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Abstract We consider the two-sample homogeneity problem where the information
contained in two samples is used to test the equality of the underlying distributions.
In cases where one sample is simulated by a procedure modelling the data generat-
ing process of another observed sample, a mere rejection of the null hypothesis is
unsatisfactory. Instead, the data analyst would like to know how the simulation can
be improved. Based on the popular Kolmogorov–Smirnov test and a general mixture
model, we propose an algorithm that determines an appropriate correction distribution
function. Complementing the simulation sample by a given proportion of observations
sampled from this distribution reduces theKolmogorov–Smirnov distance between the
modified and the observed sample. Therefore, the correction distribution indicates pos-
sible improvements to the current simulation process. We prove our algorithm to run
in linear time when applied to sorted samples. We further illustrate its intuitive results
on simulated as well as on real data sets from astrophysics and bioinformatics.
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1 Introduction

Our work focuses on developing a new statistical method to assess the quality of
simulations and to provide useful information that can help to improve simulation
procedures. Since often arbitrary amounts of simulated data can be generated, the
algorithm is mainly designed for applications in different domains of research dealing
with medium to large data sets, but it is also applicable for small sample sizes. In order
to give a clear motivation to the problem under study, we consider the gamma ray
detectors MAGIC-I and MAGIC-II. These telescopes are located at the Roque de los
Muchachos on the Canary Island La Palma. The interested reader is referred to Cortina
et al. (2009) and TheMAGIC Collaboration (2014) for detailed information. The tele-
scopes make use of a mirror surface of over 200 square metres to measure atmospheric
signals induced by the interaction of high energetic photons, called gamma rays, with
the atmosphere. Since they do not have an electric charge, gamma rays do not interact
with magnetic fields and thus provide useful information about their sources which the
physicists want to explore. However, these are not the only particles generating such
atmospheric signals. For each gamma ray in the measurements there are about 1000
observations of so called background events, which are not of interest in the given
context. The background events mainly consist of protons, but also contain heavier
hadrons and electrons. Classification algorithms based on characteristics of the mea-
sured signals could be applied in order to distinguish between the background and
the gamma particles. Unfortunately, these methods cannot be trained on real data,
because it is not labelled. Therefore, simulation procedures for gamma rays as well
as for protons have been constructed based on models of particle propagation and
improved in several steps. The main program that is used to generate such simulations
is CORSIKA (Heck et al. 1998).

Clearly, it is of major importance to compare the simulated proton samples with the
observed data, which is the aim of our algorithm. On the one hand, suitable artificial
background data is crucial for the classification analysis. Hence, variables with low
agreement of generated and real data must be identified. On the other hand, small
deviations between simulations and real data can be caused by gamma ray signals. If
one assumes to have a reasonable simulation, variables with comparably high discrep-
ancies can be quite helpful in the upcoming classification task.

A typical statistical approach to check the similarity of two data sets is the
application of a nonparametric two-sample test like for example the two-sample
Kolmogorov–Smirnov test. However, a mere rejection of the null hypothesis is not
satisfying in practice. If the simulations are seriously inadequate, the data analyst
wants to quantify the issues by identifying the regions with too many or insufficiently
many observations, respectively. Such information can then be used to update COR-
SIKA or related methods using more suitable hyperparameters or even give rise to the
inclusion of additional simulation steps in the particle simulation. If the discrepancies
between the samples potentially stem from the gamma ray signals, their quantification
is necessary as well, allowing to assess and validate the gamma ray simulations.

In the present work, we develop a novel approach allowing to gain additional insight
into the discrepancies between an observed and a simulated sample based on the two-
sample Kolmogorov–Smirnov test. Note that while the application aims at designing
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a reasonable simulation procedure, our contribution helps to improve an existing sim-
ulation procedure which is based on prior domain specific knowledge. We therefore
assume that such a simulation procedure exists a priori. In order to compare the data
sets, we make use of a mixture model linking the distributions of the observed and
the simulated samples by a third distribution. The latter represents all discrepancies
between the first two and will be called correction distribution hereafter. We propose
an algorithm that determines an empirical distribution function of this correction dis-
tribution and a mixing proportion in the mixture model. Both are determined such
that the resulting mixture with the simulated data does not lead to another rejection
by the Kolmogorov–Smirnov test when compared to the observed data. Note that
the algorithm in principle does not aim at statistical testing and thus the type I and
type II error after modification of the simulated sample are not investigated. The
method rather makes use of the quantiles of the Kolmogorov–Smirnov distribution
to obtain intuitive bounds on the distance between empirical distribution functions.
The algorithm does not construct a mixture fitting the observed data perfectly, but
leads to a reasonably close approximation taking the sample variance into account.
The amount of closeness can be regulated by the critical value Kα or equivalently
by the significance level α and may be adjusted for a given application. For the sake
of brevity, we formulate the problem focusing on the improvement of a simulation
procedure in the following. However, the method can also be applied to approxi-
mate the distribution of subgroups in the data as argued for the gamma ray signals
above.

There already exist various semi- and nonparametric suggestions on mixture mod-
els in the literature. They focus on the estimation of the densities and the number of
components in a mixture model of a given single sample. In this situation the authors
often have to work in a multidimensional setting that allows to impose more informa-
tion about the structure. As shown by Hall et al. (2005), the quantities in a reasonable
mixture model with two nonparametric components are not identifiable for one- and
two-dimensional problems even under certain independence assumptions. The meth-
ods often rely on adjusted versions of the EM algorithm (Pilla and Lindsay 2001)
or a Newton method (Wang 2010; Schellhase and Kauermann 2012) and in addi-
tion can make use of appropriate data transformations (Hettmansperger and Thomas
2000). There also exist several nonparametric approaches to problems involving mul-
tiple samples and finite mixture models, as for example proposed by Kolossiatis et al.
(2013). However, to the authors’ knowledge, there is no literature addressing the two
sample problem outlined above in the context of mixture models.

We close this gap by proposing a correction of one sample to resemble another
sample based on the corresponding empirical distribution functions. This allows us
to derive simple, monotone and asymptotically distribution free confidence bands.
Working with nonparametric density estimators may seem more intuitive, especially
since many of them (e.g. Schellhase and Kauermann 2012) attain the appealing form
of convex combinations of suitable basis functions:

f̂ (x) =
b∑

i=1

ai fi (x).
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The natural idea to solve our problem in this setting is forcing the density approxima-
tion of the simulated sample to be part of the basis for the estimation on the observed
sample. One thus first estimates the density on the simulated sample. In a second step
this estimator ĝ is fixed as one of the basis functions, say f1 = ĝ, for the estimation
of the density on the observed sample. The main problem with this approach is that in
general one cannot guarantee that the corresponding coefficient a1 properly reflects the
importance of the simulated data. Often a1 will be way too small if the remaining basis
functions are not chosen appropriately, because these also contribute to the region of
values modelled by f1. In our setting this corresponds to discarding the simulation
almost completely, which is not desirable. Since choosing the remaining basis func-
tions in an adequate way is nontrivial, straightforward application of density based
approaches are not satisfactory in our application. In addition, the optimisation of
the coefficients and potentially the basis functions themselves can be computationally
costly, especially in the medium to large sample cases we aim for.

The remainder of this paper is structured as follows: In Sect. 2 we formalise the
problem and propose a mixture model related to the nonparametric two-sample prob-
lem. We introduce several desirable properties of the model parameters and formulate
two optimisation problems allowing to identify them. In Sect. 3 we present an algo-
rithm to solve the problems introduced in the second section and provide intuitive
explanations of the main ideas of each step of our algorithm. The proofs of correct-
ness and linear running time are conducted in Sect. 4. In Sect. 5 our procedure is
applied to real and simulated data and the results are illustrated. Section 6 concludes
with a summary and an outlook on possible future work.

2 Problem definition

In this section we introduce our basic notations and consider a general mixture model
based on nonparametric estimators. Within this model, all discrepancies between the
distributions of the observed and the simulated data, respectively, are represented by a
third distribution.Our taskwill be to asses this so called correction distribution in order
to identify the aforementioned discrepancies. To this end, the model is transferred to
an empirical equivalent. Thereafter, several constraints on parameters of the empirical
model are motivated allowing to identify them properly.

We observe the sample x1, . . . , xn1 ∈ R stemming from an unknown continuous
distribution F . The underlying data generating process is modelled by a simulation
procedure represented by the distribution G. To evaluate the quality of the simulation,
consider n2 simulated observations y1, . . . , yn2 drawn independently from G. If the
simulation procedure works well, G resembles F and thus the samples are similar.

To test the equality of F and G using the two-sample Kolmogorov–Smirnov test
denote the empirical distribution functions of the samples by Fe and Ge, respectively,
and let N = n1·n2

n1+n2
. Setting M = R the null hypothesis H0 : F = G is rejected if the

test statistic

DM (Fe,Ge) = √
N sup

x∈M
|Fe(x) − Ge(x)|

exceeds an appropriately chosen critical value Kα .

