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Geometrically designed, variable knot regression splines

Vladimir K. Kaishev∗, Dimitrina S. Dimitrova, Steven Haberman and Richard J. Verrall

Cass Business School, City University London

August 4, 2015

Abstract

A new method of Geometrically Designed least squares (LS) splines with variable knots,
named GeDS, is proposed. It is based on the property that the spline regression function,
viewed as a parametric curve, has a control polygon and, due to the shape preserving and
convex hull properties, it closely follows the shape of this control polygon. The latter has
vertices whose x-coordinates are certain knot averages and whose y-coordinates are the
regression coefficients. Thus, manipulation of the position of the control polygon may be
interpreted as estimation of the spline curve knots and coefficients. These geometric ideas
are implemented in the two stages of the GeDS estimation method. In stage A, a linear
LS spline fit to the data is constructed, and viewed as the initial position of the control
polygon of a higher order (n > 2) smooth spline curve. In stage B, the optimal set of knots
of this higher order spline curve is found, so that its control polygon is as close to the initial
polygon of stage A as possible and finally, the LS estimates of the regression coefficients of
this curve are found. The GeDS method produces simultaneously linear, quadratic, cubic
(and possibly higher order) spline fits with one and the same number of B-spline coefficients.
Numerical examples are provided and further supplemental materials are available online.

Keywords: spline regression, B-splines, Greville abscissae, variable knot splines, control
polygon

1 Introduction.

Consider a response variable y and an independent variable x, taking values within an interval

[a, b], and assume there is a relationship between x and y of the form

y = f(x) + ϵ, (1)

where f(·) is an unknown function and ϵ is a random error variable with zero mean and variance

Eϵ2 = σ2
ϵ > 0. We will consider the regression problem of estimating f(·), based on a sample of

observations {xi, yi}Ni=1, where the design points {xi}Ni=1 may be either deterministic or random.

∗Corresponding author’s address: Faculty of Actuarial Science and Insurance, Cass Business School, City
University London, 106 Bunhill Row, London EC1Y 8TZ, UK. E-mail address: v.kaishev@city.ac.uk
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One popular solution is to approximate f with an n-th order (degree n− 1) spline function

defined on [a, b], by the number and location of its k internal knots and by the coefficients

in front of the set of basis functions. Several approaches to constructing free-knot regression

splines have been developed. One possibility is to assume that n and k are fixed (but unknown),

and to find the knot locations which minimize the (non-linear) least squares criterion, or an

appropriately penalized (see Lindstrom 1999) or bounded (see Molinari et al. 2004) version of it.

For an extensive discussion of the (dis)advantages of non-linear free-knot spline estimation, we

refer to Lindstrom (1999) and Jupp (1978). More recently, Beliakov (2004) proposed to apply

the cutting angle deterministic global optimization method to the free-knot least squares spline

approximation problem. As the author mentions, the method is effective for a reasonably small

number of knots and data points.

In order to circumvent the difficulties related to the non-linear optimization approach, a

number of authors have developed adaptive knot selection procedures, such as step-wise knot

inclusion/deletion strategies. Among the latter are the early work of Smith (1982), the TURBO

spline modelling technique of Friedman and Silverman (1989), the MARS method proposed by

Friedman (1991), the POLYMARS of Stone et al. (1997), the spatially adaptive regression

splines (SARS) of Zhou and Shen (2001) and the adaptive free-knot splines (AFKS) proposed

by Miyata and Shen (2003). The properties of these greedy knot insertion/deletion schemes are

well summarized by Hansen and Kooperberg (2002).

More recently, Kang et al. (2015) proposed a two stage, knot deletion and adjustment

procedure. At the fist stage, it minimizes the number of knots of a dense initial knot vector by

solving an appropriate convex sparse optimization problem. At the second stage, the number of

knots and their positions are further adjusted, following specific knot manipulation rules. While

this procedure generally leads to less number of knots compared to other methods, as noted by

the authors, its major drawbacks are that it has a heavy computational cost and can only be

applied to data with low noise level. Furthermore, the selection of the number and positions

of the initial knots is not formally defined, and is somewhat arbitrary. Similar in spirit are the

knot deletion strategies using sparse optimization proposed earlier by Van Loock et al. (2011)

and Yuan et al. (2013) whose resulting knot vector is a subset of the initial knot vector. Other

methods, such as the minimum description length (MDL) regression splines of Lee (2000), have

been proposed. Multivariate spline regression and knot location has also been considered by
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Kaishev (1984).

Another group of works applies reversible jump Markov chain Monte Carlo (RJMCMC)

based methods to develop Bayesian adaptive splines, such as those of Smith and Kohn (1996),

Denison et al. (1998) and Biller (2000), in the context of generalized linear models. Recently,

Belitser and Serra (2014) use random splines as adaptive priors in Bayesian nonparametric

regression. A stochastic optimization algorithm for free-knot splines, called adaptive genetic

splines (AGS), has been proposed by Pittman (2002) but the related computational cost is a

concern, as noted by the author. Genetic algorithms have also been used by Lee (2002a) in

(free-knot) spline smoothing of discontinuous regression functions. See also Lee (2002b) for

comparisons of genetic and knot inclusion/exclusion algorithms.

Smoothing spline fitting methods, involving a smoothing penalty in the objective function

have also been proposed and thoroughly studied in the statistical literature. We will mention

here the hybrid adaptive splines (HAS) of Luo and Wahba (1997) and the penalized splines,

considered by Eubank (1988), Wahba (1990), Marx and Eilers (1996), Mammen and van der

Geer (1997), Rupert and Carroll (2000), Rupert (2002), Wood (2003), Antoniadis et al. (2012).

