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Abstract

Log-linear models are the popular workhorses of analyzing contingency tables. A log-
linear parameterization of an interaction model can be more expressive than a direct param-
eterization based on probabilities, leading to a powerful way of defining restrictions derived
from marginal, conditional and context-specific independence. However, parameter estima-
tion is often simpler under a direct parameterization, provided that the model enjoys certain
decomposability properties. Here we introduce a cyclical projection algorithm for obtaining
maximum likelihood estimates of log-linear parameters under an arbitrary context-specific
graphical log-linear model, which needs not satisfy criteria of decomposability. We illustrate
that lifting the restriction of decomposability makes the models more expressive, such that
additional context-specific independencies embedded in real data can be identified. It is also
shown how a context-specific graphical model can correspond to a non-hierarchical log-linear
parameterization with a concise interpretation. This observation can pave way to further
development of non-hierarchical log-linear models, which have been largely neglected due to
their believed lack of interpretability.

Keywords: Graphical model; Context-specific interaction model; Log-linear model; Parameter
estimation.

1 Introduction

Log-linear models for contingency tables have enjoyed a wide popularity since their introduc-
tion in the 1970’s, enabling a comprehensive approach to testing hypotheses of marginal and
conditional independence, as well as more detailed global scrutiny of inter-dependencies within
a set of discrete variables (Lauritzen) 1996; Whittaker} 1990). Graphical models have received
most of the attention within the class of log-linear models, which is unsurprising given their
interpretability and relative ease of model fitting. However, several other dependency structures
with a log-linear representation have also been considered, such as hierarchical (Lauritzenl [1996]),
pairwise interaction (Whittaker} [1990), split (Hgjsgaard, [2003), labeled (Corander, [2003b)), and
context-specific interaction models (Eriksen, 1999; Hgjsgaard, 2004).

Recently, [Nyman et al| (2014a) introduced a class of stratified graphical models (SGMs),
where strata are defined locally in the outcome space such that a specific pair of variables are
independent in the context defined by a combination of values of the joint neighbors of the two
variables. This is in contrast to ordinary graphical models, where a pair of variables are always
considered either conditionally independent or completely dependent given their joint neighbors.




The work of [Nyman et al|(2014a)) generalizes the results on labeled graphical models, intro-
duced in [Corander| (2003b)). To be able to obtain an analytical expression for Bayesian model
scoring of SGMs, [Nyman et al.| (2014a)) restricted their attention to a class of decomposable
models under a direct parameterization of the probabilities (rather than log-linear parameteriza-
tion), similar to the class of graphical models where the majority of model learning approaches
have been devised under the assumption of excluding non-chordal graphs from the search space.
Despite of the assumption of decomposability, the resulting model class was shown to be expres-
sive for real data and [Nyman et al.|(2014b) additionally illustrated that SGMs can lead to more
accurate probabilistic classifiers than those based on standard graphical models.

Since the assumption of decomposability is generally made for computational convenience,
rather than being motivated by data met in real applications, it is desirable to develop theory
which enables fitting of context-specific graphical log-linear models irrespectively of them being
decomposable or non-decomposable. Using the general estimation theory from |Csiszar| (1975)
and Rudag| (1998)), we introduce a cyclical projection algorithm which can be used to obtain
the maximum likelihood estimate for any context-specific graphical log-linear model. This result
is of interest on its own, however, to also illustrate the increased expressiveness of unrestricted
context-specific graphical log-linear models for real data, we combine the maximum likelihood
estimation with approximate Bayesian model scoring to define a search algorithm for the optimal
model for a given data set. We additionally briefly illustrate the fact that some context-specific
graphical models are also non-hierarchical log-linear models. This is particularly illuminating,
since non-hierarchical log-linear models have generally been avoided due to believed lack of
apparent interpretation of the parameter restrictions.

The remaining article is structured as follows. In the next section we define the basic concepts
related to graphical and stratified graphical models. In Section 3, log-linear parameterization of
an SGM is defined, leading to a context-specific graphical log-linear model, together with some
observations concerning model identifiability. In Section 4, we introduce a projection algorithm
which is proven to converge to the maximum likelihood estimate for a context-specific graphical
log-linear model. In Section 5, we devise an approximate Bayesian model optimization algorithm,
based on the Bayesian information criterion and a stochastic search over the model space. The
algorithm is illustrated by application to real data in Section 6 and the final section provides
some remarks and possibilities for future work.

2 Stratified graphical models

To enable the presentation of stratified graphical models, some of the central concepts from the
theory of graphical models are first introduced (Nyman et al., |2014a). For a comprehensive
account of the statistical and computational theory of probabilistic graphical models, see Whit-
taker| (1990)), Lauritzen| (1996)), and Koller and Friedman| (2009). It is assumed throughout this
article that all considered variables are binary. However, the introduced theory can readily be
extended to finite discrete variables.

While the terms node and variable are closely related when considering graphical models,
we will strive to use the notation X5 when referring to the variable associated to node §. Let
G = (A, E), be an undirected graph, consisting of a set of nodes A and a set of undirected edges
E C {A x A}. Two nodes v and 0 are adjacent in a graph if {v,d} € E, that is an edge exists
between them. A path in a graph is a sequence of nodes such that for each successive pair within
the sequence the nodes are adjacent. A cycle is a path that starts and ends with the same node.
A chord in a cycle is an edge between two non-consecutive nodes in the cycle. Two sets of nodes
A and B are said to be separated by a third set of nodes S if every path between nodes in A and



nodes in B contains at least one node in S. A graph is defined as chordal if all cycles found in
the graph containing four or more unique nodes contains at least one chord.

