon Press, Oxford

    Google Scholar 

  • Tran L, Roussas G, Yakowitz S, Van BT (1996) Fixed-design regression for linear time series. Ann Stat 24:975–991

    Article  MATH  Google Scholar 

  • Wahba G (1977) A survey of some smoothing problems and the method of generalized cross-validation for solving them. In: Krisnaiah PR (ed) Appl Stat. North Holland, Amsterdam, pp 507–523

    Google Scholar 

  • Withers CS (1981) Conditions for linear processes to be strong mixing. Zeitschrift fur Wahrs- cheinlichkeitstheorie verwandte Gebiete 57:477–480

    Article  MATH  MathSciNet  Google Scholar 

  • Xia Y, Li WK (1999a) On the estimation and testing of functional-coefficient linear models. Stat Sin 9:735–757

    MATH  MathSciNet  Google Scholar 

  • Xia Y, Li WK (1999b) On single-index coefficient regression models. J Am Stat Assoc 94:1275–1285

    Article  MATH  MathSciNet  Google Scholar 

  • Yang L, Park B, Xue L, Härdle W (2006) Estimation and testing for varying coefficients in additive models with marginal integration. J Am Stat Assoc 101:1212–1227

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Chen.

Additional information

The authors are grateful to Professors D. Findley, Tom Fomby and R. H. Shumway for their helpful and insightful comments and suggestions. Cai’s research was supported, in part, by the National Nature Science Foundation of China Grants #71131008 (Key Project) and #70871003. Chen’s research was supported in part by the National Science Foundation Grants DMS 1209085, DMS 0905763 and DMS 0915139.

Appendix: Mathematical proofs

Appendix: Mathematical proofs

We first list all the assumptions needed for the asymptotic theory in Sect. 2.2 although some of them might not be the weakest possible. Note that the same notations in Sect. 2 are used here. Throughout this appendix, we denote by \(C\) a generic constant, which may take different values at different appearances.

Assumption A

  1. A1.

    The kernel \(K(u)\) is symmetric and satisfies the Lipschitz condition and \(u\,K(u)\) is bounded.

  2. A2.

    For each \(n\), \(\{(\mathcal{X}_{t},\,\mathbf{e}_{nt})\}_{t=1}^n\) have the same joint distribution as \(\{(\mathcal{X}_{t},\;\varvec{\xi }_t)\}_{t=1}^n\), where the time series \(\{(\mathcal{X}_{t},\;\varvec{\xi }_t)\}\) is strictly stationary \(\alpha \)-mixing. Assume that there exists \(\delta >0\) such that \(E|\varvec{\xi }_t|^{2(1+ \delta )}<\infty \), \(E|\mathcal{X}_{t}|^{4(1+\delta )}<\infty \), and the mixing coefficient \(\alpha (n)=O\left( n^{-(2+\delta )(1+\delta )/\delta }\right) \).

  3. A3.

    \(n\,h^{1+4/\delta }\rightarrow \infty \).

Remark 10

Let \(r_{jm}(k)\) denote the \((j,m)\)-th element of \(\mathbf{R}(k)\). By the Davydov’s inequality (see, e.g., Corollary A.2 in Hall and Heyde 1980), Assumption A2 implies that \(|r_{jm}(k)|\le C\,\alpha ^{\delta /(2+\delta )}(k)\) so that \(\sum _{k=-\infty }^\infty |r_{jm}(k)|<\infty \).

Lemma A1

Under the assumptions of Theorem 1, we have

$$\begin{aligned} \hbox {Var}({\mathbf {P}}_{n0})=\nu _0\,\varvec{\Sigma }_0+o(1)\quad \text{ and }\quad \mathbf{P}_{n1}=o_p(1), \end{aligned}$$

where, for \(k=0, 1\),

$$\begin{aligned} {\mathbf {P}}_{nk}=h^{1/2}\; n^{-1/2}\;\sum _{t=1}^n (s_t-s)^k\;\mathbf{e}_{nt}^*\,K_h(s_t-s) \end{aligned}$$

with \(\mathbf{e}_{nt}^*=\mathcal{X}_t^T\,\mathbf{e}_{nt}\).