123



Correcting statistical models via empirical distribution. . . 469

In order to consider the procedure from a different perspective, we define an upper
boundary function U setting U (x) = min(1, Fe(x) + Kα√

N
) for all x ∈ M , and in

analogy define a lower boundary function L by L(x) = max(0, Fe(x) − Kα√
N

). With
these definitions the Kolmogorov–Smirnov test does not reject H0 if and only if Ge is
an element of the set

B = { f : R → [0, 1]|∀x ∈ M : L(x) ≤ f (x) ≤ U (x)}

called the confidence band. As argued above, we are interested in the regions of
undersampling respectively oversampling, i.e., the regions where Ge violates L orU .

To model the problem described above, we work with the fairly general two-
component mixture model

F = s̃ · G + (1 − s̃) · H,

where the so-called mixture proportion or shrinkage factor s̃ measures the degree of
agreement of F and G while the distribution H represents all dissimilarities between
F and G. Since F is fully described by G, s̃ and H , we are interested in identifying
s̃ and H , because these quantities contain all relevant information for an appropriate
modification of G.

It is clear that the choice s̃ = 0 and H = F solves the above equation. However, this
solution is not of interest in our setting, because the data analyst wants to correct and
not to discard the current simulation, which is often based on expert knowledge. This
may give more insight into the data generating process itself and is thus preferable. In
the other extreme case, s̃ = 1, the simulation is correct and H is irrelevant. However,
for any s̃ ∈ (0, 1) the corresponding H is unique and demixing F , that is estimating
s̃ and H , provides useful information for improving the simulation.

Since the distributions F and G are not available in practice, we replace the cor-
responding distribution functions by the standard empirical estimators Fe and Ge.
Combining the Kolmogorov–Smirnov distance with the above mixture model, we
propose to identify a shrinkage factor s ∈ [0, 1] and a correction functionH such that
the function

F = s · Ge + (1 − s) · H (1)

lies in the confidence band B and thus the Kolmogorov–Smirnov test would not reject
H0 if the distribution functions Ge and F were compared. SinceH is a substitute for
H , it should be a distribution function and therefore lie in the set

M =
{

f : R → [0, 1] | f monotone, lim
x→−∞ f (x) = 0

}

that is a superset of the set of all distribution functions onR. Obviously, neither s norH
are unique in this situation. Hence, in the following we set some additional constraints
and describe the problem inmore detail allowing us to determine reasonable solutions.
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Since we work with empirical distribution functions, all derived quantities are
characterized by their values on the joint sample x1, . . . , xn1 , y1, . . . , yn2 . Therefore,
instead of considering all functions H ∈ M, we restrict ourselves to those which
may be discontinuous only on Z = {

z1, . . . , zn1+n2

}
consisting of the ordered joint

sample. We denote this set of functions by M∗ ⊂ M. This restriction is not very
strong regardless of the sample sizes, since it does not make a difference for the
Kolmogorov–Smirnov distance whether we stick to the original data or add obser-
vations on intermediate values. In addition, the choice of the value for an added
observation would be arbitrary between two of the given data points with respect to
our distance. Thus, we focus on the original observations which has the additional
advantage of lower computational cost. Also, the sample sizes in applications we aim
for are comparably large so that the restricted set is often quite dense.

Motivated by the fact that the data analyst is interested in making as little changes
as possible concerning the current simulation, we can make the mixture proportion
s in the model identifiable by choosing s maximally such that the mixture F fits the
observed data. This directly implies a minimal weight 1−s for the correction function
H. We thus formulate Problem 1:

max
s∈[0,1] : s

s.t. : ∃H ∈ M∗ : s · Ge + (1 − s) · H ∈ B.

Note that for s∗ = Kα√
N
and H∗ = 1

1−s∗ · L the property s∗ · Ge + (1 − s∗) · H∗ ∈ B

holds. Thus, the optimal value of s, called sopt in the following, is always greater than
0. Hence, the simulated data is always properly included in the mixture.

After Problem 1 is solved, the resulting mixture F = sopt ·Ge + (1− sopt ) ·H lies
in B. Since this does not imply the property lim

x→∞F(x) = 1, the function H could

be an improper distribution function. Therefore, there might exist several choices of
H solving Problem 1 given sopt . However, consider the pointwise minimal function
Hmin defined by ∀z ∈ Z : Hmin(z) = minH(z). Hereby, the minimization is taken
over the non-empty compact set of all functions H ∈ M∗ satisfying Fmin = sopt ·
Ge + (1 − sopt ) · H ∈ B. The function Hmin is clearly unique. To find a reasonable
distribution function H, we propose to first identify and then enlarge Hmin , that is to
construct H such that H ≥ Hmin , in an adequate way, so that the final mixture is a
proper empirical distribution function lying in B.

Before we formulate this enlargement as an optimisation problem, we want to point
out that, quite intuitively, Hmin should not be enlarged for small z ∈ Z . In particular,
if Fmin intersects the upper boundary U , adding mass before the maximal value z ∈
Z where Fmin(z) is equal to U (z), that is, zmeq = maxz∈Z {z|Fmin(z) = U (z)},
leads to violations of U in zmeq . Note that in case of such an intersection, the global
Kolmogorov–Smirnov distance on M = R between the final mixture and Fe will be
the radius of the confidence band, regardless of the enlargement ofHmin . However, on
subsets of R the distance can be improved if Hmin is enlarged appropriately. Hence,
we propose to identify znorm , the smallest value after zmeq such that adding mass after
znorm minimises the Kolmogorov–Smirnov distance restricted to the set Mnorm =
{z ∈ Z |z ≥ znorm}. We then add the probability mass in such a way that the minimal
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distance D{z≥znorm } is attained. If there is no intersection between Fmin(z) and U (z),
we set zmeq = min {Z} and proceed in the same way. Using the notations introduced
above, finding a suitable distribution function H for a given value of sopt can be
formalised in Problem 2:

min
H∈M∗ : DMnorm (F , Fe)

s.t. : F = sopt · Ge + (1 − sopt ) · H ∈ B

H ≥ Hmin

lim
x→∞H(x) = 1.

An optimal solution to Problem 2 is called Hopt . The corresponding final mixture is
denoted by

Fopt = sopt · Ge + (1 − sopt ) · Hopt . (2)

Note that, evenwith these constraints, the solution to the problem of identifyingF ∈ B
may not be unique. Although the shrinkage factor sopt is unique by its maximality
property, there may be several optimal enlargements of Hmin equally appropriate in
the sense of the restricted Kolmogorov–Smirnov distance.

3 The algorithm

In this section we propose an algorithm for solving Problems 1 and 2 introduced in
Sect. 2. At first, the main procedure is described. All subsequent subroutines called
within the main algorithm are explained in more detail hereafter. Pseudocode is pro-
vided in order to illustrate the algorithm and its subroutines.

3.1 The main algorithm

Algorithm 1 is our main procedure to solve Problems 1 and 2. It requires two sorted
sample vectors x ∈ R

n1 , y ∈ R
n2 and a significance level α. At first, it calcu-

lates the empirical distribution functions Fe and Ge of the samples and determines
the critical value Kα at level α. In fact, Kα is the α-quantile of the distribution of
K = supt∈[0,1] B(t), where B(t) is a Brownian bridge (Durbin 1973). For the typical
significance levels α1 = 0.05 and α2 = 0.01 the critical values are Kα1 = 1.358 and
Kα2 = 1.628, respectively. The values s and F , candidates for the shrinkage factor
sopt and the final mixture Fopt , are initialised and the lower bound for performing
a binary search is set to s∗ (cf. the description of Problem 1). The upper and lower
boundary functions of the confidence band around Fe,U respectively L , are computed
next. These steps can be considered as preprocessing and are carried out in the lines 1
and 2. The two-sample Kolmogorov–Smirnov test does not reject the null hypothesis
of equal distributions if the relation L ≤ Ge ≤ U holds. In this case the empirical
distribution functions resemble each other well enough and the algorithm stops in
line 4. If the test rejects the null hypothesis, the algorithm carries out certain steps to
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determine an optimal mixture within the confidence band. To solve Problem 1, the
following operations are applied iteratively in the main loop in lines 5–11: a candidate
F lying above the upper boundary somewhere has to be shrunk, that is, multiplied by
a factor from the interval (0, 1), in order to correct the violation of U . This problem
is addressed in line 7 in the so called Shrink-Down algorithm. On the contrary, a can-
didate falling below the lower boundary L must receive additional probability mass
in appropriate regions. This is taken into account in line 9 by calling the Push-Up
algorithm. The two operations are applied whenever necessary in the presented order.
However, since they have opposite effects, some data situations require multiple exe-
cutions of the Shrink-Down and the Push-Up step. Iteration of these steps generates a
decreasing sequence of upper bounds to sopt . The well-known binary search technique
embedded in the demixing algorithm in line 10 takes another approach by bounding
sopt from below and above. It is connected with the Shrink-Down and Push-Up step
by using the current shrinkage factor s learned from them as an upper bound to sopt . In
return, the binary search updates s and F , which are then passed to the Shrink-Down
and Push-Up steps. The lower bound for the optimal shrinkage factor, lb, is updated
by the binary search itself.