For a subset of nodes A C A, G4 = (A, E4) is a subgraph of G, such that the nodes in G4
are equal to A and the edge set comprises those edges of the original graph for which both nodes
are in A, i.e. E4 = {Ax A} NE. A graph is defined as complete when all pairs of nodes in
the graph are adjacent. A clique in a graph is a set of nodes A such that the subgraph G4 is
complete. A mazximal cliqgue C is a clique for which there exists no set of nodes C* such that
C C C* and G¢+ is also complete. The set of maximal cliques in the graph G will be denoted by
C(@G). The set of separators, S(G), in the chordal graph G can be obtained through intersections
of the maximal cliques of G ordered in terms of a junction tree, see e.g. |Golumbic| (2004]).

The outcome space for the variables X4, where A C A, is denoted by X4 and an element
in this space by 4 € X4. Given our restriction to binary variables, the cardinality |X 4| of X4
equals 2141, A graphical model is defined by the pair G = (A, E) and the joint distribution Pa
on the variables Xa, such that Pa fulfills a set of restrictions induced by G. If there exists no
path between two sets of nodes A and B the two sets of variables X 4 and Xp are marginally
independent, i.e. P(Xa,Xp) = P(X4)P(Xp). Similarly two sets of random variables X4 and
Xp are conditionally independent given a third set of variables Xg, P(X4,Xp | Xs) = P(X4 |
Xs)P(Xp | Xg), if S separates A and B in G.

A statement of conditional independence of two variables Xs and X, given Xg imposes
fairly strong restrictions to the joint distribution since the condition P(X5, X, | Xg) = P(X; |
Xs)P(Xy | Xg) must hold for any joint outcome of the variables Xg. The idea common to
context-specific independence models is to lift some of these restrictions to achieve more flexibility
in terms of model structure. Exactly which restrictions are allowed to be simultaneously lifted
varies considerably over the proposed model classes.

Consider a GM with the complete graph spanning three nodes {1, 2,3}, which specifies that
there are no conditional independencies among the variables X, X5, and X3. However, if the
probability P(X; = 1, Xy = 29, X3 = x3) factorizes into the product P(X; = 1)P(X2 = 2 |
X1 = 1)P(X3 = z3 | X1 = 1) for all outcomes z3 € {0,1}, 23 € {0,1}, then a simplification
of the joint distribution is hiding beneath the graph. This simplification can be included in the
graph by adding a condition or stratum to the edge {2,3} specifying where the context-specific
independence Xo 1 X3 | X; = 1 of the two variables holds, as illustrated in Figure . The

Figure 1: Graphical representation of the dependence structures of three variables. In (a) the
stratum X; = 1 is shown as a condition on the edge {2,3}, in (b) the strata X; =1 and X5 =1
are shown as conditions on the edges {2,3} and {1,3}, respectively, in (c¢) an ordinary graph
with the maximal cliques {1, 2} and {3}.

following is a formal definition of what is intended by a stratum (Nyman et al.| |2014al).

Definition 1. Stratum. Let the pair (G, Pa) be a graphical model, where G is a chordal graph.
For all {6,v} € E, let L5,y denote the set of nodes adjacent to both 6 and . For a non-empty
L5y, define the stratum of the edge {6,v} as the subset L5y of outcomes Ty € X,



for which Xs and X, are independent given XLisy = TLisqys L€ Lisy = {:CL{M} € Xyt
X L Xy | Xy = Trg )

The requirement that G is chordal is necessary for the definition of a stratum to be generally
applicable. Consider the graph in Figure 2] note that the graph is not chordal as it contains the
chord-less cycle (1, 3, 4, 2, 1). The intended context-specific independence X5 L Xy | X5 = 1
induced by the stratum L3 4y = {X5 = 1} does not hold as nodes 3 and 4 are connected via the
path (3,1,2,4). By definition, no such paths are possible for chordal graphs, ensuring that given
Tr,., € L5~y it will hold that X5 L X, | XLisy =TLis,y

Figure 2: Non-chordal graph resulting in the intended context-specific independence X5 L X |
X5 =1 not holding.

The idea of context-specific independence generalizes readily to a situation where multiple
strata for distinct pairs of variables are considered. Figure [Ib displays the complete graph for
three nodes with the edges {2,3} and {1,3} associated with the strata X; = 1 and X = 1,
respectively. In addition to the context-specific independence statement present in Figure [Th,
here we have the simultaneous restriction that X; 1 X3 | X5 = 1, such that P(X; = z1, Xo =
1,X3 = 23) = P(Xo = )P(X1 = 21 | Xo = 1)P(X3 = z3 | X2 = 1) for all outcomes
xz1 € {0,1}, 23 € {0,1}. This pair of restrictions does not imply that P(X3 = z3) = P(X3 =
z3 | X1 =1,X2 = 1) as would be the case given the graph in Figure . It does, however, imply
that the information contained about X3 in the knowledge that X; = 1 and X5 = 1 must be
the same, i.e. P(Xg = X3 | X1 = 1) = P(Xg = X3 | X2 = 1) = P(X3 = I3 | X1 = 1,X2 = 1)
The following definition (Nyman et al. [2014a) formalizes an extension to ordinary graphical
models. This defined class of models allow for simultaneous context-specific independence to be
represented using a set of strata, partitioning the joint outcome space of the variables Xa.