Our aim in this paper is to give a new geometric perspective to variable knot spline regression

estimation and to demonstrate how it can be used to construct a new adaptive spline smoothing

method. It avoids many of the limitations of the knot optimization methods summarized above

(see section 5), while at the same time it produces competitive fits with a low number of knots

for a wide range of signal-to-noise ratios and for both sparse and dense data points at a very

low computational cost. However, this extended flexibility is achieved at the cost of introducing

two tuning parameters, which are accordingly adjusted, following a set of somewhat heuristic

rules (see sections 3 and 4). We consider here the simple univariate regression case, but it is

worth noting that our method can be extended to the more general framework of multivariate

Extended Linear Models (EML), considered by Hansen and Kooperberg (2002). The novel

variable knot spline regression estimation method presented here is based on ideas from the

field of Computer Aided Geometric Design (CAGD) of curves and surfaces. It utilizes the close

relationship of a spline regression curve to its control polygon (see section 2) which to the best

of our knowledge has not been previously explored in the statistical literature.

The method includes two stages. In stage A, utilizing a ”stick breaking” type of procedure,

(see section 3), a least squares linear spline fit to the data is constructed and viewed as the
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initial position of the control polygon of a higher order spline regression curve. In stage B, an

optimal set of knots of a smoother, higher order (n > 2) least squares spline approximation

is found so that the latter has also the characteristics of a Schoenberg’s variation diminishing

spline (VDS) approximation of the linear spline fit from stage A. Thus, the purpose of stage B

is to produce a smoother, higher order spline model using the information about the unknown

function already embedded in the linear spline fit from stage A.

For the purpose of constructing a linear spline fit in stage A, one can in principle use any of

the adaptive knot selection procedures listed above. Similarly to these procedures, the proposed

“stick breaking” approach in stage A, provides a heuristic search for the optimum solution of

the non-linear knot-parameter estimation problem. As in the case of other methods, finding

the global optimum is not guaranteed. At the same time based on our extensive experience in

fitting real and simulated data samples, the method demonstrates remarkable spatial adaptivity,

producing adequate piecewise-linear reconstructions of the unknown underlying function. Since

it does not use the data points as knot candidates our stick breaking method is free of the so

called “knot confounding” problem highlighted by Zhou and Shen (2001).

We show that this new spline regression estimation method has a direct Geometric Design

interpretation. For this reason, we refer to the related estimator as a GeD spline estimator or

simply GeDS. We demonstrate that the latter can be viewed as a competitive alternative to

other existing spatially adaptive nonparametric spline methods.

The paper is organized as follows. In section 2, it is shown that a spline regression function

can be interpreted as a special case of a parametric spline curve, with a (control) polygon closely

related to it. This geometric characterization of the regression problem is used in section 3 to

develop the GeD spline regression estimation method and in particular, to formulate its two

stages as optimization problems. In section 3.1, the optimality properties of the knots of the

higher order spline regression model, obtained in stage B, are established. The GeDS method

is illustrated numerically and compared with other spline smoothing methods in section 4 and

in the online supplement to the paper, based on simulated and real data examples. In section

5, we provide some discussion and conclusions. Proofs of the results of sections 3.1 are given in

Appendix A.
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2 The B-spline regression and its control polygon.

Denote by Stk,n the linear space of all n-th order spline functions defined on a set of non-

decreasing knots tk,n = {ti}2n+k
i=1 , where tn = a, tn+k+1 = b. In this paper we will use splines

with simple knots, except for the n left and right most knots which will be assumed coalescent,

i.e.

tk,n = {t1 = . . . = tn < tn+1 < . . . < tn+k < tn+k+1 = . . . = t2n+k} . (2)

Following the Curry-Schoenberg theorem, a spline regression function f ∈ Stk,n , can be ex-

pressed as

f(tk,n;x) = θ′Nn(x) =

p∑
i=1

θiNi,n(x),

where θ = (θ1, . . . , θp)
′ is a vector of real valued regression coefficients andNn(x) = (N1,n(x), . . . , Np,n(x))

′,

p = n+ k, are B-splines of order n, defined on tk,n. It is well known that
∑j

i=j−n+1Ni,n(t) = 1

for any t ∈ [tj , tj+1), j = n, . . . , n + k, and Ni,n(t) = 0 for t /∈ [ti, ti+n]. In the sequel, where

necessary, we will emphasize the dependence of the spline f(tk,n;x) on θ by using the alternative

notation f(tk,n,θ;x).

The spline regression problem of section 1 can now be more precisely stated as follows. For

a fixed order of the spline n, given a sample of observations {xi, yi}Ni=1, estimate the number of

knots k, their locations tk,n and the regression coefficients, θ. In order to solve this estimation

problem we will alternatively view f(tk,n,θ;x) as a special case of a parametric spline curve

Q(t), t ∈ [a, b]. A parametric spline curve Q(t) is given coordinate-wise as

Q(t) = {x(t), y(t)} =

{
p∑

i=1

ξiNi,n(t),

p∑
i=1

θiNi,n(t)

}
, (3)

where t is a parameter, and x(t) and y(t) are spline functions, defined on one and the same set

of knots tk,n, with coefficients ξi and θi, i = 1, . . . , p, respectively. If the coefficients ξi in (3)

are chosen to be the knot averages

ξ∗i = (ti+1 + · · ·+ ti+n−1) /(n− 1), i = 1, . . . , p, (4)
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then it is possible to show that the identity

x(t) =

p∑
i=1

ξ∗iNi,n(t) = t, (5)

referred to as the linear precision property of B-splines, holds (see e.g. De Boor 2001). The

values ξ∗i given by (4) are known as the Greville abscissae. We will alternatively use the notation

ξ∗(tk,n), to indicate the dependence of the set ξ∗ on the knots tk,n. In view of (3) and (5), the

spline regression function f(tk,n,θ;x) can be expressed as a parametric spline curve

Q∗(t) = {t, f(tk,n,θ; t)} =

{
p∑

i=1

ξ∗iNi,n(t),

p∑
i=1

θiNi,n(t)

}
, (6)

where t ∈ [a, b]. In what follows, it will be convenient to use Q∗(t) and f(tk,n,θ; t) interchange-

ably to denote a functional spline regression curve.