Algorithm 1: Demixing-Algorithm
Input : Sorted observations x ∈ R

n1 , y ∈ R
n2 , significance level α

Output: Optimal shrinkage factor sopt ,
optimal correcting functionHopt ∈ M∗

1 Z ← (x, y); Kα ← K (α); N ← n1·n2
n1+n2

; lb ← Kα√
N
; s ← 1;

2 Fe ← EmpDistrFun(x); Ge ← EmpDistrFun(y); F ← Ge;

L ← max
{
0,Ge − Kα√

N

}
;U ← min

{
1,Ge + Kα√

N

}
;

3 if ∀z ∈ Z : L(z) ≤ F(z) ≤ U (z) then
4 return (s, 0)

5 repeat
6 if ∃z ∈ Z : F(z) > U (z) then
7 (s,F) ← Shrink-Down(s,F);

8 if ∃z ∈ Z : F(z) < L(z) then
9 (s,F) ← Push-Up(s,F);

10 (lb, s,F) ← BinSearch(lb, s,F);
11 until ∀z ∈ Z : L(z) ≤ F(z) ≤ U (z);
12 F ← Normalise(F);
13 H ← (F − s · Ge)/(1 − s);
14 return (s,H);

Once the main loop is terminated, the optimal shrinkage factor sopt and the corre-
sponding minimal correction functionHmin introduced on page 6 are determined and
thus Problem 1 is solved. The normalisation step in line 12 takes care of Problem 2
returning an optimal mixture Fopt . This allows to identify a reasonable correction
functionHopt in line 13 by rearranging Eq. (2), which is returned afterwards together
with the optimal shrinkage factor sopt .

In the remainder of this section the subroutines of the main algorithm are described
in detail.
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3.2 The Shrink-Down algorithm

This procedure is applied whenever a candidate F exceeds the upper boundary U at
some point. Following the mixture model (1), it is intuitive to solve this problem by
computing the maximal shrinkage value sd ∈ (0, 1) such that sd ·F does not violateU
any more. In other words,F is shrunk down. The maximal shrinkage factor to achieve
this is sd = minz∈Z {U (z)

F(z) }, where we set a
0 = ∞ for every a > 0. The Shrink-Down

subroutine presented in Algorithm 1 calculates this factor in line 1. Then, the total
shrinkage and the candidate function F are updated accordingly and are eventually
returned.

Algorithm 2: Shrink-Down
Input : Current values of F and s
Output: Updated values F and s

1 sd ← min
z∈Z

{
U (z)
F(z)

}
;

2 s ← sd · s;
3 F ← sd · F ;
4 return (s,F);

3.3 The Push-Up algorithm

The Push-Up step presented in Algorithm 3 is carried out whenever the current can-
didate F violates the lower boundary of the confidence band, L . In order to increase
the values of the mixture in the problematic regions, probability mass must be added
there. Note thatF may lie below L before the smallest value z ∈ Z whereF(z) equals
U (z), called zeq = minz∈Z {z|U (z) = F(z)}, as well as after that point. However,
these two cases have a crucial difference. Adding probability mass before zeq leads
to a new violation of the upper boundary U in zeq , while adding mass after zeq does
not imply this problem. In order to distinguish between these cases, the algorithm first
identifies zeq in line 1. This value zeq equals max(Z) after initialisation with F = Ge

because F(max(Z)) = Ge(max(Z)) = 1 = U (max(Z)) holds. As we argue later in
Lemma 4, zeq is also well defined after modifications of F .

If there are violations of L before zeq , a shrinkage is necessary. Thus, keeping
in mind Problem 1, the maximal shrinkage factor su must be identified, so that the
residuals to L before zeq do not exceed the residual to U in zeq after shrinking.
Otherwise, adding appropriate probability mass will cause a violation of U in zeq .
More formally, the shrinkage factor

su = max
s∈[0,1]

{
s | ∀z < zeq : L(z) − s · F(z) ≤ U (zeq) − s · F(zeq)

}

must be determined. We have su = minz<zeq { F(zeq )−L(z)
F(zeq )−F(z) } using basic arithmetic

transformations of the constraint and F(zeq) = U (zeq). After su is determined in line
3, the shrinkage factor s as well as F are updated.
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In order to shift the current candidateF appropriately, the positive residuals d(z) =
max {0, L(z) − F(z)} to L are computed for all z ∈ Z . These are theminimal amounts
which must be added to F so that the lower boundary L is no longer violated. The
residuals d are added to the current correction termF−s ·Ge and the sum isminimally
monotonised, cf. line 7. The result, denoted byH, is added to s · Ge yielding the new
candidate mixture F .

Algorithm 3: Push-Up
Input : Current values of F and s
Output: Updated values F and s

1 zeq ← min
z∈Z{z |U (z) = F(z)};

2 if ∃z < zeq : F(z) < L(z) then

3 su ← min
z<zeq

{ F(zeq )−L(z)
F(zeq )−F(z)

}
;

4 s ← su · s;
5 F ← su · F ;

6 ∀z ∈ Z : d(z) ← max{0, L(z) − F(z)};
7 ∀z ∈ Z : H(z) ← max

z′≤z
{F(z′) − s · Ge(z′) + d(z′)};

8 F ← s · Ge + H;
9 return (s,F);

3.4 The Binary search algorithm

The binary search step presented in Algorithm 4 is called at the end of every iteration
in the main loop. Its input consists of lb and ub, the current lower respectively upper
bound for sopt . While lb is derived from previous binary search steps, ub is set to the
current value of s. The algorithm computes the average of the given bounds in line
1. Using this candidate, the minimum monotone step function Hb is computed such
that Fb = sb · Ge + Hb ≥ L holds, cf. lines 2 and 3. This is done in analogy to the
corresponding lines in the Push-Up step.

If Fb violates the upper boundaryU , then, by minimality ofHb, no monotone step
function for the shrinkage factor sb can exist such that the corresponding mixture lies
within the confidence band B. Therefore, as implied by the monotonicity property
proved in Lemma 1 below, it holds that s > sb > sopt . Thus, in this case the algorithm
updates s to sb as a new upper bound for sopt and sets the current mixture candidate
to Fb in lines 6 and 7. Otherwise, again by Lemma 1, the relation sopt ≥ sb > lb must
hold, since there exists a monotone step function for the shrinkage factor sb leading
to a mixture in B. Thus, sb is a better lower bound to sopt so that lb is updated to sb,
while all other quantities are kept.
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Algorithm 4: BinSearch
Input : lb and ub , current lower and upper bounds on sopt
Output: Updated values F , s and lb

1 sb ← (lb + ub)/2;
2 ∀z ∈ Z : d(z) ← max{0, L(z) − sb · Ge(z)};
3 ∀z ∈ Z : Hb(z) ← max

z′≤z
{d(z′)};

4 Fb ← sb · Ge(z) + Hb;
5 if ∃z ∈ Z : Fb(z) > U (z) then
6 s ← sb;
7 F ← Fb;

8 else
9 lb ← sb;

10 return (lb, s,F);

3.5 The normalisation step

As we show in Theorem 1 below, Problem 1 is solved when the loop of Algorithm 1
(lines 5–11) stops. At this point, the current value of s is the optimal shrinkage factor
sopt , while the current mixture is F = sopt ·Ge + (1− sopt ) ·Hmin and lies within the
confidence band. However, as pointed out in the description of Problem 2, F may not
be a proper distribution function since limx→∞ F(x) < 1 may hold. This deficiency
is corrected by the normalisation step presented in Algorithm 5.

Algorithm 5: Normalise
Input : Current value of F
Output: Final mixture F

1 if ∀z ∈ Z : F(z) < U (z) then
2 zmeq ← min(Z);

3 else
4 zmeq ← max

z∈Z {z |U (z) = F(z)};
5 if zmeq �= max(Z) then
6 znorm ← min

z>zmeq
{z |F(z) < Fe(z)};

7 ∀z ≥ znorm : d(z) ← min{Fe(z) − F(z), 1 − F(max(Z))};
8 if max

z≥znorm
{−d(z)} ≥ 1 − F(max(Z)) then

9 z̃ ← max
z≥znorm

{z | − d(z) ≥ 1 − F(max(Z))};
10 znorm ← min

z>z̃
{z | d(z) > 0};

11 ∀z ≥ znorm : Hnorm (z) ← max

{
0,

(
max

znorm≤z′≤z

{
d(z′)

} + min
z′′≥z

{
d(z′′)

})
/2

}
;

12 ∀z < znorm : Hnorm (z) ← 0;
13 F ← F + Hnorm ;

14 return (F);
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To check whether F must be enlarged, the algorithm computes zmeq , the maximal
value z ∈ Z where F(z) equals U (z). When there is no intersection of F and U ,
which can happen if the last candidate mixture was proposed by the binary search,
the algorithms sets zmeq = min(Z). If zmeq = max(Z) is satisfied, the property
F(max(Z)) = F(zmeq) = U (zmeq) = U (max(Z)) = 1 holds, so no further correc-
tions are necessary and F is returned.

Otherwise, as stated in the motivation to Problem 2, adding any probability mass
before zmeq would lead to a violation of U in zmeq . Since sopt is already determined,
such a violation cannot be repaired by further shrinking as in the Push-Up step. Thus,
probability mass has to be added after zmeq . In fact, the region where mass should be
added can be restricted even further. Therefore, we denote by znorm the smallest value
z ∈ Z such that z > zmeq and F(z) < Fe(z) holds. Since adding mass between zmeq

and znorm cannot reduce the Kolmogorov–Smirnov distance between Fe and F , we
focus on all z ≥ znorm in the following.