Definition 2. Stratified graphical model (SGM). A stratified graphical model is defined by the
triple (G, L, Pp), where G is a chordal graph termed as the underlying graph, L equals the joint
collection of all strata Lis .y for the edges of G, and Pa is a joint distribution over the variables
XA which factorizes according to the restrictions imposed by G and L.

The pair (G, L) consisting of the graph G with the stratified edges (edges associated with
a stratum) determined by L will be referred to as a stratified graph (SG), usually denoted by
G1. To be able to calculate the marginal likelihood of a dataset given an SG and perform model
inference, [Nyman et al.| (2014a) specified strict restrictions on the set of stratified edges, limiting
the model space to decomposable SGs. In this paper we introduce a method which allows us
to remove these restrictions while retaining the ability to perform model inference. Using the
log-linear parameterization some new properties for SGMs are also introduced.



3 SGMs and the log-linear parameterization

In this paper we use two different parameterizations. Firstly, the standard parameterization
used for a categorical distribution, where each parameter 6; in a parameter vector 6 denotes the
probability of a specific outcome xx) € Xa, i.e P(Xa = x(Az)) = 6;. And secondly, the log-linear
parameterization (Lauritzen, |1996; Whittaker} |1990) defined by the parameter vector ¢. For this
parameterization, the joint distribution of the variables X is defined by

IOgP(XA = IA) = Z ¢A(wA)7
ACA

where x4 denotes the marginal outcome of variables X 4 in the outcome za. For the log-
linear parameterization we have the restriction that if x; = 0 for any j € A, then ¢4(,,) = 0
(Whittaker, 1990)). As we in this paper only consider binary variables a log-linear parameter will
henceforth be denoted using the convention ¢4(,,) = ¢a. The reason for using the log-linear
parameterization is that an SG imposes restrictions to ¢ in a more manageable manner than it
does to 6.

It holds for graphical log-linear models that if the edge {d,~} is not present in G, then all
parameters ¢4, where {4,7} C A, are equal to zero (Whittaker, [1990)). The restrictions imposed
to the log-linear parameters by a stratum are also clearly defined.

Theorem 1. Consider the context-specific independence X5 1 X, | XLy = TLys.,- Let
A C Lis,yU{6,7} be the set of variables containing the pair {,~} and the set of all variables with
non-zero values in xr, .. The parameter restrictions imposed are of the form > gca® =0,

where {6,~v} C B.

Proof. We start by defining the operator D(A; B) = {{AUC}: C C B}. Let Q= A\ {Ls,3 U
{d,7}} denote the set of nodes not in L5,y or {0,7}. Given that X5 L X, | Xp; , = 2L,
we get that

P(Xs=0|Xy=0,X1,., =21, Xo=120)
P(Xs=1[X,=0,XL,.,, =21, ,,Xo=12q)
PXs=0|Xy=1X1,., =TL4,,, X0 =12a)
P(Xs=1|X,=1,Xp, , =71, ,,Xao =zq)

(X5 =0,X,=0,X,, , =L, Xa=12a)
P(X5 = 1’X’Y ZO,XL{(M} ZLUL{&W},XQ ZI'Q) B
P( )
P(Xs =1,X, = L, X1 ) =71, Xo = 70)

(1)

X(s = O7X’y = 17XL{57,Y} = xL{gyw})XQ = xﬂ

Let Z denote the set of nodes corresponding to variables with non-zero outcome in ., _, or zq.
Using the log-linear parameterization, equation results in

Dba = D ba = Y. ba — D ba =

aCD(2;2) aCD(2;0UZ) aCD(2;7UZ) aCD(2;{6,7}V2)
Dda = D b = > b = 0.
aCD(6;2) aCD(8;vUZ) aCD({6,7};2)

However, if a node ¢ € €Q, it cannot be adjacent to both § and . Consequently, any parameter
¢4 such that {d,v,(} C A is restricted to zero. Therefore, if Lz denotes the nodes corresponding



to the variables with non-zero outcome in zr ., . the restriction induced by the stratum can be

written
Z (ba = 07
aCD({4,v};Lz)
which corresponds to what is stated in the theorem. O

As an example consider the SG in Figure ‘ The context-specific independence Xo L X3 | X7 =
1 induces the log-linear parameter restriction

b+ ¢1— g — 01— P2 — P12 =
o+ P11+ 3+ 13— g — 1 — P2 — P33 — P12 — P13 — P23 — D123 =
2,3+ P1,23 =0.

In the definition of a stratum on the edge {d,7}, the variables that determine the stratum
correspond to the nodes that are adjacent to both § and ~. This is a natural definition rather
than an invented restriction.

Theorem 2. Only the variables corresponding to nodes adjacent to both & and v may define a
context-specific independence between X5 and X, .