Proof

By the stationarity of \(\{\varvec{\xi }_j\}\) and \(\mathcal{X}_t\),

$$\begin{aligned} \text{ var }(\mathbf{P}_{n0})= & {} n^{-1}\,h\,\sum _{1\le k,\, l\le n}\mathbf{R}(k-l)\,K_h(s_k-s)\,K_h(s_l-s)\\= & {} n^{-1}\,h\,\mathbf{R}(0)\,\sum _{k=1}^n K_h^2(s_k-s)\\&+ 2\,n^{-1}\,h\,\sum _{1\le l<k\le n}\mathbf{R}(k-l)\,K_h(s_k-s)\,K_h(s_l-s) \\\equiv & {} \mathbf{I}_1+\mathbf{I}_2. \end{aligned}$$

Clearly, by the Riemann sum approximation of an integral,

$$\begin{aligned} \mathbf{I}_1\approx \mathbf{R}(0)\;h\,\int _0^1 K_h^2(u-s)du\approx \nu _0\,\mathbf{R}(0). \end{aligned}$$

Since \(n\,h\rightarrow \infty \), there exists \(c_n\rightarrow \infty \) such that \(c_n/(n\,h)\rightarrow 0\). Let \(S_1=\{(k,l): 1\le k-l\le c_n;\, 1\le l<k\le n\}\) and \(S_2=\{(k,l):\,1\le l<k\le n\} {\setminus } S_1\). Then, \(\mathbf{I}_2\) is split into two terms as \(\sum _{S_1}(\cdots )\), denoted by \(\mathbf{I}_{21}\), and \(\sum _{S_2}(\cdots )\), denoted by \(\mathbf{I}_{22}\). Since \(K(\cdot )\) is bounded, then, \(K_h(\cdot )\le C/h\) and \(n^{-1}\sum _{k=1}^nK_h(t_k-t)\le C\). In conjunction with the Davydov’s inequality (see, e.g., Corollary A.2 in Hall and Heyde 1980), we have, for the \((j,m)\)-th element of \(\mathbf{I}_{22}\),

$$\begin{aligned} |\mathbf{I}_{22(jm)}|\le & {} 2n^{-1}h \;\sum _{S_2}\,|r_{jm}(k-l)|\,K_h(s_k-s)\,K_h(s_l-s)\\\le & {} C\;n^{-1}\,h\,\sum _{S_2} \alpha ^{\delta /(2+\delta )}(k-l)K_h(s_k-s)\,K_h(s_l-s)\\\le & {} C\, n^{-1}\,\sum _{k=1}^n K_h(s_k-s)\sum _{k_1>c_n}\alpha ^{\delta /(2+\delta )}(k_1)\\\le & {} C\;\sum _{k_1>c_n}\alpha ^{\delta /(2+\delta )}(k_1) \\\le & {} C\,c_n^{-\delta }\rightarrow 0 \end{aligned}$$

by Assumption A2 and the fact that \(c_n\rightarrow \infty \). For any \((k,l)\in S_1\), by Assumption A1

$$\begin{aligned} |K_h(s_k-s)-K_h(s_l-s)|\le C\,h^{-1}\,(s_k-s_l)/h\le C\,c_n/(n\,h^2), \end{aligned}$$

which implies that

$$\begin{aligned} |\mathbf{I}_{212(jm)}|\equiv & {} \left| 2\,n^{-1}\,h\,\sum _{l=1}^{n-1}\sum _{1\le k-l\le c_n}r_{jm}(k-l)\,\{K_h(s_k-s)-K_h(s_l-s)\}\,K_h(s_l-s)\right| \\\le & {} C\,c_n\,n^{-2}\,h^{-1}\,\sum _{l=1}^{n-1}\sum _{1\le k-l\le c_n}|r_{jm}(k-l)|\,K_h(s_l-s)\\\le & {} C \, c_n\,n^{-2}\,h^{-1}\,\sum _{l=1}^{n-1}K_h(s_l-s)\;\sum _{k\ge 1}|r_{jm}(k)| \\\le & {} C\,c_n/(n\,h)\rightarrow 0 \end{aligned}$$

by Remark 10 and the fact that \(c_n/(n\,h)\rightarrow 0\). Therefore,

$$\begin{aligned} \mathbf{I}_{21(jm)}= & {} 2\,n^{-1}\,h\,\sum _{l=1}^{n-1}\sum _{1\le k-l\le c_n}r_{jm}(k-l)\,K_h(s_k-s)\,K_h(s_l-s)\\= & {} 2\,n^{-1}\,h\,\sum _{l=1}^{n-1}K_h^2(s_l-s)\sum _{1\le k-l\le c_n}r_{jm}(k-l)+\mathbf{I}_{212(jm)} \\\rightarrow & {} 2\,\nu _0\,\sum _{k=1}^\infty r_{jm}(k). \end{aligned}$$