Hence, the deviations d(z) = Fe(z) −F(z) are computed for all z ≥ znorm in line
7. Deviations above the remaining mass 1 − F(max(Z)) are decreased to this value.
Hereafter, the algorithm checks whether the maximal increase of F above Fe, the
maximum of all negative deviations−d(z), is greater or equal to the imposedmaximal
decrease of F below Fe, namely 1 − F(max(Z)). As long as this is the case, adding
probabilitymasswill not decrease theKolmogorov–Smirnov distance. Hence, in line 9
the algorithm determines the last position where the above property holds and updates
znorm to be greater than this position. This yields the set Mnorm = {z ∈ Z |z ≥ znorm},
where a reduction of the Kolmogorov–Smirnov distance is possible. At the latest,
Mnorm is the last region where F lies below Fe.

In order to compute a distribution function Hnorm , which has to be added to the
remaining regionMnorm , the residuals d are considered on this set. DeterminingHnorm

there may be seen as an L∞ isotonic regression problem. Since we work in the setting
of distribution functions, a monotone function should be constructed, which fits the
residuals d(z) best in the sense of the L∞-norm. Unweighted isotonic regression
problems under the L∞ normcan be efficiently solved in linear time for sorted samples.
This can be achieved by a simple approach, which is referred to as Basic by Stout
(2012). This method is applied in line 11 of Algorithm 5. For each residual it computes
the maximum of all previous values and the minimum of all subsequent values and
determines the regression value as the average of these two quantities.

Note that a solution to the isotonic regression may be negative, but the distribution
function Hopt must be nonnegative. However, as we will prove in Lemma 5, setting
all of its negative values to 0 results in an optimal solution to the isotonic regression
problemconstraint to nonnegativity. Since no correction is applied before znorm ,Hnorm

is set to 0 before znorm in line 12. Finally, F is updated and returned.

4 Analysis of the algorithms

In this section theoretical results for the algorithms of Sect. 3 are provided. Among
other things, we prove a monotonicity property allowing to apply the binary search
technique to Problem 1 and demonstrate that the Shrink-Down and Push-Up step
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always lead to upper bounds on sopt proving their correctness. While the first part of
this section deals with the correctness of our algorithm, the second one presents its
runtime analysis.

We introduce the essential notations used repeatedly in our proofs. The shrinkage
factor ofGe, the correction function and themixture candidate after the kth iteration of
themain loop ofAlgorithm 1 (lines 5–11) are denoted by sk ,Hk andFk = sk ·Ge+Hk ,
respectively. In order to initialise them, we set s0 = 1,H0 = 0 and F0 = Ge. Let sd,k

denote the update of the shrinkage factor determined in the Shrink-Down step in the
kth iteration. Whenever this update is not computed, we set sd,k = 1. The update of
the shrinkage factor determined in the Push-Up step of the kth iteration is called su,k

and treated in the same way.

4.1 Correctness of the algorithm

Our first result, mainly proving the correctness of the binary search step, shows that
the property of lying within the confidence band is monotone in s. In other words, for
any s > sopt a corresponding mixture violates a boundary of B, while for s ≤ sopt it
is always possible to find a mixture lying in B.

Lemma 1 (∃H ∈ M∗ : s · Ge + (1 − s) · H ∈ B) ⇔ s ∈ [0, sopt ].
Proof First we recall the definition of Problem 1 from page 6:

max
s∈[0,1] : s

s.t. : ∃H ∈ M∗ : ∀z ∈ Z : L(z) ≤ s · Ge(z) + (1 − s) · H(z) ≤ U (z),

(3)

where M∗ denotes the set of all nondecreasing, nonnegative step functions varying
on Z only and converging to 0 for x → −∞.

Now we introduce an alternative characterization of sopt by Problem A:

max
s∈[0,1] : s

s.t. : ∀z ∈ Z : s · Ge(z) ≤ U (z) (4a)

∀z′ < z′′ ∈ Z : L(z′) − s · Ge(z
′) ≤ U (z′′) − s · Ge(z

′′) (4b)

Beforewe proceedwith proving the proposition,we show the equivalence of Problem1
and Problem A. For this sake, choose an arbitrary s ∈ [0, 1] such that (3) holds. Then
for all z ∈ Z it follows that s ·Ge(z) ≤ U (z)−(1−s) ·H(z) ≤ U (z) by nonnegativity
of (1−s) ·H, which proves that the inequality (4a) holds. Furthermore, choose z′ < z′′
from Z arbitrarily. Then L(z′) − s · Ge(z′) ≤ (1 − s) · H(z′) ≤ (1 − s) · H(z′′) ≤
U (z′′) − s · Ge(z′′) follows by monotonicity of H. Thus (4b) is also respected.

For the other direction let s ∈ [0, 1] respect constraints (4a) and (4b). From (4a)
it is clear that s · Ge(z) never exceeds the upper boundary. From (4b) we know that
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correcting any deficiency to the lower boundary L is possible without violating the
upper boundary U on subsequent positions. Thus choosing

(1 − s) · H(z) = max

{
0,max

z∗≤z

{
L(z∗) − s · Ge(z

∗)
}}

will result in a mixture within the confidence band. This means that (3) holds.
We now make use of the above equivalence of Problem 1 and Problem A to prove

the proposition:

(∃H ∈ M∗ : s · Ge + (1 − s) · H ∈ B) ⇔ s ∈ [0, sopt ].

For s ∈ (sopt , 1] the property s ·Ge+(1−s)·H /∈ B immediately follows by definition
of sopt . So let s ∈ [0, sopt ] be arbitrarily chosen and note that constraints (4a) and (4b)
are respected for sopt . From this we deduce that both conditions must also hold for s
since ∀z ∈ Z : s · Ge(z) ≤ sopt · Ge(z) ≤ U (z) and furthermore for all z′, z′′ ∈ Z
with z′ < z′′ it follows

L(z′) − s · Ge(z
′) = L(z′) − sopt · Ge(z

′) − (s − sopt ) · Ge(z
′)

≤ U (z′′) − sopt · Ge(z
′′)−(s − sopt )︸ ︷︷ ︸

≥0

·Ge(z
′)

≤ U (z′′) − sopt · Ge(z
′′) − (s − sopt ) · Ge(z

′′)
= U (z′′) − s · Ge(z

′′).

Hence, L(z′) − s · Ge(z′) ≤ U (z′′) − s · Ge(z′′) holds.
Since, as argued before, constraints (4a) and (4b) are equivalent to constraint (3),

there exists anH for which the mixture s ·Ge + (1− s) ·H lies in B, which completes
the proof. ��
In the next lemma, the correction functionHk computed in the kth iteration of themain
loop for the shrinkage factor sk is considered. We prove thatHk is indeed the minimal
function inM∗ resolving violations of the lower boundary L . This result contributes
to the correctness of our construction ofHmin and is used in the subsequent proofs.

Lemma 2 Hk is the pointwise minimal function among all H ∈ M∗ satisfying sk ·
Ge + H ≥ L.

Proof LetHk,min ∈ M∗ be the minimal function with the property sk ·Ge+Hk,min ≥
L . To prove the result we must thus showHk = Hk,min . Now, the correction function
Hk is either computed in the binary search step or in the Push-Up step. In the first
case, the residuals between sk · Ge and the lower boundary L are determined and
then minimally monotonised, cf. lines 2 and 3 of Algorithm 4. This monotonisation is
performed by considering the maximum of preceding values and is therefore minimal.
Hence, this procedure must yieldHk,min . In the remainder of this proof we thus treat
the second case, namely the computation of Hk in the Push-Up step.
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Following the lines 6–7 in Algorithm 3, we denote by dk the positive defi-
ciencies to L after the shrinking in the Push-Up step of iteration k, i.e., dk =
max(0, L − sd,k · su,k · Fk−1). Setting F̃k = sd,k · su,k · Fk−1 + dk , the correc-

tion function Hk can be expressed as Hk = mon
(
F̃k − sk · Ge

)
. Thereby, mon( f )

denotes the minimal monotone function such that mon( f ) ≥ f . This monotonisation
is performed analogically to the one in the binary search step by considering the max-
imum of preceding values. Note that the monotonising operator is itself monotone,
that is, mon( f1) ≤ mon( f2) holds if f1 ≤ f2. We show the proposition by induction:

Base case k = 1: By assumption, H1 is computed in the Push-Up step, so s1 =
sd,1 · su,1 holds. In addition,F0 is defined byF0 = Ge. Hence, d1 = max(0, L− sd,1 ·
su,1 ·F0) = max(0, L−s1 ·Ge) ≤ H1,min must hold, since the last inequality holds by
definition ofH1,min . Because of F̃1 = s1·Ge+d1 weobtainH1 = mon(F̃1−s1·Ge) =
mon(d1) ≤ mon(H1,min) = H1,min , where the inequality follows by themonotonicity
of the monotonising operator. Thus H1 ≤ H1,min is established. To prove the other
inequality, note that H1 ∈ M∗ and H1 = mon(d1) ≥ d1. Hence, H1,min ≤ H1
follows by the definition of H1,min . Altogether, we get H1,min = H1.