Proof. The proof of this theorem follows from Theorem [I} We assume that a variable X, such
that the node ( is not adjacent to both ¢ and =, is included when defining the context-specific
independence X5 L X, | X1, , =L, X¢ = x¢. [fz¢ =0, we would get the same restriction
as by not including X, in the conditioning set

Z ¢a = 0. (2)
aCD({5,7};Lz)
If ¢ # 0 we get the restriction
Z ¢a = 0, (3)
aCD({s,v}{Lz.(})

again we know from the underlying graph that any parameter ¢4 such that {4,v,(} C A is
restricted to zero, resulting in ([2)) and (3] being equivalent restrictions. 0O

As an example consider the graphs in Figure Bp and Bp. Here X5 determines the stratum of the

”’ C%(’“ )’ C%(’“ 2) @\@ O,

Figure 3: Graphs in a) and b) include improper strata, which if allowed would lead to the same
parameter restrictions as the graph in c).

edge {1, 2}, although node 2 and node 3 are non-adjacent. The underlying graph establishes that
Xs L X5 | X1. However, given the proposed stratum X3 can indirectly affect X5 by determining



whether or not X; and X5 are dependent, which is an obvious contradiction. The underlying
graph induces the parameter restrictions ¢23 = ¢123 = 0. The stratum included in Figure
@a results in the restriction ¢12 = 0, while the stratum included in Figure E[b results in the
restriction @12 + ¢123 = 0, i.e. @12 = 0. This means that the graphs in Figure @ would all
induce the same restrictions, ¢12 = ¢2.3 = ¢1,2.3 = 0. Note that this example is a special case
of Theorem [2as Ly 9y = @

Whittaker| (1990]) termed a log-linear model as hierarchical if, whenever a parameter ¢, = 0
then ¢, = 0 for all @ C ¢. Whittaker| (1990, p. 209) further states that “A non-hierarchical
model is not necessarily uninteresting; it is just that the focus of interest is something other than
independence”. This statement does not apply to SGMs, as shown in Theorem

Theorem 3. Some, but not all, SGMs are non-hierarchical models.

Proof. This theorem can be proved using two simple examples. First, consider an SG containing
no strata, the parameter restrictions of this model will equal those of an ordinary graphical
log-linear model which is a hierarchical model. Now consider the SG attained by replacing the
stratum Xo | X3 | X7 =1in Figure with X5 1 X3 | X7 = 0, this leads to the single parameter
restriction ¢2 3 = 0. As the parameter ¢, o 3 is unrestricted the model is non-hierarchical. O

4 Parameter estimation for log-linear SGMs
Let ©¢ denote the set of distributions satisfying the restrictions imposed by the chordal graph G.

Lauritzen| (1996, p. 91) showed that given an observed distribution P the maximum likelihood
(ML) projection to O¢, resulting in the distribution P, is obtained by setting

A 5 (i Hcccp(xg)) .
Gizp(x(A))ZL(i), Z:L---7|XA|- (4)
HSeS(G) P(zy’)

Given the following definition of the Kullback-Leibler (KL) divergence

Dgr(PIP)= ) lo ( ;)P(m),

TAEXA

Lauritzen| (1996, p. 238) also showed that the ML projection corresponds to finding the distri-
bution that minimizes Dy in the second argument, i.e.

pP= in Dgr (P, Q).
arg min k(P Q)

We shall later refer to the minimum discrimination information (MDI) projection, resulting in
a distribution R given a distribution R. The MDI projection is also defined through the KL
divergence but in this case as the distribution that minimizes D, in the first argument, i.e.

R= in D R).
arg min kL(Q,R)

The ML projection for imposing a single context-specific independence on a distribution can
also be written in closed form. Consider an outcome zr, ; , € L5}, which implies the context-
specific independence X5 L X, | X1, ., =2, . f we by Q=A\{L .y U{d,v}} denote all
nodes not in Lgs . or {d,7}, the probability

P(XA = .’L‘A) = P(XLM,W} = xL(M}’XQ = .'L'Q,X(S = :)35,XV = CL'W)



for any zq € Xq can be factorized as

P(Xigsy = L0y Xo = 20) P(Xs = 25 | Xp(; ) = 21y, Xo = 20)

P(X'Y = (E,y | XL{&'y} = ‘,EL{é,'y}JXQ = wQ)

Using the following abbreviated notation for 8 (and correspondingly for 6)

I
T

(XL{(;W} = xL{g,,Y}aXQ =ZQ, X§ = OvX’y = 0)7
(XL{(;',Y} = -TL{(;Y,Y}aXQ = IQ7X§ = 07X’y = 1)a
(X5 =TLgsqy, Xa =20, X5 =1, X, =0),
( )

XL((;’,Y} = JjL{g,,Y}aXQ = xﬂyX(S = 17X’y =1 )

(I
YT

00,0
001
01,0
61,1

we determine the values 6, 6o,1, 61,0, and 611 according to

fo.0 = (Bo.0 + 00,1

) - (600 +610)/(Bo0+001+610+611),
00,0 + 00,1) -

) -

) .

)/(
001 = 601 +61,1)/ (600 + 601 + 61,0+ 611),
)/(
)/(

(5)
60,0+ 01,0)/ (80,0 + 601 + 01,0+ 011

00,1 +61,1)/ (600 + 601+ 61,0+ 611).

010=(010+011

é1,1 = (tho+011

( ( )
( ( )
( ( );
( ( )

A detailed derivation of the projection defined above is given in Appendix A. Repeating the
procedure defined in for all zg € Xq will result in the ML projection of P satisfying the
context-specific independence X5 L X, | Xp, , =xr; -

4.1 Maximum likelihood estimation for SGs

By cyclically repeating the projections according to and for all instances found in the set
of strata L until convergence is achieved, the resulting parameter vector will be the maximum
likelihood estimate that simultaneously satisfies all the restrictions imposed by G. In order to
prove this we first need to define the following family of probability distributions.