Interpretation (6), of the regression function f(tk,n,θ;x) as a parametric spline curve Q∗(t),

allows us to characterize the spline regression curve Q∗(t) by a polygon, with vertexes ci =

(ξ∗i , θi), i = 1, . . . , p, which is closely related to Q∗(t), and is called the control polygon of

Q∗(t), denoted by CQ∗(t), (see Figure 1). This relationship is due to the fact that both the x

and y coordinates of the control points ci, i = 1, . . . , p, are related to the spline regression curve

Q∗(t). More precisely, the x-coordinates, ξ∗i , are the Greville sites (4), obtained from the knots

tk,n, and the y-coordinates, θi, are simply the spline regression coefficients. Due to the partition

of unity property of B-splines,
∑j

i=j−n+1Ni,n(t) = 1 for any t ∈ [tj , tj+1), j = n, . . . , n + k,

the curve Q∗(t) of order n is a convex combination of n of its control points, and its graph lies

within the convex hull of its control polygon CQ∗ . The convex hull of c1, . . . , cp is the smallest

convex polygon, enclosing these points. Thus, the higher is the degree, n−1, the stronger is the

curve’s deviation from its control polygon CQ∗ , but it still remains within the convex hull of

CQ∗ . This suggests that a quadratic B-spline curve is very well suited as a compromise between

smoothness and shape preservation. Hence, due to the convex hull property, the curve is in

a close vicinity of its control polygon as illustrated in Figure 1 with respect to two adjacent

polynomial segments of Q∗(t). The grey areas in Figure 1 are the two convex hulls, formed by

c3, c4, c5 and c4, c5, c6, within which the two segments of Q∗(t), for t ∈ [t5, t6] and t ∈ [t6, t7],

lie. In fact, the control polygon, CQ∗ , with vertices ci = (ξ∗i , θi) is itself a linear spline function,
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Figure 1: A quadratic (n = 3), functional spline regression curve Q∗(t), with k = 5 internal
knots, and its control polygon CQ∗(t). The spline coefficients θ and the set of knots t5,3 are
arbitrarily chosen, and the Greville sites ξ∗(t5,3) are evaluated following (4).

and hence can be expressed as

CQ∗(t) =

{
p∑

i=1

ξ∗iNi,2(t),

p∑
i=1

θiNi,2(t)

}
=

{
t,

p∑
i=1

θiNi,2(t)

}
≡

p∑
i=1

θiNi,2(t). (7)

In (7),
∑p

i=1 ξ
∗
iNi,2(t) = t since Ni,2(t) are defined over the knots tp−2,2, where t1 ≡ ξ∗1 , tp+2 ≡ ξ∗p

and ti+1 ≡ ξ∗i , i = 1, . . . , p and the linear precision property (5) applies. For further details

related to geometric modelling with splines we refer to Cohen et al. (2001).

Next, we emphasize that the spline regression curve Q∗(t) not only lies within the convex

hull of CQ∗(t) but it follows its shape. That is, because Q∗(t) is the Schoenberg’s variation

diminishing spline approximation of its control polygon CQ∗(t), i.e.

V [CQ∗ ] (t) =

p∑
i=1

CQ∗(ξ∗i )Ni,n(t) =

p∑
i=1

θiNi,n(t) ≡ Q∗(t), (8)

where ξ∗i , i = 1, 2, . . . , p, are the Greville abscissae, obtained from tk,n and CQ∗(ξ∗i ) = θi by the

definition of the control polygon. Given a set of knots, tk,n, the spline approximation

V [g](x) =

p∑
i=1

g(ξ∗i )Ni,n(x) (9)

of any function g, defined on [a, b], is known as the Schoenberg’s variation diminishing spline
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(VDS) approximation of order n to g, on the set of knots tk,n, see e.g. De Boor (2001). It is

constructed by simply evaluating g at the Greville sites (4) and taking the values g(ξ∗i ) as the

B-spline coefficients of the VDS approximation.

It is important to recall a property of V [g], which is crucial for developing the GeD estimator.

That is, the VDS approximation, V [g] is shape preserving since it preserves the shape of the

function g it approximates. More precisely, if g is positive, then V [g] is also positive, if g is

monotone, then V [g] is also monotone, and if g is convex, V [g] is also convex. The variation

diminishing character of V [g] is due to the fact that it crosses any straight line at most as many

times as does the function g itself. In view of the convex hull property and the shape preserving

property of (8) it is now clear that Q∗(t) not only lies close to its control polygon CQ∗(t) but

also preserves its shape. In fact, in the linear case, i.e., when n = 2, the parametric curve,

Q∗(t) defined by (6) coincides with its control polygon CQ∗(t), i.e., Q∗(t) = CQ∗(t), since the

Greville sites in (4) coincide with the knots, i.e. ξ∗i = ti+1, i = 1, . . . p.

In summary, it has been established that the spline regression function f(tk,n,θ;x), (alter-

natively denoted as Q∗(x), x ∈ [a, b]), can be expressed in the form (6) and that its control

polygon, Cf(tk,n,θ;x), has vertices ci = (ξ∗i , θi), i = 1, . . . , p, where ξ∗i are the Greville sites

(4), obtained from tk,n. The latter suggests that, given n and k, locating the knots tk,n and

finding the regression coefficients θ of f(tk,n,θ;x), based on the set of observations {yi, xi}Ni=1,

is equivalent to finding the location of the x- and y-coordinates of the vertices of Cf(tk,n,θ;x).