Inductive step k − 1 ⇒ k: The shrink updates sd,k and su,k are bounded by 1 by
construction and thus the inequality sk ≤ sd,k · su,k · sk−1 ≤ sk−1 holds. Hence, the
shrinkage factor sk does not increase in k and therefore the corresponding minimal
correction function Hk,min does not decrease in k. Consequently, we get Hk,min ≥
Hk−1,min ≥ sd,k ·su,k ·Hk−1,min . The correctness of the (k−1)-th step assumed by the
induction principle yieldsHk−1,min = Hk−1 resulting inHk,min ≥ sd,k · su,k · Hk−1.
Now, rewriting sd,k · su,k · Fk−1 to sk · Ge + sd,k · su,k · Hk−1 allows to interpret
dk as the minimal function which must be added to sk · Ge + sd,k · su,k · Hk−1 so
that the lower boundary L of the confidence band is not violated any more. Together
with Hk,min ≥ sd,k · su,k · Hk−1 established above this implies sd,k · su,k · Hk−1 +
dk ≤ Hk,min . Since in addition dk is by construction minimally chosen such that
F̃k = sd,k · su,k · Fk−1 + dk ≥ L holds, we deduce

L − sk · Ge ≤ F̃k − sk · Ge = sd,k · su,k · Hk−1 + dk ≤ Hk,min .

Applying the monotonising operator and exploiting its monotonicity this implies

L − sk · Ge ≤ mon (L − sk · Ge)

≤ mon
(
sd,k · su,k · Hk−1 + dk

)
︸ ︷︷ ︸

=Hk

≤ mon
(Hk,min

)

= Hk,min, (5)

and thereforeHk ≤ Hk,min . To proveHk ≥ Hk,min , note thatHk is a function inM∗.
The inequalities (5) imply L ≤ sk ·Ge+Hk . So, by definition ofHk,min ,Hk ≥ Hk,min

follows and thus overall Hk = Hk,min holds. ��
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The next result shows that the Shrink-Down step always leads to overall shrinkage
factors not lower than sopt and therefore may be used as an improved upper bound for
sopt in the binary search procedure.

Lemma 3 If sk > sopt then sd,k+1 · sk ≥ sopt .

Proof The proposition is trivial for sd,k+1 = 1 so in the following sd,k+1 < 1 is
assumed. This means that the (k+1)th Shrink-Down step is not skipped but executed.
So Fk must lie above the upper boundary U for some values.

Together with the definition of sd,k+1, this ensures the existence of a zeq ∈ Z such
that sd,k+1 · Fk(zeq) = U (zeq) holds. In the following we consider the two possible
cases for the correction function Hk = Fk − sk · Ge:

CaseHk(zeq) = 0: Using the definition of zeq and Fk , we deduce

U (zeq) = sd,k+1 · Fk(zeq)

= sd,k+1 · (sk · Ge(zeq) + Hk(zeq))

= sd,k+1 · sk · Ge(zeq)

< Ge(zeq),

where the last inequality follows since 0 < sd,k+1 < 1, 0 < sk ≤ 1 and 0 < Ge(zeq).
The latter is satisfied, because otherwise 0 = Ge(zeq) and Hk(zeq) = 0 immediately
imply 0 = U (zeq), which is a contradiction to the positivity of U .

The calculations above show that the function Ge lies above the upper boundary
U in zeq before any shrinking. However, the first Shrink-Down step would solve this
problem and because of Hk(zeq) = 0 there cannot be a new violation of U in zeq in
subsequent steps. Hence, k = 0 and consequently sk = 1 must hold. We have that
sk · sd,k+1 = sd,1 ≥ sopt holds in this case, since sd,1 is by construction the maximal
shrinkage factor for avoiding violations of U before adding any correction function.

CaseHk(zeq) > 0: Let H̃ ∈ M∗ be the minimal function one must add to sd,k+1 ·
sk · Ge in order to correct violations of the lower boundary L . Due to sd,k+1 ≤ 1 we
get sd,k+1 · sk · Ge ≤ sk · Ge and thus H̃ ≥ Hk holds by minimality of Hk shown in
Lemma 2. This allows to prove

U (zeq) = sd,k+1 · Fk(zeq)

= sd,k+1 · (sk · Ge(zeq) + Hk(zeq))

< sd,k+1 · · ·k · Ge(zeq) + Hk(zeq)

≤ sd,k+1 · sk · Ge(zeq) + H̃(zeq).

Thus, sd,k+1 · sk · Ge + H̃ violates the upper boundary of the confidence band and
thus does not lie in B. By minimality of H̃ Lemma 1 yields sd,k+1 · sk > sopt , which
completes the proof. ��

The following proposition concerns the additional shrinkage performed in the Push-
Up step. Similarly to Lemma 3, it states that a Push-Up step cannot lead to factors
below sopt and therefore yields the correctness of using the overall shrinkage factor to
improve the upper bound on sopt .
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Lemma 4 If sd,k+1 · sk > sopt then su,k+1 · sd,k+1 · sk ≥ sopt .

Proof The statement is immediately given for su,k+1 = 1. It is also clear in case of
k = 0 by construction of the shrink update su,1. So in the following let su,k+1 < 1
and k ≥ 1 hold. We prove the proposition by contradiction so assume

sd,k+1 · sk > sopt > sd,k+1 · su,k+1 · sk . (6)

Consider the preceding candidate Fk . Fk /∈ B must hold, because otherwise the
algorithm would have stopped after k steps. Furthermore Fk ≥ L is guaranteed by
construction of the Push-Up and binary search steps. Therefore, Fk must violate the
upper boundaryU in the assumed case k ≥ 1. Thus, a Shrink-Down step was executed
before the current Push-Up step. Hence, the point

zeq = min
z∈Z

{
z|sd,k+1 · Fk(z) = U (z)

}

is well defined, as pointed out in the description of the Push-Up step. The assumption
su,k+1 < 1 implies that a Push-Up step is carried out and ∃z ∈ Z : z < zeq . By
definition of zeq , each z < zeq satisfies sd,k+1 · Fk(z) < U (z) ≤ U (zeq) and hence
we deduce that

∀z < zeq : sd,k+1 · Fk(z) −U (zeq) < 0. (7)

Now consider the point

z′ = max

{
argmax
z<zeq

(L(z) − sd,k+1 · su,k+1 · Fk(z))

}
.

By the definition of

su,k+1 = max
s∈[0,1]

{
s|∀z < zeq : L(z) − s · sd,k+1 · Fk(z) ≤ U (zeq) · (1 − s)

}

it follows that

L(z′) − su,k+1 · sd,k+1 · Fk(z
′) = U (zeq) · (1 − su,k+1). (8)

Also consider z′′ = min{argmaxz≤zeq Hk(z)}. Using the minimal property of Hk

proved in Lemma 2, for k ≥ 1 one can deduce Fk(z′′) = L(z′′), which implies
z′′ < zeq . For all z ≤ z′′ we obtain

L(z) − su,k+1 · sd,k+1 · Fk(z) ≤ Fk(z) − su,k+1 · sd,k+1 · Fk(z)

= (1 − su,k+1 · sd,k+1) · Fk(z)

≤ (1 − su,k+1 · sd,k+1) · Fk(z
′′)

= Fk(z
′′) − su,k+1 · sd,k+1 · Fk(z

′′)
= L(z′′) − su,k+1 · sd,k+1 · Fk(z

′′),
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where the first inequality holds because of Fk ≥ L by construction of Fk . Combining
this result with the already mentioned fact that z′′ < zeq holds, we get z′ ≥ z′′.
Together with the monotonicity of Hk and the definition of z′′ we deduce

Hk(z
′) = Hk(z

′′) = Hk(zeq). (9)

We now combine (6), (7), (8) and (9) to prove the proposition. By Lemma 3 and
sopt ≥ s∗ > 0 shown on page 6 the inequality sd,k+1 · sk > 0 holds. Thus, we can
define su2 = sopt

sd,k+1·sk and inequality (6) implies

1 ≥ su2 > su,k+1, (10)

which allows us to show

L(z′) − su2 · sd,k+1 · Fk(z
′)

= L(z′) + (−su,k+1 · sd,k+1 + su,k+1 · sd,k+1 − su2 · sd,k+1) · Fk(z
′)

(8)= U (zeq) · (1 − su,k+1) + su,k+1 · sd,k+1 · Fk(z
′) − su2 · sd,k+1 · Fk(z

′)
= U (zeq) − su2 · sd,k+1 · Fk(z

′) + su,k+1 · (
sd,k+1 · Fk(z

′) −U (zeq)
)

︸ ︷︷ ︸
< 0 by (7)

(10)
> U (zeq) − su2 · sd,k+1 · Fk(z

′) + su2 · (
sd,k+1 · Fk(z

′) −U (zeq)
)

= U (zeq) · (1 − su2).