Definition 3. Let X5 and X, be two variables in Xa, Xa a subset of Xa\(5~y and Xq =
Xav{augsyy- Fory(Xa = z4,Q), where Q is an arbitrary probability distribution, is defined as
the set of probability distributions for which the following properties hold for all possible values
s, Ty and Tq.

Fsy(Xa=24,Q) =
{P:P(XA =2x4,X0 Za':Q) ZQ(XA =1x4,Xq Z.%‘Q)} n

{P : P(Xg = x(;\XA =x,Xq = xg) = Q(X5 = :C5|XA =x4,Xq = :CQ)} N
{P:P(X,=ay|Xa=24,Xqg=2q) =Q(Xy=2,]Xa=24,Xqg=20)} N
{P:P(Xa=ya)=Q(Xa =yna), when ya is a outcome where x4 # ya}.

A set of probability distributions % is defined as a linear set if P, € € and P, € € results
in aP; 4 (1 — ) P> also belonging to & for every real « for which it is a probability distribution
(Csiszar, [1975)).

Lemma 1. Fs (X4 = x4,Q) constitutes a linear set.



Proof. Let P; and P, be two probability distributions in .7-'5’7(X A = 24,Q), we then need to
prove that P* = aP; + (1 — a)P» also belongs to F5 (X4 = x4,Q). It is trivial to show that
P*(XA =1x4,Xq = IQ) = Q(XA =x4,Xq = J:Q) and that P*(XA = yA) = Q(XA = yA),
when ya is a outcome where x4 # ya. The non-trivial part consists of showing that P*(X; =
25| Xa =za,Xq=2q) = Q(Xs = 25| Xa = x4, Xq =2xq). We start from the fact that

Q(Xs =w5|Xa=24,Xqg=2q)=P1(Xs =25/ Xa =24,Xq =2q)
ZPQ(X5 =$5|XA

z4, Xq = 7q),
which implicates that

P(Xs = x5, Xa =24, Xo =wa) _ Pa(Xs = 25, Xa = x4, Xo = 7q)
P (Xs=xz4,Xq=2q) Py( Xy =x4,Xq=12q) '

From the definition of Fs (X4 = x4, Q) we know that
P (X4 =24,Xq=12q) = P(Xa =124, Xq=1zq),

and can therefore deduce that

QX5 =w5,Xa =24,Xq=2q) =P1(Xs =25, Xa =24, Xq =2zq)
= Py(Xs =25, X4 =24, X0 = 20).

For P* this means that

P*(X5 = CC5|XA = :UA,XQ = CCQ) =
aPl(X§ =25, X4 =2p,Xq =12 (1 —Oz)PQ(X(; =25, X4 =Tp,Xq= J)Q) _
(1—a)Pa(X4g =2x4,X0=2q) o
(1-0)Q(Xs =x5, X4 =24,X0 =20)
(1 — a)Q(XA = (EA7XQ = CL‘Q)

~ | —

_l’_

aPy(Xa=za,Xq=12q)+

aQ(Xs =x5,Xa =24, Xq =2z0) +

aQ(Xa =za,Xq =20)+

Q(Xs = x5,X4 =24, X0 =20)
QXA =12z4,Xq = 2q)

= Q(Xs = 25| X4 = 24, Xo = 2q).

Of course the same reasoning can be used to show that P*(X, = z,|Xa = z4,X0 = zq) =
Q(X, =24|X4 =24, Xq = xq), which concludes the proof. O

Definition 4. The log-linear model LLs (XA = x4) is defined as the set of probability distri-
butions which satisfy the condition X5 L X, | X4 = xa4.

It is easy to see that for any probability distribution @, the sets LLs (X4 = z4) and
Fs.~(Xa =x4,Q) can have at most one common distribution, denoted by R. It is also evident,
using the same reasoning as in Appendix A, that R is the result of the ML projection of any
distribution in F5(Xa = 24,Q) to LLs~(Xa = x4). We are now ready to prove the main
theorem.

Theorem 4. Cyclically projecting the observed distribution, Py, in accordance with the procedures
defined in and until convergence is achieved, will result in the mazximum likelihood esti-
mate, P, which simultaneously satisfies all the restrictions imposed by a given SG, G, = (G, L).

Proof. This proof uses the results found in |Rudas| (1998]), with Theorem 2 of that paper being
of paramount importance. An essential part of the proof is the so called Pythagorean identity
for discrimination information, see for instance |Rudas| (1998)), which states that if S belongs to



a linear set and R is the MDI projection of a distribution 7' onto this set, then Dk, (S,T) =
DKL(S, R) + DKL(R, T)

Let m denote the number of context-specific independencies in L, i.e. the total number of
instances in all strata included in L. Further, let P; be the distribution attained when projecting
the distribution P;_; according to the lth context-specific independence, say Xs L X, | Xigsy =
TLgs ., 0 L. It then holds that

Pi=LLsy (X1, = TLg00) N Fsy(Xpg oy = Trg ., Pe1):

Py is also the MDI projection of any distribution in LLs~ (XL, , = 7r.,) to Fs(Xr, ., =
Tr s, Pi-1). [Rudas (1998) makes this statement without providing any further comment, but
as it is not self-evident we have chosen to include a proof. In order to do this we turn to
Csiszar and Matus| (2003 Theorem 1). This theorem states that for a log-convex set 7T, which
LL(M(XL{M} = xL{am) constitutes as it defines an exponential family, the ML projection,
denoted by R, of an arbitrary distribution .S to 7 is the unique distribution that satisfies

DKL(S,T) Zgleizll_DKL(S,A)"f'DKL(R,T), TeT.