Thus,

$$\begin{aligned} \text{ var }(\mathbf{P}_{n0})\rightarrow \nu _0\,\left( \mathbf{R}(0)+2\,\sum _{k=1}^\infty \mathbf{R}(k)\right) =\nu _0\,\varvec{\Sigma }_0. \end{aligned}$$

On the other hand, by Assumption A1, we have

$$\begin{aligned} \text{ var }(\mathbf{P}_{n1})= & {} n^{-1}\,h\,\sum _{1\le k,\, l\le n}\mathbf{R}(k-l)\,(s_k-s)(s_l-s)K_h(s_k-s)\,K_h(s_l-s)\\\le & {} C\; n^{-1}\,h\,\sum _{1\le k,\,l\le n} |\mathbf{R}(k-l)| \\\le & {} C\;h\;\sum _{k=-\infty }^\infty |\mathbf{R}(k)|\rightarrow \mathbf{0}. \end{aligned}$$

This proves the lemma. \(\square \)

Proof of Theorem 1

Similar to the proof used in Lemma A1, we have

$$\begin{aligned} h^{-k}\,\mathbf{G}_k(s)=\mu _k\,\mathbf{G}+o_p(1), \end{aligned}$$
(14)

where \(\mathbf{G}_k\) for \(k\ge 0\) is defined in (9), so that

$$\begin{aligned} \begin{pmatrix} \mathbf{G}_0 &{}\quad \mathbf{G}_1/h\\ \mathbf{G}_1/h &{}\quad \mathbf{G}_2/h^2\\ \end{pmatrix} =\text{ diag }\{\mathbf{G}, \mu _2\,\mathbf{G}\}+o_p(1). \end{aligned}$$

We re-write \(\mathbf{M}_k\) as

$$\begin{aligned} \mathbf{M}_k=\mathbf{M}_k^*+(nh)^{-1/2}\mathbf{P}_{nk}, \end{aligned}$$

where \(\mathbf{M}_k\) is defined in (9), \(\mathbf{P}_{nk}\) is defined in Lemma A1, and \(\mathbf{M}_k^*=n^{-1}\,\sum _{t=1}^n (s_t-s)^k\,\mathcal{X}_t^T\varvec{\theta }(s_t)\,K_h(s_t-s)\). By a Taylor expansion, for any \(k\ge 0\) and \(s_t\) in a neighborhood of \(s\),

$$\begin{aligned} \mathbf{M}_k^*=\mathbf{G}_{k}\,\varvec{\theta }(s)+\mathbf{G}_{k+1}\,\varvec{\theta }'(s)+{1\over 2}\,\mathbf{G}_{k+2}\,\varvec{\theta }''(s)+o_p(h^2), \end{aligned}$$

so that by (9),

$$\begin{aligned}&\begin{pmatrix}\widehat{\varvec{\theta }}_0\\ \widehat{\varvec{\theta }}'_1 \end{pmatrix}-\begin{pmatrix}{\varvec{\theta }}_0\\ {\varvec{\theta }}'_1 \end{pmatrix}\\&\quad ={1\over 2}\,\begin{pmatrix}\mathbf{G}_0 &{}\quad \mathbf{G}_1\\ \mathbf{G}_1 &{}\quad \mathbf{G}_2 \end{pmatrix}^{-1}\;\begin{pmatrix}\mathbf{G}_2\\ \mathbf{G}_3 \end{pmatrix}\,\varvec{\theta }''(s)+o_p(h^2) +(nh)^{-1}\begin{pmatrix}\mathbf{G}_0 &{}\quad \mathbf{G}_1\\ \mathbf{G}_1 &{}\quad \mathbf{G}_2\end{pmatrix}^{-1}\;\begin{pmatrix}\mathbf{P}_{n0}\\ \mathbf{P}_{n1}\end{pmatrix}, \end{aligned}$$

which implies that

$$\begin{aligned} \sqrt{n\,h}\;\left\{ \widehat{\varvec{\theta }}(s)-\varvec{\theta }(s)-{h^2\over 2}\,\mu _2\,\varvec{\theta }''(s)+o(h^2) \right\} =\mathbf{G}^{-1}\,\mathbf{P}_{n0}+o_p(1). \end{aligned}$$
(15)