This establishes the important fact that estimation of tk,n and θ affects the geometrical po-

sition of the control polygon Cf(tk,n,θ;x), which, due to the shape preserving and convex hull

properties, defines the location of the spline curve f(tk,n,θ;x). Inversely, locating the vertices

ci of Cf(tk,n,θ;x) affects the knots tk,n, through (4), and the values of θ, and hence affects the

position of the regression curve f(tk,n,θ;x). The latter conclusion motivates the construction,

in stage A of GeDS, of a control polygon as a linear least squares spline fit to the data, whose

knots determine the knots tk,n, and whose B-spline coefficients are viewed as an initial estimate

of θ, which is improved further in stage B (see section 3). This is the basis of our approach

to constructing the GeD variable knot spline approximation to the unknown function f in (1),

and this is developed in the next section.
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3 Geometrically designed spline regression.

In this section, we introduce the GeD spline regression method which is motivated by the ideas,

outlined in section 2. The method “positions” first an initial control polygon (linear spline fit),

which reproduces the “shape” of the data, applying least squares approximation. Secondly,

an optimal set of knots of a higher order (n > 2) smooth spline curve is found, so that it

preserves the shape of the initial control polygon and then this curve is fitted to the data,

to adjust its position in the LS sense. In this way, it is ensured that the n-th order smooth

LS fit follows the shape of the initial control polygon, and hence the shape of the data. This

procedure simultaneously produces linear, quadratic, cubic, or higher order splines and the LS

fit with the minimum residual sum of squares is chosen as the final fit which recovers best

the underlying unknown function f . It should be mentioned that all the fits (linear, quadratic

etc.) are constructed so that they have dimension p equal to the dimension of the linear fit

constructed first. This is achieved by positioning the knots of the higher order, (n > 2) spline

fits according to the averaging relation (20), as described in section 3.1. The two stages of the

GeDS approach may be given a formal interpretation as certain optimization problems with

respect to the variables k, tk,n, θ and n.

Stage A. Starting from a straight line fit and adding one knot at a time, find the least

squares linear spline fit f̂ (δl,2, α̂;x) =
∑p

i=1 α̂iNi,2(x) with a number of internal knots l, number

of B-splines p = l + 2 and with a set of knots δl,2 = {δ1 = δ2 < δ3 < . . . < δl+2 < δl+3 = δl+4},

such that the ratio of the residual sums of squares

RSS(l + q)/RSS(l) =
N∑
j=1

(
yj − f̂(δl+q,2;xj)

)2 / N∑
j=1

(
yj − f̂(δl,2;xj)

)2
≥ αexit (10)

where q ≥ 1 and αexit is a certain threshold level. Testing the inequality in (10) serves as the

stage A model selector. If the inequality in (10) is fulfilled, f̂ (δl,2, α̂;x) could not be significantly

improved if q more knots are added and f̂ (δl,2, α̂;x) is the selected model which adequately

reproduces the “shape” of the unknown, underlying function f .

In order to realize stage A, a locally-adaptive knot insertion scheme is proposed. It starts

from an LS fit, in the form of a straight line segment, as described in step 1 below. The latter

is then sequentially “broken” into a piece-wise linear LS fit, by adding knots, one at a time, at
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those points, where the fit deviates most from the shape of the underlying function, (see Figure

2), according to a bias driven measure of appropriately defined clusters of residuals (see steps 2

- 8). A stopping rule is introduced, which serves as a model selector and allows us to determine

the appropriate number and location of the knots of the linear spline fit f̂ (δl,2, α̂;x) (see steps

9 - 10). A formal description is given next.

Step 1. Let n = 2, k = 0. Find the LS spline fit f̂ (δ0,2, α̂;x) = α̂1N1,2(x) + α̂2N2,2(x),

where δ0,2 = {δi}4i=1 with a = δ1 = δ2 < δ3 = δ4 = b. Calculate the residuals ri ≡ r(xi) =

yi − f̂ (δ0,2, α̂;xi), i = 1, . . . , N and the residual sum of squares RSS(k) =
∑N

i=1 r
2
i of the fit

with k internal knots.

Step 2. Group the consecutive residuals ri, i = 1, . . . , N into clusters by their sign, i.e. find

a number u, 1 ≤ u ≤ N and a set of integer values dj > 0, j = 1, . . . , u such that sign(r1) =

. . . =sign(rd1) ̸=sign(rd1+1) =sign(rd1+2) = . . . =sign (rd1+d2) ̸= . . . ≠sign(rd1+d2+···+du−1+1) =

sign(rd1+d2+···+du−1+2) = . . . =sign(rd1+d2+···+du), and
∑u

j=1 dj = N .

Step 3. For each of the u clusters of residuals of identical signs, calculate the within-cluster

mean residual value

mj =

 dj∑
i=1

rd(j−1)+i

/dj =

dj∑
i=1

((
f̂d(j−1)+i − Ef̂d(j−1)+i

)
+
(
Ef̂d(j−1)+i − fd(j−1)+i

)
+ ϵd(j−1)+i

)/
dj

=

dj∑
i=1

(
f̂d(j−1)+i − Ef̂d(j−1)+i

)
/dj +

dj∑
i=1

(
Ef̂d(j−1)+i − fd(j−1)+i

)
/dj +

dj∑
i=1

ϵd(j−1)+i/dj ,

j = 1, . . . , u, where d(j) = d1 + d2 + · · ·+ dj and the three terms in the last decomposition can

be interpreted as the within-cluster average variance, bias, and error, respectively. Calculate

also the within-cluster range (with d(0) = 0)

ηj = xd(j) − xd(j−1)+1, j = 1, . . . , u.

Step 4. Findmmax = max1≤j≤u(mj) and ηmax = max1≤j≤u(ηj) and calculate, correspond-

ingly, the normalized within-cluster mean and range values m′
j = mj/mmax and η′j = ηj/ηmax,

so that 0 < m′
j ≤ 1, 0 < η′j ≤ 1.
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Step 5. Calculate the cluster weights

wj = βm′
j + (1− β)η′j , j = 1, . . . , u, (11)

where, β is a real valued parameter, 0 ≤ β ≤ 1. The value wj serves as a measure, attached

to the j-th cluster of residuals of identical sign, which measures the deviation of the current

least squares linear spline fit f̂ (δk,2, α̂;x) from f in the j-th cluster. The weight β is one of the

parameters whose value needs to be chosen at the start of stage A.