In our case, as Pe LL(;,,Y(XL{M} = xL{M}) and P; is the ML projection of any distribution S
in ]-'5’7(XL{577} = :vL{M},Pl,l) to LL(;’A,(XLMM = xL{M}) it holds that

Dkr(S,P) > Dr(S, P) + Dxr(P, P), S € Fso(Xr,,,, =L, Pio1):

Which implies that Dy (.S, P) > DKL(PZ,P) holds for every S in Fs (X, =L, Pi-1)
and P, is the MDI projection of any distribution in LL; (X1, = Tr;.,) to Fs(Xi,,, =
TLis.y P,_1). Therefore the Pythagorean identity is applicable and we can conclude that

Dk (Pi—1,P) = Dgr(Pi—1,P) + Dkr(P, P). (6)

Rudas| (1998) showed that the Pythagorean identity is also applicable when projecting a distri-
bution onto the set of distributions satisfying the restrictions imposed by a chordal graph. I.e.
if we by P,,4+1 denote the distribution that results from projecting P,, to ©¢ according to
we get that X X

D1 (Pm,P) = Dgr(Pm, Pmt1) + Drr(Pmt1, P). (7)
Combining @ and and letting the projection n+4 be the same projection as i if n = k(m+1)
for some value £k =0, 1, ... results in

Dir(Po, P) = Dkr(Pi1,P) + Dir(Pu, P).
1=1
for every n. The existence of P implies that for any n
ZDKL(PIA,PZ) < 00,

=1

which, in turn, implies that D, (P,—1, ) — 0 as | — oco. Just as|Rudas| (1998) we can now refer
to the compactness argument found in |Csiszar| (1975, Theorem 3.2) to complete the proof. [
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In practice we need a criterion to determine whether or not the cyclical projections have
converged to P. The criterion that we use terminates the projections once an entire cycle
consisting of m + 1 projections has been completed with the total sum of changes made to 6
being less than a predetermined constant e. Using 0; = (0;1,...,0;x) to denote the parameter
after the i:th projection in the cycle, with 6y denoting the starting value. The cyclical projections

are terminated when
m+1 k
Z Z |6U — G(i_l)j| < €.
i=1 j=1

5 Bayesian Learning of SGMs

Bayesian learning of graphical models has attained considerable interest, both in the statistical
and computer science literature, see e.g. Madigan and Raftery| (1994), Dellaportas and Forster
(1999)), |Giudici and Green| (1999), |Corander| (2003al), |Giudici and Castelo| (2003]), [Koivisto and
Sood| (2004)), and |Corander et al.| (2008]). Our learning algorithms described below belong to the
class of non-reversible Metropolis-Hastings algorithms, introduced by [Corander et al.| (2006) and
later further generalized and applied to learning of graphical models in |Corander et al.| (2008]).
A similar algorithm was also used in [Nyman et al.| (2014a)) for decomposable SGMs.

To allow for Bayesian learning of SGMs, we use the maximum likelihood estimation technique
introduced in the previous section to derive an approximation of the marginal likelihood based
on the general result for exponential families due to [Schwarz| (1978). The approximation utilizes
the Bayesian information criterion (BIC), and is written

dim(© | G1.)

log P(X | G) ~ (X | 6,GL) — 5

log n, (8)

where 6 is the maximum likelihood estimate of the model parameters under the restrictions
imposed by Gp,, (X | 6, G1) is the logarithm of the likelihood function corresponding to 6, and
dim(© | G) is the maximum number of free parameters in a distribution with the parameter
restrictions induced by Gz. We denote the right hand side of by log S(GL | X), i.e. P(X |

The maximum number of free parameters in a distribution with the parameter restrictions
induced by an SG can readily be calculated using the log-linear parameterization discussed in
Section [3l

Let M denote the finite space of states over which the aim is to approximate the posterior
distribution. In this paper we will run two separate types of searches. In one search the state
space M will consist of all possible sets of strata for a given chordal graph. In the second search
the state space will be the set of chordal graphs combined with the optimal set of strata for that
graph. For M € M, let Q(- | M) denote the proposal function used to generate a new candidate
state given the current state M. Under the generic conditions stated in |(Corander et al.| (2008]),
the probability with which any particular candidate is picked by Q(- | M) need not be explicitly
calculated or known, as long as it remains unchanged over all the iterations and the resulting
chain satisfies the condition that all states can be reached from any other state in a finite number
of steps. To initialize the algorithm, a starting state My is determined. At iteration ¢t = 1,2, ...
of the non-reversible algorithm, Q(- | M;—_1) is used to generate a candidate state M™*, which is
accepted with the probability

(9)

min (1 PX | M7)PM?) )
"P(X | My_1)P(M—1) )’
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where P(M) is the prior probability assigned to M. The term P(X | M) denotes the marginal
likelihood of the dataset X given M. If M* is accepted, we set My = M™*, otherwise we set
Mt = Mt—1~

In contrast to the standard reversible Metropolis-Hastings algorithm, for this non-reversible
algorithm the posterior probability P(M | X) does not, in general, equal the stationary distri-
bution of the Markov chain. Instead, a consistent approximation of P(M | X) is obtained by
considering the space of distinct states M, visited by time ¢ such that

. B P(X | M)P(M)
Pt(M | X) - ZM’eMt P(X | M’)P(M’).