Therefore, it follows from (15) that the term \({1\over 2}\,h^2\,\mu _2\,\varvec{\theta }''(t)\) on the right hand side of (15) serves as the asymptotic bias, and that to establish the asymptotic normality of \(\widehat{\varvec{\theta }}(s)\), one only needs to establish the asymptotic normality for \(\mathbf{P}_{n0}\) . To this end, the Cramér-Wold device is used. For any unit vector \(\mathbf{d}\in \mathfrak {R}^d\), let \(Z_{n,t}=n^{-1/2}\;h^{1/2}\;\mathbf{d}^T\;\mathbf{e}_{nt}\,K_h(s_t-s)\). Then, \(\mathbf{d}^T\,\mathbf{P}_{n0}=\sum _{t=1}^nZ_{n,t}\) and by Lemma A1,

$$\begin{aligned} \text{ var }\left( \mathbf{d}^T\,\mathbf{P}_{n0}\right) =\nu _0\,\mathbf{d}^T\,\varvec{\Sigma }_0\,\mathbf{d}\;\{1+o(1)\}\equiv \theta ^2_d\; \{1+o(1)\}. \end{aligned}$$
(16)

Now, the Doob’s small-block and large-block technique is used. Namely, partition \(\{1,\,\ldots , \,n\}\) into \(2\,q_n+1\) subsets with large-block of size \(r_n=\left\lfloor (n\,h)^{1/2}\right\rfloor \) and small-block of size \(s_n=\left\lfloor (n\,h)^{1/2}/\log n\right\rfloor \), where \(q_n=\left\lfloor {n\over r_n+s_n}\right\rfloor \). Then, \(q_n\,\alpha (s_n)\le C\;n^{-(\tau -1)/2} \,h^{-(\tau +1)/2}\,\log ^\tau n\), where \(\tau =(2+\delta )(1+\delta )/\delta \), and \(q_n\,\alpha (s_n)\rightarrow 0\) by Assumption A3. Let \(r_j^*=j\,(r_n+s_n)\) and define the random variables, for \(0\le j\le q_n-1\),

$$\begin{aligned} \eta _j=\sum _{t=r_j^*+1}^{r_j^*+r_n}Z_{n,t},\quad \zeta _j=\sum _{t=r_j^*+r_n+1} ^{r_{j+1}^*}Z_{n,t},\quad \mathrm{and}\quad \mathbf{Q}_{n,3}=\sum _{t=r_{q_n}^*+1}^n Z_{n,t}. \end{aligned}$$

Then, \(\mathbf{d}^T\,\mathbf{P}_{n0}=\mathbf{Q}_{n,1}+\mathbf{Q}_{n,2}+\mathbf{Q}_{n,3}\), where \(\mathbf{Q}_{n,1}=\sum _{j=0}^{q_n-1}\eta _j\) and \(\mathbf{Q}_{n,2}=\sum _{j=0}^{q_n-1}\zeta _j\). Next we prove the following four facts: (i) as \(n\rightarrow \infty \),

$$\begin{aligned} E(\mathbf{Q}_{n,2})^2\rightarrow 0,\quad E(\mathbf{Q}_{n,3})^2\rightarrow 0, \end{aligned}$$
(17)

(ii) as \(n\rightarrow \infty \) and \(\theta ^2_d(t)\) defined as in (16), we have

$$\begin{aligned} \sum _{j=0}^{q_n-1}E\left( \eta _j^2\right) \rightarrow \theta ^2_d, \end{aligned}$$
(18)

(iii) for any \(s\) and \(n \rightarrow \infty \),

$$\begin{aligned} \left| E\left[ \exp (i\,s\,\mathbf{Q}_{n,1})\right] -\prod _{j=0}^{q_n-1}E\left[ \exp (i\,s\,\eta _j) \right] \right| \rightarrow 0, \end{aligned}$$
(19)

and (iv) for every \(\varepsilon >0\),

$$\begin{aligned} \sum _{j=0}^{q_n-1}E\left[ \eta _j^2I\left\{ |\eta _j|\ge \varepsilon \,\theta _d\right\} \right] \rightarrow 0. \end{aligned}$$
(20)

(17) implies that \(\mathbf{Q}_{n,2}\) and \(\mathbf{Q}_{n,3}\) are asymptotically negligible in probability. (19) shows that the summands \(\{\eta _j\}\) in \(\mathbf{Q}_{n,1}\) are asymptotically independent, and (18) and (20) are the standard Lindeberg-Feller conditions for asymptotic normality of \(\mathbf{Q}_{n,1}\) for the independent setup. The rest proof is to establish (17)–(20) and it can be done by following the almost same lines as those used in the Proof of Theorem 2 in Cai et al. (2000) with some modifications. This completes the Proof of Theorem 1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Cai, Z. & Chen, R. Functional coefficient seasonal time series models with an application of Hawaii tourism data. Comput Stat 30, 719–744 (2015). https://doi.org/10.1007/s00180-015-0574-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-015-0574-x

Keywords

Navigation