Step 6. Order the weights of the clusters, i.e. wj1 ≥ wj2 ≥ . . . ≥ wju . Thus, in order to

improve f̂ (δk,2, α̂;x), in the next step a new knot is inserted, at an appropriate location, within

the j1-th cluster.

Step 7. Check whether there is already a knot within the j1-th cluster, i.e. check whether

δi ∈
[
xd(j1−1)+1, xd(j1−1)+dj1

]
, for each internal knot δi ∈ δk,2, i = 3, . . . , k + 2. If there is

already a knot within the j1-th cluster, the check is repeated for the cluster with index j2, and

so on until the first cluster, say indexed js, is found which does not contain a knot. Then, insert

a new knot δ∗ at the site

δ∗ =

d(js−1)+djs∑
i=d(js−1)+1

rixi

/d(js−1)+djs∑
i=d(js−1)+1

ri

 . (12)

Note that δ∗ ∈
[
xd(js−1)+1, xd(js−1)+djs

]
. The new knot position (12) can be viewed as a

weighted average of the x-coordinates of the residuals in the js-th cluster, the weights being the

normalized values of the residuals. The set of knots δk,2 is being updated as δ∗k+1,2 := δk,2
∪
{δ∗}.

So, a new knot is placed where the cluster weight (11) is maximal. In view of the decom-

position in step 3, the cluster weight (11) can be referred to as a bias dominated measure since

the bias component is dominant in this cluster compared to the variance and error terms (at

least at the initial iterations when there are small number of knots in the linear fit and the

approximation error is large).

Step 8. Find the least squares linear spline fit

f̂
(
δ∗k+1,2, α̂;x

)
=

p∑
i=1

α̂iNi,2(x).
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Since δ∗k+1,2 contains the new knot, the number of B-splines, p, will increase by one.

Step 9. Calculate the residuals ri, i = 1, . . . , N and the RSS(k + 1) for f̂
(
δ∗k+1,2, α̂;x

)
.

Note that δk,2 ⊂ δ∗k+1,2 implies that Sδk,2 ⊂ Sδ∗k+1,2
. Hence f̂ (δk,2, α̂;x) ∈ Sδ∗k+1,2

and applying

the orthogonality property of least squares estimation it is easy to see that

N∑
i=1

(
yi − f̂ (δk,2, α̂;xi)

)2
=

N∑
i=1

(
yi − f̂

(
δ∗k+1,2, α̂;xi

))2
+

N∑
i=1

(
f̂
(
δ∗k+1,2, α̂;xi

)
− f̂ (δk,2, α̂;xi)

)2
.

(13)

Equation (13) implies that RSS(k+1)<RSS(k). It is obvious also that RSS(k) will converge to

zero as k + n → N since when k + n = N the fit interpolates the data. The greedy fashion of

the new knot placement (12), combined with equation (13), gives rise to the rule for exit from

stage A of the GeDS method, given next.

Step 10. Let q ≥ 1 be a fixed integer, chosen at the beginning of stage A. If k ≤ q go back

to step 2, otherwise calculate the ratio

α = RSS(k + 1)/RSS(k + 1− q).

Note that from (13) it follows that 0 < α < 1. If α ≥ αexit, an exit from stage A is performed

with the spline fit f̂ (δl,2, α̂;x), l = k + 1− q. If α < αexit then f̂
(
δ∗k+1,2, α̂;x

)
is taken as the

current fit and the procedure goes back to step 2. The value αexit is chosen ex ante to be close

to 1. This is because the ratio α will be close to zero if the fit has improved significantly by

adding δ∗ and will tend to 1 if no improvement has been achieved in the last q + 1 consecutive

iterations, i.e the corresponding values of the RSS have stabilized. Our experience has shown

that this stopping rule works well as a model selector with q = 2, i.e., stabilization of RSS in

three consecutive iterations is sufficient to exit from stage A with the appropriate number of

knots.

Remark 3.1 Let us note that in the Normal error case, i.e. when ϵ ∈ N
(
0, σ2

ϵ

)
, the log-

likelihood, logL(δk,2), of a current linear spline fit f̂ (δk,2, α̂;x) with k knots is proportional to

its corresponding residual sum of squares, RSS(k), i.e. logL(δk,2) ∝-RSS(k) (see e.g. relation

(6) of Hansen and Kooperberg 2002). Therefore, the ratio of RSS in the left-hand side of (10)

can be interpreted as the ratio of the log-likelihoods of the two nested spline fits f̂ (δl+q,2, α̂;x)

and f̂ (δl,2, α̂;x) or as the (normal) deviance in the broader GLM context.
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Remark 3.2 The knot insertion scheme in stage A can be described as a “greedy” one (see

Hastie 1989), since at each iteration it places a knot, δ∗, where a within-cluster bias dominated

measure is maximal (see steps 3 and 5), which is very near to the site where placing a knot

gives the largest reduction in the residual sum of squares. This can be quantified using the fact

that given an LS fit f̂ (δk,2;x), with 0 < k < l internal knots, if a knot, δ∗, is added in the

interval [δj∗ , δj∗+1], 2 ≤ j∗ < k+2, then the updated LS fit f̂
(
δ∗k+1,2;x

)
adjusts best to the data

in [δj∗ , δj∗+1], since
∣∣∣f̂ (δk,2;x)− f̂

(
δ∗k+1,2;x

)∣∣∣, x ∈ [δj , δj+1] decreases exponentially in |j∗− j|,

which is the number of knots between x and δ∗. This follows from Theorem 1 of Zhou and Shen

(2001).