So we have

U (zeq) · (1 − su2) < L(z′) − su2 · sd,k+1 · Fk(z
′). (11)

Hence we get

U (zeq) = U (zeq) + su2 · (sd,k+1 · Fk(zeq) −U (zeq))︸ ︷︷ ︸
= 0 by definition of zeq

= U (zeq) · (1 − su2) + su2 · sd,k+1 · Fk(zeq)
(11)
< L(z′) − su2 · sd,k+1 · Fk(z

′) + su2 · sd,k+1 · Fk(zeq)

= L(z′) − su2 · sd,k+1 · (sk · Ge(z
′) + Hk(z

′)) + su2 · sd,k+1 · Fk(zeq)

= L(z′) − su2 · sd,k+1 · sk︸ ︷︷ ︸
= sopt

·Ge(z
′) + su2 · sd,k+1 · (Fk(zeq) − Hk(z

′))

≤ Hopt (z
′) + su2 · sd,k+1 · (sk · Ge(zeq) + Hk(zeq) − Hk(z

′)
︸ ︷︷ ︸

= 0 by (9)

)

≤ Hopt (zeq) + sopt · Ge(zeq)
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where we also used sopt · Ge + Hopt ≥ L , which holds by definition of Hopt . Thus,
the upper boundary U is violated for sopt , which contradicts its definition, so that the
proposition follows. ��

The next result justifies the way we correct a solution to the unconstrained isotonic
regression problem in line 11 of Algorithm 5. To be more precise, we show that
setting its negative values to zero leads to the same L∞-error as in the constrained
problem and therefore yields an optimal solution to the latter. Keep in mind that the
unconstrained isotonic regression problem is solved by the Basic approach (Stout
2012), which computes the maximum of all previous values and the minimum of all
subsequent values for each observation and determines the regression value as the
average of these two quantities.

Lemma 5 Let x ∈ R
d be arbitrary. Denote by xL the optimal solution of the L∞

isotonic regression of x computed by the Basic approach (Stout 2012) and define
the new vector xL0 = max(xL , 0) by component wise comparison to 0. Let xLc be an
optimal solution of the L∞ isotonic regression of x with the constraint of nonnegativity.
Then xL0 is also an optimal solution to the constraint problem, i.e. L∞(x, xLc) =
L∞(x, xL0) holds.

Proof We show the statement considering the two distinct cases min(x) ≥ 0 and
min(x) < 0 consecutively. At first, assume that min(x) ≥ 0 holds. Then, by construc-
tion of xL , we can deduce xL ≥ 0. Thus, xL0 is equal to xL and, as a nonnegative
vector, satisfies L∞(x, xLc) ≤ L∞(x, xL0). Since introducing constraints to a prob-
lem cannot lead to a better value of the objective function in the optimum, it must
hold that L∞(x, xLc) ≥ L∞(x, xL) = L∞(x, xL0). Together this yields the result
restricted to the case min(x) ≥ 0.

We now consider the case min(x) < 0. Since the negative values of xL set to
zero in xL0 result in a maximal deviation of −min(x) to x , we get L∞(x, xL0) =
max(L∞(x, xL),−min(x)). Also, min(x) < 0 and xLc ≥ 0 imply L∞(x, xLc) ≥
−min(x), so that we deduce

L∞(x, xL0) = max(L∞(x, xL),−min(x))

≤ max(L∞(x, xL), L∞(x, xLc))

= L∞(x, xLc),

where the last step follows, because a constraint problem cannot lead to a solution
with a better value of the objective function compared to the corresponding uncon-
strained problem. Thus, L∞(x, xL0) ≤ L∞(x, xLc) holds. The converse inequality
L∞(x, xL0) ≥ L∞(x, xLc) follows from the definition of xLc, since xL0 ≥ 0. Both
together yield the result restricted to the case min(x) < 0, which completes the proof.

��
Using the above results we prove the correctness of our algorithm in the following

theorem.

Theorem 1 Algorithm 1 returns sopt and a corresponding solutionHopt both optimal
in the sense of Problems 1 and 2, respectively.
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Proof Lemma 1 shows that for s > sopt no mixture can lie within the confidence band
B while for s ≤ sopt there always exists a mixture lying in B. By the monotonicity
of this property the binary search step converges to sopt . Lemmas 3 and 4 allow to
update the upper bound of the binary search by the values of the shrinkage factor after
each Shrink-Down and Push-Up step. Hence, these steps further reduce the range of
possible candidates for sopt , while never excluding sopt and therefore the correct sopt
is still determined. Lemma 2 implies, that the correcting functionHk after termination
of the main loop of Algorithm 1 is the function Hmin introduced on page 6, which
is required for solving Problem 2. Having found the set Mnorm in the lines 5–10 of
Algorithm 5, we use Lemma 5 to see that the corrected solution to the unconstrained
L∞ isotonic regression problem is an optimal solution to the constrained problem.
Thus, it is a valid solutionHopt , which completes the proof. ��

4.2 Runtime analysis

For the runtime analysis we introduce a precision parameter ε. Note that ε never
appears in our pseudo code or actual implementation. Instead, think of it as themachine
precision, which might depend on the physical architecture, operating system or pro-
gramming environment. Note that the main loop of Algorithm 1 in lines 5 to 11 runs
until the mixture F is in the confidence band up to an additive deviation of ε. In other
words, the loop stops when for all z ∈ Z the property L(z) − ε ≤ F(z) ≤ U (z) + ε

holds. In the following theorem we prove that this condition is met after a constant
number of iterations yielding an overall running time linear in the input size and log-
arithmic in 1

ε
. Note that we exclude the Ω(n log n) time needed for computing the

cumulative distribution functions by assuming sorted input data, but rather focus on
the linear running time of the actual analysis.

Theorem 2 Let ε ∈ (0, 1) be a fixed machine precision parameter. On an input of
n = n1 + n2 observations, Algorithm 1 runs for at most O

(
log

( 1
ε

))
iterations. Each

iteration can be implemented to run in time O (n). The total running time is therefore
of order O(n log

( 1
ε

)
).

Proof First note that the Shrink-Down, the Push-Up, the binary search step and the
normalisation step can be implemented in linear, i.e. O(n) time. Particularly, the solu-
tion to the isotonic regression subproblem (line 11 in Algorithm 5) can be computed
in linear time as noted by Stout (2012). Therefore, it remains to bound the number
of iterations of the loop in lines 5–11 of the main algorithm. The search interval for
s is initialized to [s∗, 1] ⊂ [0, 1] and halved at the end of every iteration where the
binary search step is performed. The Shrink-Down and Push-Up steps can only further
decrease the upper bound and consequently the size of the search interval. Therefore,

after �log2
( 2

ε

)� iterations the size of the interval decreases to at most 2
−�log2

(
2
ε

)
�
< ε

2 .
So, after �log2

( 2
ε

)� iterations every value between the upper and lower boundary lies
within additive precision ε

2 to sopt . Consider an s ∈ [sopt − ε
2 , sopt + ε

2 ] and let
Hs ∈ M∗ be the minimal function such that s · Ge + (1 − s) · Hs ≥ L holds. Using
s ≥ sopt − ε

2 we see that s ·Ge ≥ (
sopt − ε

2

) ·Ge = sopt ·Ge − ε
2 ·Ge ≥ sopt ·Ge − ε

2
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holds. The property s ·Ge ≥ sopt ·Ge − ε
2 implies (1− s) ·Hs ≤ (1− sopt ) ·Hopt + ε

2
and we deduce

s · Ge + (1 − s) · Hs ≤
(
sopt + ε

2

)
· Ge + (1 − sopt ) · Hopt + ε

2
≤ sopt · Ge + (1 − sopt ) · Hopt + ε

≤ U + ε,

because sopt · Ge + (1 − sopt ) · Hopt ≤ U holds by definition of sopt and Hopt . An
analogous argument shows s ·Ge + (1− s) ·Hs ≥ L − ε. Thus, the stopping criterion
L − ε ≤ F ≤ U + ε is met after �log2

( 2
ε

)� iterations and the result follows. ��

5 Application

In this section we evaluate the algorithm by applying it to simulated and real data sets.
We compare the running time of our algorithm to alternative procedures on artificial
data, investigate its capability to estimate the disagreement of the distributions for
finite Gaussian mixtures and examine its performance in case of false rejections of the
null hypothesis. Furthermore, the algorithm is illustrated on astrophysical data and on
spectrometry data from a biological domain. All methods conducted in this section
are carried out using the significance level α = 0.05.

For our empirical evaluation we implemented all algorithms using the statistical
software R (R Core Team 2013), version 2.15.1-gcc4.3.5. To run the experiments in a
batch and to distribute the computations to the cores of our computer the R-package
BatchExperiments by Bischl et al. (2013) was used. The computations were conducted
on a 3.00GHz IntelXeonE5450machinewith 15GBof availableRAMrunning a SuSE
EL 11 SP0 Linux distribution.