Corander et al| (2008]) proved, under rather weak conditions, that this estimator is consistent,
ie.

Bi(M | X) "3 P(M | X),

as t — 0o. As our main interest will lie in finding the posterior optimal state, i.e.

arg max P(M | X).

it will suffice to identify
arg max P(X | M)P(M).
MeM

As the marginal likelihood of a dataset is not available for the models considered in this paper
the approximated BIC score is used instead. The main goal of our search algorithm is to identify
the stratified graph G** optimizing S(Gy, | X)P(GL). Under the assumption that the optimal
set of strata is known for each underlying graph a Markov chain traversing the set of possible
underlying graphs will eventually identify G‘zpt. Another search may be used in order to identify
the optimal set of strata given the underlying graph. The proposal functions used are described
in Appendix B. For the experiments conducted in the next section, in order to penalize dense
graphs, the following non-uniform prior (Nyman et al.| |2014al) is used

P(GL) 0.8 2_‘®G|.

Here, |O¢| denotes the maximum number of free parameter in a distribution satisfying the
restrictions imposed by the underlying graph G.

6 Illustration of SGM Learning from Data

In this section, in order to save space, when displaying an SG we instead of writing a stratum
as (X1 = 1,Xs = 0) only write (1,0). This is possible since, given the graph, it is clear which
variables define the context-specific independence when the variables are ordered by their integer
labels.

The first dataset that we have investigated includes prognostic factors for coronary heart
disease and can be found in Edwards and Havranek| (1985). The data consists of 1841 observations
of the six variables listed in Table In Figure [ two different SGs are displayed. The SG in
Figure [h is obtained by first conducting a search for the optimal ordinary chordal graph and
then identifying the optimal set of strata for that graph. The underlying graph has the score
—6732.84, while the SG has the score —6721.67. Figure @b contains the estimated globally
optimal SG, which has the score —6713.24. The underlying graph for this SG has the score
—6764.14.
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Variable Meaning Range

X, Smoking No=0, Yes=1
X, Strenuous mental work No =0, Yes =1
X3 Strenuous physical work No = 0, Yes =

X4 Systolic blood pressure > 140 No=0, Yes=1
X5 Ratio of beta and alpha lipoproteins > 3 No=0, Yes=1
Xs Family anamnesis of coronary heart disease No = 0, Yes =1

Table 1: Variables in coronary heart disease data.

b)
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Figure 4: Optimal SGs for heart data. In a) the optimal ordinary graph is amended with optimal
strata. In b) the globally optimal SG.

The second dataset that we consider is derived from the answers given by 1806 candidates in
the Finnish parliament elections of 2011, in a questionnaire issued by the newspaper Helsingin
Sanomat (Helsingin Sanomat} 2011). The eight questions considered, represented by eight vari-
ables, are given in Appendix C. As in the previous section we present in Figure [5| two different
SGs, the SG resulting from first determining the optimal ordinary graph and finding the optimal
set of strata for that graph and the globally optimal SG. For the globally optimal SG we, instead
of displaying the exact strata, give the total number of instances included in the stratum asso-
ciated with each edge. The score for the underlying graph of Figure [oh is —7177.69 and for the
SG —7162.78. The corresponding scores for the graph in Figure [ob are —7245.11 and —7139.13.

These examples demonstrate that when using Markov networks, variables that would be
considered conditionally dependent may in fact be independent in certain contexts. The examples
also show that the globally optimal SG contains more edges than the optimal ordinary graph.
This can be accredited to the fact that when using dense graphs the set of available parameter
restrictions grows, while adding strata to a dense graph can still result in models that induce
distributions with few free parameters. A possible method to avoid optimal SGs being very
dense, and thus hampering interpretability, is to apply a stronger prior over the model space,
further penalizing dense graphs or graphs with many strata as done in |Pensar et al.| (2014). In
conclusion, these experimental results show that context-specific independencies occur naturally
in various datasets and therefore it can be very useful to use graphical models that are able to
capture such dependence structures.
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Figure 5: Optimal SGs for parliament election data. In a) the optimal ordinary graph is amended
with optimal strata. In b) the globally optimal SG with number of instances in each strata listed
beside the corresponding edge.

7 Discussion

Graphical models, and log-linear models more generally, are useful for many types of multivariate
analysis due to their interpretability. The context-specific graphical log-linear models discussed
here extend the expressiveness of the stratified models considered earlier in [Nyman et al.| (2014al)
by removing the restriction concerning overlap of strata. By applying the general estimation the-
ory developed in [Rudas| (1998) and |Csiszar| (1975)), we were able to derive a consistent procedure
for estimating the parameters of a context-specific graphical log-linear model based on cyclical
projections each corresponding to a specific independence restriction. Two examples with real
data illustrated how the relaxation of the model class properties enables additional discovery of
context-specific independencies. In future research, it would be interesting to attempt to identify
further classes of non-hierarchical restrictions to log-linear parameters, such that interpretability
is maintained in the same fashion as for the current context-specific models.
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Appendix A

Derivation of the parameters in equation .