As an alternative to the model selector in (10), (see also step 10 of stage A), we have implemented

two additional model selection criteria based on the minimization of SURE and GCV. More

precisely, the GeD linear spline fit with number of knots k = kmin which minimizes Stein’s

unbiased risk estimate (SURE)

R(f̂) =
N∑
i=1

(
yi − f̂ (δk,2, α̂;xi)

)2 /
N +D

k + n

N
σ2 (14)

or the generalized cross validation

GCV(f̂) =

(
N∑
i=1

(
yi − f̂ (δk,2, α̂;xi)

)2 /
N

)/(
1− d(k)

N

)2

(15)

criterion is selected as the outcome of stage A. We have assumed that the minimum is attained

when SURE or GCV do not decrease in two consecutive iterations in stage A. Criteria (14) and

(15) depend on the choice of the parameters D and d(k), and when D = 1.2 and d(k) = k + 1

they behave roughly as the criterion in (10), as illustrated by Figure 5 (a) and the related results

in the online supplement. The choice D = 3 and d(k) = 3k + 1, as noted by Zhou and Shen

(2001) tends to yield a model underfitting the underlying function f . In section 4 and in the

online supplement to the paper, we give a comparison of the three model selection approaches,

(10), (14) and (15), and a thorough sensitivity study of the GeD spline estimation with respect

to the choice of the free parameters, αexit and β (see steps 10 and 5 of stage A).

If a smoother fit is needed, the linear LS spline fit f̂ (δl,2, α̂;x) is viewed as a control polygon

with vertices (δi+1, α̂i), i = 1, . . . , p, (recall that p = l + 2) and a higher order GeD spline is
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constructed in stage B, based on the geometrical form of f̂ (δl,2, α̂;x).

Stage B.1. For each of the values of n = 3, . . . , nmax, find the optimal set of knots

t̃l−(n−2),n, as a solution of the constrained minimization problem

min
tl−(n−2),n,

δi+2<ti+n<δi+n,
i=1,...,(l−(n−2))

∥∥∥f̂ (δl,2, α̂;x)−Cf(tl−(n−2),n,α̂;x)

∥∥∥
∞
, (16)

where ∥g∥∞ := maxa≤x≤b|g(x)| is the uniform (L∞) norm of a function g(x). In fact, minimiza-

tion in (16) gives the polygon Cf(t̃l−(n−2),n,α̂;x) with vertices (ξ∗i , α̂i), so that

ξ∗i (̃tl−(n−2),n) ≃ δi+1, i = 1, . . . , p (17)

or equivalently, so that

t =

p∑
i=1

ξ∗iNi,n(t) ≃
p∑

i=1

δi+1Ni,n(t). (18)

Remark 3.3 Achieving exact equality in (17), respectively (18), is impossible in general since

expressing ξ∗i (tl−(n−2),n) following (4), we have that, ξ∗1 = δ2 = a, ξ∗p = δp+1 = b and

δi+1 = (ti+1 + . . .+ ti+n−1) / (n− 1) , i = 2, . . . , p− 1, (19)

which is an over-determined system of p−2 = l equations and l−(n−2) ordered, unknown knots,

tl−(n−2),n, (n > 2). Instead, what is achieved by solving (16) is that Cf(t̃l−(n−2),n,α̂;x) is as close

to f̂ (δl,2, α̂;x) as possible because ξ∗(̃tl−(n−2),n) is as close to δl,2 as possible. Note that, since

we view δi+1, i = 1, . . . , p, as Greville sites of a higher order spline function f
(
tl−(n−2),n, α̂;x

)
,

the constraints δi+2 < ti+n < δi+n, i = 1, . . . , (l − (n− 2)) in (16), follow from (19).

In summary, the objective of stage B is to produce a set of optimal knots t̃l−(n−2),n, which ensures

that f̂ (δl,2, α̂;x) becomes (nearly) the control polygon of the spline function f
(
t̃l−(n−2),n, α̂;x

)
,

i.e. thatCf(t̃l−(n−2),n,α̂;x) ≃ f̂ (δl,2, α̂;x). Or equivalently, t̃l−(n−2),n is placed so that f
(
t̃l−(n−2),n, α̂;x

)
becomes (nearly) the Schoenberg’s VDS approximation of f̂ (δl,2, α̂;x). Therefore, due to its

convex hull and shape preserving properties (see section 2), f
(
t̃l−(n−2),n, α̂;x

)
lies very close

to f̂ (δl,2, α̂;x), and hence to the “shape” of the data for which the linear LS approximation

is f̂ (δl,2, α̂;x) (according to stage A). This is the fundamental concept of optimal knot place-
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ment in Stage B of GeDS. The fact that f
(
t̃l−(n−2),n, α̂;x

)
is nearly a VDS approximation of

f̂ (δl,2, α̂;x) has been quantified with appropriate error bounds but due to volume limitation

these are omitted, and bounds are only given for the knot location tl−(n−2),n as described in

the next section 3.1.

However, we note that f
(
t̃l−(n−2),n, α̂;x

)
is not a least squares approximation to the data

set. In order to obtain a least squares fit to the data and at the same time to preserve the

shape of f
(
t̃l−(n−2),n, α̂;x

)
, its optimal knots t̃l−(n−2),n are preserved, whereas its B-spline

coefficients, α̂, are released and are assumed to be unknown parameters, θ, which are estimated

in the least squares sense, using {xi, yi}Ni=1, as follows.

Stage B.2. For a fixed n = 3, . . . , nmax, find the least squares fit f̂
(
t̃l−(n−2),n, θ̂;x

)
which

solves

min
θ

N∑
j=1

(
yj − f

(
t̃l−(n−2),n,θ;xj

))2
.

Among all fits f̂
(
t̃l−(n−2),n, θ̂;x

)
, of order n = 2, . . . , nmax, i.e. including the linear fit,

f̂ (δl,2, α̂;x) from stage A, choose the one of order n̂, for which the RSS is minimal.