Note that our algorithm represents the determined correction distribution by its
cumulative distribution function. However, since densities and the first two moments
allow to capture the main features of a distribution more intuitively, we present our
results via estimated densities and empirical moments rather than using the determined
correction distribution functions itself. To attain those, we first determine the empiri-
cal density function corresponding to the determined correction distribution function
by considering consecutive differences of Hopt . We then generate 10,000 artificial
observations from this density using weighted sampling. Finally, the standard kernel
density estimator as well as the empirical mean and the empirical variance are com-
puted on this artificial data. Note that in applications this approach is not mandatory,
since the determined distribution function contains all relevant information available.
Therefore, improving simulations based on this distribution function directly is per-
fectly fine in practice and there is not absolutely necessary to introduce the density
and moment estimation, which we conduct for the purpose of presentation only. Thus,
the kernel density estimation and the moment estimation are not regarded as part of
our method. To asses their effect the interested reader is referred to Serfling (1980)
and Devroye and Gyrfi (1985).
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5.1 Performance and runtime evaluation

In order to evaluate the algorithm output we first consider the popular setting of finite
Gaussian mixtures. We generate equally sized dataset pairs for each of the sample
sizes n1 = n2 = 100, 500, 1000, 5000, 10,000, 50,000, 100,000. In every data set
pair one sample is drawn from a standardGaussian distribution. The other also consists
of observations from the standard Gaussian distribution to a fraction of s = 0.3. The
remaining fraction of 0.7 of the observations stem from a second Gaussian distribution
with mean 3 and standard deviation 1. Our demixing algorithm is therefore supposed
to notice the different distributions of the samples, estimate a mixing proportion of
about 0.3 and recommend a correction distribution with a mean near 3 and a standard
deviation near 1.

We also investigate another data case for the same sample sizes and n1 = n2, in the
following referred to as the zeromixing data scenario. It is more specific and resembles
some of the situations encountered in our real data application. Instead of mixing two
Gaussian distributions, we set the constant value 0 for 70% of the observations in
each mixed data set. The remaining 30% are sampled from the Gaussian distribution
with mean 3 and standard deviation 1. The corresponding second sample representing
the simulated data consist of observations of the same Gaussian distribution entirely.
In this setting the method should again determine a shrinkage value sopt around 0.3
and propose a correction distribution putting most of its probability mass at 0. Both
scenarios are replicated 1000 times for each of the sample sizes, respectively.

We study the running time of Algorithm 1 by comparing it to a simpler demixing
approach. The algorithm, called binary search procedure in the following, determines
the optimal shrinkage factor sopt relying only on the binary search. In contrast to
Algorithm 1, the Shrink-Down and Push-Up steps are not conducted. Keep in mind
that both steps are in principle not necessary to obtain the correct solutions to Problem1
and 2 but are supposed to accelerate the computation. Thus, the determined sopt and
Hopt are identical for both methods, but the running times differ.

Table 1 shows the results for both data cases described above. In the Gaussian
mixture setting we list the determined shrinkage factors sopt as well as the mean and
standard deviation of samples of size 10,000 drawn from the determined correction
distributionHopt for each sample pair. The second half of the table corresponds to the
zero mixing data scenario. In addition to the determined shrinkage factors sopt we give
the probabilitywhich is assigned to the value 0 by the determined distribution functions
Hopt . The corresponding running times for both algorithms are presented in Fig. 1 for
the Gaussian mixture case in seconds. Thereby, the time needed for precomputing the
empirical distribution functions is not included. For the sake of presentation we do
not show the running times for the two largest sample sizes n1 = n2 = 50,000 and
n1 = n2 = 100,000. These were 1.18 and 2.47 s, respectively, for Algorithm 1 and 6.2
and 12.33 s, respectively, for the binary search procedure. We also omit the running
times for the zero mixture case, which are essentially the same as in the Gaussian
mixture case. All results are averages over 1000 repetitions.

The results for both simulations suggest that demixing leads to an overestimation
of the expected mixing proportion 0.3, which decreases as the sample size increases.
This is not surprising, since by definition sopt is the maximal shrinkage factor such that
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Table 1 Determined shrinkage factors sopt , estimations of the mean and the standard deviation of the
correction distribution Hopt in the Gaussian mixture case (upper part of table) and estimated probability
mass assigned to 0 byHopt in zero mixture case (lower part of table) for different sample sizes

100 500 1000 5000 10,000 50,000 100,000

sopt 0.516 0.409 0.380 0.341 0.331 0.317 0.313

Mean 3.504 3.282 3.217 3.121 3.096 3.055 3.043

SD 0.693 0.795 0.832 0.892 0.910 0.944 0.954

sopt 0.481 0.381 0.358 0.326 0.318 0.308 0.306

PHopt (0) 0.979 0.993 0.995 0.998 0.999 0.999 1.000
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Algorithm 1

Binary Search

Fig. 1 Average running times of Algorithm 1 and the binary search procedure computed on sorted samples
for different sample sizes in seconds

the corresponding mixture lies in the confidence band. Therefore, as the sample size
grows, the radius of the confidence band becomes smaller and hence sopt converges
towards s. The estimated mean and standard deviation in the Gaussian mixture case
behave similarly approaching 3 and 1, respectively. In the zero mixing data scenario
even for small sample sizes an overwhelming majority of the probability mass inHopt

is assigned to the value 0. This is correct, since by construction the differences between
the sample pairs are caused by the zero values only. Thus, the correction distributions
proposed by themethods reflect the discrepancies between the sample pairs quite well.

The running time for both algorithms grows linearly in the sample size, given sorted
input data, and is by a factor of approximately 6 smaller for Algorithm 1 than for the
binary search procedure. This holds for both data cases and shows that the Shrink-
Down and Push-Up steps lead to large savings in computation time and are therefore
very valuable for large data sets.

In Fig. 2 we illustrate the output in the Gaussian mixture case for n1 = n2 = 1000.
In the upper row, kernel density estimations of the provided samples are presented.
Demixing the samples using Algorithm 1 leads to the shrinkage factor sopt = 0.39,
which is a reasonable approximation of the true mixture proportion s = 0.3. Using the
approach explained above we generate a third sample with 10,000 observations from
the correction distribution characterised byHopt . Its mean 3.3 and standard deviation
0.81 are also close to the desired values 3 and 1, respectively. The corresponding
kernel density estimation shown on the right in the lower row is almost symmetrical
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Fig. 2 Kernel density estimations for two samples, the computed mixture and the correction distribution
in the Gaussian mixture setup

and unimodal. Hence, the correction distribution represents the deviation between the
underlying distributions of the first and the second sample quite well. The final mixture
distribution proposed by Algorithm 1, which is the sum of the weighted distribution
of the second sample and the weighted correction, is given by the corresponding
estimated density in the lower left corner. The curve resembles the one of the first
sample as desired.

5.2 Estimated shrinkage factors under the null hypothesis

Under the null hypothesis H0, the analysed samples stem from the same distribution. In
this situation, the Kolmogorov–Smirnov test rejects by mistake in about an α-fraction
of the cases, where α is the predefined significance level. In these cases, a reasonable
procedure comparing the samples in the mixture framework should recognise their
similarity. Thus, a shrinkage factor near 1 is desirable after a false rejection of the null
hypothesis.

To check the performance of our method under H0, dataset pairs are generated for
the sample sizes n1 = n2 = 100, 500, 1000, 5000, 10,000. All samples stem from
the standard Gaussian distribution. Other distributions like the exponential and the t-
distribution were also considered and led to comparable results. For each sample size,
dataset pairs are simulated until the Kolmogorov–Smirnov test rejects in 1000 cases.
These 1000 dataset pairs are passed to Algorithm 1, which determines corresponding
shrinkage factors. These are presented via boxplots in Fig. 3. All of them are less than
1 by construction.
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Fig. 3 Shrinkage factors determined by Algorithm 1 for varying sample sizes after a false rejection of the
null hypothesis H0 : P = Q, where P is the standard Gaussian distribution

As the results show even for small sample sizes the majority of shrinkage values
are greater than 0.9. Increasing the sample size further reduces the amount of small
shrinkage values. Thus, our method performs as desired: If no modifications are actu-
ally necessary, the algorithm proposes to perform none or only small modifications to
the current samples.

5.3 Application to real data from astrophysics

We now illustrate our Algorithm 1 applying it to the astrophysical problem mentioned
in the introduction. More precisely, we consider simulated proton data and compare
it to observations recorded by the gamma ray detectors MAGIC-I and MAGIC-II.
The latter are almost completely induced by protons. Both datasets consist of 5000
observations and contain 54 continuous attributes that we work with. Among other
features, these variables mainly include characteristics of the recorded atmospheric
signals and their reconstructed trajectory and are identical for both data sets. The
results of our method allow to determine attributes which differ the most for simulated
protons and observed data and to quantify their discrepancies. This information can
subsequently be used to improve the background simulation.

The Kolmogorov–Smirnov test comparing the real data and the simulation rejects
the null hypothesis of identical distributions for all but two attributes. However, 37
of the 54 attributes have shrinkage factors above 0.85, which indicates a suitable pro-
ton simulation overall. The upper row of Fig. 4 provides kernel density estimations
for the observed and simulated data for the attribute Length1, which describes the
length of an ellipse fitted to an atmospheric signal measured by the MAGIC-1 detec-
tor. The Kolmogorov–Smirnov test for Length1 rejects the null hypothesis of equal
distributions of observed and simulated data leading to a comparably low shrinkage
factor of 0.75. Therefore, the simulation of this variable might be inadequate and the
corresponding simulation steps seem to be worth inspecting in more detail. In the
lower right corner a kernel density estimation is presented for the correction distri-
bution characterised by Hopt . It is based on 10000 observations generated by the
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Fig. 4 Kernel density estimations for the attribute Length1 based on the observed data, the simulated data,
the determined mixture of the simulated and corrected distributions and the correction distribution

sampling technique explained on page 22. The plot in the lower left corner shows
the density estimations of the simulated and the correction distribution weighted by
0.75 and 0.25, respectively, as well as the density estimation for the final mixture,
which is the sum of the weighted estimations. All plots are presented on the same
scale.