We will here give a more detailed explanation of how ég,o = }S(XL{M} =TLi5 Xo=x0,Xs =
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0, X, = 0) is derived. It is generally possible to use the factorization

P(XL{(;’,Y} = JTL{(S””7XQ = Z‘Q,X§ = 0,)(,y = 0) =
P(XL{(S,W} = {EL{&W},XQ = :L'Q)P(Xg = O,Xv.y = 0 ‘ XL{&,W} = xL{JW}?XQ = xg).
When considering a probability distribution where é and v can be dependent, it is generally not
true that P(X;,X,) = P(Xs)P(X,). A standard result, see e.g. Whittaker| (1990), states that
for a distribution where two variables are dependent the ML projection to the set of distributions
where the variables are independent is obtained by calculating the product of the marginal

probabilities of the two variables. This implies, in our case, creating a new distribution P
according to

P(XL{(S,»Y} = wa”y},XQ = J,‘Q,X§ = O,X,Y = 0) =
P(Xp5., =21, Xa=20)P(Xs =0| Xr, , =21, Xa = zq)
P(X’Y = 0 | XL{B,'Y} = xL{(;ﬁ},XQ = a:‘Q)
Using the earlier introduced notations this corresponds to setting
boo=P(XL, =1, Xa=10,Xs=0,X, =0) =
P(XLgsy = Ly Xo = 20) P(Xs = 0] Xpy ) = 215, Xa = 20)
P(AXV =0 | XL{éw} = mL{s,w}VXQ = xg) =
(o0 + 601 +610+611) (6oo+601)/(Bo0+6001+610+611)
(Bo,0+ 01,0)/ (00,0 + 601+ 01,0+ 011) =
(Bo,0+00.1) - (Bo,0+010)/ (00,0 + 001+ 010+ 011).

The other parameters 6y 1, 01,0, and 6; ;1 can be derived in a similar fashion.

Appendix B

Proposal functions used for model optimization.

Using the proposal function defined in Algorithm I} running a sufficient amount of iterations, we
can be assured to find the optimal set of strata for any chordal graph.

Algorithm 1. Proposal function for finding optimal strata for a chordal graph.

Let G denote the underlying graph. By L4 we denote all possible instances that can be
added to any stratum of G. If L4 is empty no strata may be added to G and the algorithm is
terminated. L denotes the current state with L being empty in the starting state.

1. Set the candidate state L* = L.
2. Perform one of the following steps.

2.1. If L is empty add a randomly chosen instance from L4 to L*.
2.2. Else if {L4 \ L} is empty remove a randomly chosen instance from L*.
2.3. Else with probability 0.5 add a randomly chosen instance from {L4 \ L} to L*.

2.4. Else remove a randomly chosen instance from L*.
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Using this proposal function the optimal set of strata can be found for any underlying graph and
we can proceed to the search for the best underlying graph. The proposal function in Algorithm
is used for this task.

Algorithm 2. Proposal function used to find the optimal underlying chordal graph.

The starting state is set to be the graph containing no edges. Let G denote the current graph
with G, = (G, L) being the stratified graph with underlying graph G and optimal set of strata
L.

1. Set the candidate state G* = G.

2. Randomly choose a pair of nodes § and «. If the edge {d,~} is present in G* remove it,
otherwise add the edge {d,7} to G*.

3. While G* is non-chordal repeat steps 1 and 2.

The resulting candidate state G* is used along with the corresponding optimal set of strata
L* to form the stratified graph G = (G*, L*) which is used when calculating the acceptance
probability according to @D

Appendix C

Questions considered in parliament election data.

1. Since the mid-1990’s the income differences have grown rapidly in Finland. How should we
react to this?
0 - The income differences do not need to be narrowed.
1 - The income differences need to be narrowed.

2. Should homosexual couples have the same rights to adopt children as heterosexual couples?
0 - Yes.
1 - No.

3. Child benefits are paid for each child under the age of 18 living in Finland, independent of
the parents’ income. What should be done about child benefits?
0 - The income of the parents should not affect the child benefits.
1 - Child benefits should be dependent on parents’ income.

4. In Finland military service is mandatory for all men. What is your opinion on this?
0 - The current practice should be kept or expanded to also include women.
1 - The military service should be more selective or abandoned altogether.

5. Should Finland in its affairs with China and Russia more actively debate issues regarding
human rights and the state of democracy in these countries?
0 - Yes.
1 - No.

6. Russia has prohibited foreigners from owning land close to the borders. In recent years,
Russians have bought thousands of properties in Finland. How should Finland react to
this?

0 - Finland should not restrict foreigners from buying property in Finland.
1 - Finland should restrict foreigners’ rights to buy property and land in Finland.
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7. During recent years municipalities have outsourced many services to privately owned com-
panies. What is your opinion on this?
0 - Outsourcing should be used to an even higher extent.
1 - Outsourcing should be limited to the current extent or decreased.

8. Currently, a system is in place where tax income from more wealthy municipalities is
transferred to less wealthy municipalities. In practice this means that municipalities in the
Helsinki region transfer money to the other parts of the country. What is your opinion of
this system?

0 - The current system is good, or even more money should be transferred.
1 - The Helsinki region should be allowed to keep more of its tax income.
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