In this way in stage B.2, along with the number of knots and their locations, the degree of

the spline is also estimated. This is an important feature of the proposed estimation method

which is rarely offered by other spline estimation procedures. One alternative that we are aware

of is the MDL method of Lee (2000) (see also Lee 2002a,b). Of course, any of the produced final

fits of order n ̸= n̂ could be used, if other features were more desirable, for example if better

smoothness were required.

3.1 Stage B.1 - Approximate solution: the averaging knot location.

The minimization problem (16), of stage B.1, is a constrained non-linear optimization problem

with respect to the knots and although it is related to linear splines, it is still computationally

involved. In addition, as with any other non-linear optimization problem, finding the globally

optimal solution is not guaranteed. The knots t̃l−(n−2),n, which are the optimal solution, may

also be (almost) coalescent and this may cause edges and corners in the final LS fit in stage B.2.

In order to avoid these undesirable features, but to preserve the optimality properties of the

knots, as described in stage B.1, we propose to place the knots in stage B.1 according to (20),

which we call the averaging knot location, and which gives an easy to evaluate, approximate
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solution to the minimization problem (16), respectively (19). Thus, the final GeD spline fit

from stage B.2 is f̂
(
t̄l−(n̂−2),n̂, θ̂;x

)
, where t̄l−(n̂−2),n̂ is given by (20) with n = n̂.

The averaging knot location: Given the control polygon f̂ (δl,2, α̂;x) of stage A, for

each n = 3, . . . , nmax, calculate the knot placement t̄l−(n−2),n with internal knots defined as

the averages of the knots, δl,2, i.e.,

t̄i+n = (δi+2 + · · ·+ δi+n)/(n− 1), i = 1, . . . , l − (n− 2). (20)

The choice of the knots t̄l−(n−2),n according to (20) makes it possible to establish appropriate

error bounds given by Corollaries 3.5 and 3.6 of Theorem 3.4, the proofs of which are provided

in Appendix A.

Theorem 3.4 Let {ξi}pi=1 be an ordered set, a = ξ1 < ξ2 < . . . < ξp = b, and let tk,n,

(p ≥ n ≥ 2, k = p− n), be a set of knots, defined as in (2), with

ti+n = (ξi+1 + · · ·+ ξi+n−1)/(n− 1), i = 1, . . . , k. (21)

Then, for the n-th order spline approximation V a[g], defined on tk,n, of a continuous function

g ∈ C[a, b], given by

V a[g](x) =

p∑
i=1

g(ξi)Ni,n(x), (22)

we have

∥V [g]− V a[g]∥∞ ≤
⌈
(n− 2)2

2(n− 1)

⌉
ω(g;maxj∈{1,...,p−1}(ξj+1 − ξj)), (23)

where ⌈ν⌉ := min{z ∈ Z : ν ≤ z}, V [g] is the Schoenberg’s VDS approximation, defined on tk,n

and

ω(g;h) := max {|g(x)− g(y)| : |x− y| ≤ h, x, y ∈ [a, b]} (24)

is the modulus of continuity of the function g at h.

Corollary 3.5 Under the assumptions of Theorem 3.4, with n = 3, ξi replaced by δi+1, i =

1, . . . , p, p = l + 2, k = l − (n− 2) and if g coincides with the straight line t, i.e. g ≡ t, then

∥V [t]− V a[t]∥∞ =

∥∥∥∥∥t−
p∑

i=1

δi+1Ni,n(t)

∥∥∥∥∥
∞

≤ (n− 2)2

2(n− 1)
maxj∈{1,...,p−1}(δj+2 − δj+1). (25)
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Corollary 3.6 Under the assumptions of Theorem 3.4, with ξi replaced by δi+1, i = 1, . . . , p,

p = l+2, k = l− 1, ξ∗(tl−1,3), and assuming that g is the linear spline function f̂ (δl,2, α̂;x) =∑p
i=1 α̂iNi,2(t) with vertices (δi+1, α̂i), we have

∥V [f̂ ]− V a[f̂ ]∥∞ =

∥∥∥∥∥
p∑

i=1

f̂ (δl,2, α̂; ξ∗i )Ni,3(x)−
p∑

i=1

f̂ (δl,2, α̂; δi+1)Ni,3(x)

∥∥∥∥∥
∞

≤ 1

4
maxj∈{2,...,p−1} |α̂j − α̂j−1| . (26)

We have performed a special simulation study, which illustrates that bound (25) is quite tight

(best for n = 3) and that the averaging knot location (20) gives a reasonably accurate ap-

proximation to the solution of system (19). Due to volume limitations, details of this study are

relegated to the online supplement of the paper (see section 1.2 therein). Furthermore, following

Huang (2003) one can also study the local asymptotic properties of the proposed GeD spline

estimator, but this is beyond the scope of this paper.

4 Numerical Study.

In this section, and in the online supplement to the paper, we illustrate the numerical per-

formance of the GeDS method and its properties, established in section 3, both on simulated

and real data examples. We have performed a thorough simulation study of the impact on

the GeDS knot location and related MSE (mean square error), of different assumptions and

choices made in constructing the GeDS estimate, namely, different levels of the signal to noise

ratio (SNR from 2 to 7), sample sizes (N = 90, 150, 256, 512, 2048) and levels of smoothness

of the underlying function (smooth, medium smooth and wiggly functions), different choices of

the GeDS parameters, αexit and β, (αexit = 0.8, 0.9, 0.95, 0.99, 0.995, 0.999, β = 0.3, 0.5, 0.7)

different choice of the model selection criterion (GeDS criterion, GCV and SURE), and different

degree of the GeD spline estimate (linear, quadratic and cubic). We have also tested the GeDS

knot selection strategy versus equally spaced knots and other established approaches (see the

real data example of section 4 and the test examples in the online supplement). We have tested

GeDS on a series of simulated examples, used in many other studies on variable knot spline

methods (cf. Schwetlick and Schütze 1995, Fan and Gijbels 1995, Donoho and Johnstone 1994

and Luo and Wahba 1997). Due to volume limitations, we present here the results for one of the
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simulated test functions, given in Table 1, first considered by Schwetlick and Schütze (1995),

and one real data example from materials science, due to Kimber et al. (2009). The detailed

results related to the other test functions are given in the online supplement to this paper, see

Tables 1 and 2 therein.