The coarse form of the density estimations for the observed data and the simula-
tion in the upper row is quite similar showing one major peak around 25. However,
there are some slight discrepancies. Compared to the real data curve, the main peak
of the simulation is considerably higher. While the curve for the real data has a
plateau around 90, we have a steadily falling curve for the simulation. Although these
differences are not very large, it is quite unlikely that they are induced by the sam-
ple variance due to the large sample sizes. In order to verify this hypothesis, we
have conducted several simulations considering kernel density estimators for a broad
class of distributions using 5000 observations in each sample. The dissimilarities in
these simulations were much smaller than for the Length1 attribute supporting the
conjecture that the Kolmogorov–Smirnov test correctly rejected the null hypothe-
sis.

In order to correct the simulated sample, one should obviously generate less obser-
vations around25 andmore around90.This is exactlywhat is proposedby the corrected
distribution presented in the lower right corner of Fig. 4, which reflects the Length1
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distribution of non-proton events. The corresponding density curve based on the esti-
matedHopt has a peak near 25, but also another one of comparable height and greater
width near 90. Therefore, it gives the region around 90 about as much weight as the
one around 25, in contrast to the simulated sample.

Combining the simulated and the correction distributions in the proportions deter-
mined by the algorithm, we get the density curve of the finalmixture presented in black
in the lower left plot of Fig. 4. It resembles the density estimation for the observed data
above it quite well. On the one hand, the height of the main peak is corrected, which
is achieved by the shrinking. On the other hand, the required plateau is introduced to
the mixture by the correction density.

5.4 Application to real data from bioinformatics

Algorithm 1 is applied to evaluate so called ion mobility spectrometry (IMS) measure-
ments that help to detect volatile organic compounds in the air or in exhaled breath.
Motivated by the need to process such measurements in real-time as they arrive one-
by-one, it is a usual approach to find and annotate major peaks in the data. In this way
the original information is summarised in a compressed representation. In an effort to
automate and speed-up the computations, D’Addario et al. (2014) propose to approx-
imate the measurements by finite mixtures of probability density functions, whose
parameters are estimated using a variant of the EM algorithm. The computations are
performed on a sequence of measurements leading to a two dimensional problem,
where both dimensions are modelled independently by mixtures of inverse Gaussian
densities.

Focusing on one of the dimensions and conditioning on the other, we are given
6000 spectrograms consisting of 12,500 data points each, stemming from 10 minutes
of IMS measurement (cf. Kopczynski et al. 2012). In this data, we identify 187
groups of spectrograms belonging to the same peak models, respectively. We take
samples of size 1000 generated from each spectrogram and the corresponding mix-
ture model given from the bioinformatics algorithms. Both of these are regarded as
probability density functions up to some normalising constants. In order to evaluate
their models, we apply our algorithm at a significance level of five percent. Hereby
we inspect the discrepancies to the samples taken from their corresponding spectro-
grams.

In general our algorithm suggests that the models fitted by the bioinformaticians
approximate their spectrograms reasonably well, since in 152 of the 187 groups the
mean shrinkage factor for the spectrograms is above 0.8. In addition, we identify some
interesting groups of spectrograms. The shrinkage factors of two of these are shown
in Fig. 5. Keep in mind that the spectrogram index represents the second dimension of
the data we condition on. In both groups the model in the second dimension consists
of a single inverse Gaussian density.

Our algorithms’ results for group A suggest that the first half of the measurements
are modelled quite well by the bioinformaticians’ EM algorithm, but for increasing
spectrogram indices the approximation is getting worse. This shows that the bioinfor-
matics model in the second dimension is not appropriate. Instead of a single inverse
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Fig. 5 Shrinkage factors of two groups of spectrograms determined by Algorithm 1

Gaussian density, two components would probably lead to better approximations,
since they allow to model both halves of the spectrograms with a density function,
respectively. In contrast to that, the shrinkage factors for group B indicate a sufficient
number of components used in the second dimension. For the spectrograms in the
middle we have shrinkage factors close to one. This means that their corresponding
models are close to the spectrograms. However, going to the left and right borders, the
spectrograms seem to be fitted quite badly since the shrinkage factors are lower than
0.2. The two leftmost and two rightmost models are a little closer to their spectrograms
with shrinkage values between 0.4 and 0.6. Taking the models of Kopczynski et al.
(2012) into account this indicates that their fitted density mixture might be too wide or
too narrow in the second dimension. Thus, the approximation could be substantially
improved by excluding the two spectrograms on both margins, respectively, from this
group and treating them by further models.

We also illustrate the method using a single spectrogram from the data set. The
upper row of Fig. 6 provides a kernel density estimation for the measurement 1157
and its model. Since all four plots are given on the same scale, the two peaks in the
model are more narrow and differ much more in height than the ones in the original
data. In addition, the peak on the left is missing. Although it looks small in this
scale, it appears noteworthy when compared to the other two. In the second row on
the right a kernel estimation for the correction distribution characterised by Hopt is
presented. It is based on 10000 observations generated by the sampling approach
described on page 22. As expected, the correction distribution puts mass on the very
right peak in order to fix the height proportions between the peaks on the right. In
addition it generates the left peak missing in the model. The plot in the lower left
corner shows the estimations of the modelled and the correction distribution weighted
by the determined shrinkage value 0.76 and the remaining mass 0.24, respectively, as
well as the kernel estimation for the final mixture, which is the sum of the weighted
estimations. The proposed mixture is still somewhat narrow, but the proportions of the
peak heights as well a the small peak are better represented compared to the original
model.
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Fig. 6 Kernel density estimations for a spectrogram based on the measurements, the corresponding inverse
Gaussian model, the determined mixture of the model and the correction distribution

6 Conclusion

This article deals with the nonparametric two sample homogeneity problem.Awidely-
used tool to test the equality of the distributions corresponding to the two samples is
the Kolmogorov–Smirnov test. We develop an algorithm which, in case of a rejection
by this test, determines how the first sample should be modified to resemble the
second one in the Kolmogorov–Smirnov sense. This modification is quantified by
an empirical correction distribution and the corresponding proportion determined by
our method. Combining the information of the first sample with this correction in
the proportion identified leads to an appropriate mixture. Its Kolmogorov–Smirnov
distance to the second sample is so small that the test would not reject the hypothesis of
equal distributions any more. Our method is especially of interest as an assisting tool
in the task of designing an adequate simulation modelling an observed data generating
process. Comparing a sample from an existing simulation based on domain specific
prior knowledge and a sample of observed data, our algorithm determines a correction
distribution. The information provided therein may subsequently be used to improve
the current simulation. Since the procedure is completely nonparametric, it is widely
applicable and inparticular not only useful in the settings considered in our simulations.

The algorithm proceeds in an iterative manner applying several correction steps
linked with a modified binary search technique. The constructed distribution function
is shown to be optimal in a reasonable sense and the running time of the algorithm
is proved to be of linear order on sorted data. The Shrink-Down and Push-Up steps
applied in addition to the standard binary search algorithm lead to large savings in
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computation time. In our experience it converges in three iterations in the majority
of all cases independent of the sample sizes. The algorithm proposes none or only
slight corrections in cases where both datasets stem from the same distributions. The
correction distributions proposed in simulations as well as for a real data example are
intuitive and adequate.

There are several possibilities to extend the presented ideas in future work. On the
one hand, instead of focusing on distribution functions, a density based approach to the
demixing problem could also be of interest. Working with densities is often even more
intuitive than using distribution functions and there exists a broad literature on mix-
ture models dealing with density estimation (e.g. Schellhase and Kauermann 2012).
However, as pointed out in the introduction, transferring the two sample problem to
the density framework is not straightforwardly achieved by applying the existing tech-
niques and may be computationally more demanding, so that much work has to be
done here. On the other hand, one could use alternative test procedures for distri-
bution functions besides the Kolmogorov–Smirnov test to construct the confidence
bands. Although the Kolmogorov–Smirnov test is quite popular, competitors like the
Anderson–Darling and the Cramér von Mises test detect differences between two dis-
tributions more often in certain settings (cf. Razali and Wah 2011) and could thus
lead to better demixing results. In this work we focused on the Kolmogorov–Smirnov
test since the simple shape of the corresponding confidence band allows for finding
an efficient algorithm solving the demixing problem. The extension to analytically
more sophisticated distance measures where our proofs do not carry over in a straight-
forward manner is a challenging and promising open problem for future research.
Another direction is to generalize our method to distributions over multi-dimensional
domains based on appropriate extensions of the Kolmogorov–Smirnov test. Several
multivariate versions of the test are surveyed by Lopes et al. (2007) and could serve
as a starting point towards extending our method to the multivariate setting.
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