As specified in section 3, there are two parameters, αexit ∈ (0, 1) and β ∈ (0, 1), defined in

steps 10 and 5 of stage A of GeDS, by means of which the model selection can be controlled. The

parameter αexit is related to the model selection rule which determines when to exit from stage

A, i.e. it determines the number of knots, l, in the set δl,2 of the linear spline fit f̂ (δl,2, α̂;x)

and hence, the number of knots of the final higher order LS spline fit f̂
(
t̄l−(n−2),n, θ̂;x

)
. The

parameter β determines the weight put on the cluster range and the mean cluster size within

each cluster of residuals of same sign, as specified in step 5 of stage A. It therefore affects to

some extent the ordering of the cluster weights and hence, the knot placement.

As can be presumed, the choice of β depends on the level of the signal-to-noise ratio (SNR),

SNR= (var(f))0.5/σϵ and on the degree of smoothness/wiggliness of f . As can be concluded

from the performed numerical tests, when the SNR is high and f is smooth, recommended

values are β ∈ [0.5, 0.7], αexit ∈ [0.9, 0.95]. If the SNR is high and f is a wiggly function then

the recommended choice is β ∈ [0.5, 0.7], αexit ∈ [0.99, 0.995], since otherwise underfitting may

result. In the case when SNR is low and f is smooth, one may use β ∈ [0.3, 0.5], αexit ∈

[0.9, 0.95]. Finally, it is known that when the SNR is low and the underlying function is very

unsmoothy recovering f is very difficult and different choices of β and αexit may need to be

attempted.

In summary, in most numerical examples (see section 4.1 and the online supplement), GeDS

produces very good results avoiding over and under fitting with values αexit ≥ 0.9, β = 0.5.

Recall, β = 0.5 means that the within-cluster mean residual value and the cluster range are

considered equally important components of a cluster weight. Our experience shows that choices

of αexit ∈ (0, 0.8) generally lead to underfitting, especially for less smooth functions. Thus, in

order to obtain a GeDS estimate it is necessary to input only the set of data {xi, yi}Ni=1 and use

the default preassigned values of αexit = 0.9 and β = 0.5, which in general need not be re-set.
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4.1 A simulated example.

In this section, we aim at illustrating the method and its properties on the following test

example, which appears in Schwetlick and Schütze (1995). The proposed GeDS method has

been implemented using Mathematica 9.0 and a standard PC (Intel core i7 CPU, 2.93 Ghz,

8GB RAM) has been used for all test examples. For a simulated data set, graphs of the linear

Table 1: Test function.
Test function Interval Sample size, N xi, i = 1, . . . , N Noise level, σϵ SNR

f(x) = 10x
1+100x2 [-2,2] 90 xi = −2 + 2−(−2)

89 (i− 1) U(−0.05, 0.05) 7

180 U(−0.05, 0.05) 7
180 U(−0.065, 0.065) 5

spline fits, produced at each consecutive iteration in stage A of GeDS, preceding the final one,

are given in Figure 2. As can be seen, the initial straight line fit, presented in Figure 2 (a), is

sequentially improved by adding knots, one at each iteration, to reach the fit f̂ (δ8,2;x), plotted

in Figure 3 (a), which can not be further significantly improved by adding more knots. Applying

the averaging knot location (20) to the knots δ8,2, the set of knots t̄8−(n−2),n of the quadratic,

n = 3, and cubic, n = 4, fits, f̂
(
t̄8−(n−2),n;x

)
, are defined as follows: t̄4 = (−1.1 − 0.33)/2 =

−0.69, t̄5 = (−0.33 − 0.12)/2 = −0.22, . . . in t̄7,3, or t̄5 = (−1.1 − 0.33 − 0.12)/3 = −0.51,

t̄6 = (−0.33−0.12−0.05)/3 = −0.17, . . . in t̄6,4. The LS spline fits f̂
(
t̄8−(n−2),n, θ̂;x

)
, resulting

from stage B of GeDS, are plotted in Figure 3 (b) and (c) for n = 3 and n = 4, respectively.

The polygons Cf(t̃7,3,α̂;x) and Cf (̄t7,3,α̂;x), plotted in Figure 3 (d), using dot-dashed and dashed

lines, and obtained with t̃7,3 as the solution of (16) and with t̄7,3, calculated using (20), are seen

to be very close to each other and also close to the initial control polygon f̂ (δ8,2, α̂;x). The

LS fits, f̂
(
t̃7,3;x

)
and f̂ (̄t7,3;x), have close L2-errors, respectively 0.2798 and 0.2944, which

confirms that t̄7,3 approximates very well the optimal set of knots t̃7,3. The L2-error is defined

as the square root of the sum of squared residuals. The details of the final linear fit, and its

corresponding quadratic and cubic spline fits are presented in Table 2. As can be seen, the

function f is symmetric and GeDS places, symmetrically around the origin, 8, 7 and 6 knots,

respectively for the linear, quadratic and cubic LS fits. All the fits are of a very good quality

with respect to the mean square error (MSE), defined as MSE=

{∑N
i=1

(
f(xi)− f̂(xi)

)2}
/N .

Based on the L2-errors for fits 1-3 given in Table 2, the best GeDS fit for this particular data

set is the cubic one. We have compared it (No 3, Table 2) with the optimal cubic spline fits
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Figure 2: The linear spline fits, obtained at each consecutive iteration in stage A, except the
final one (given in Figure 3 (a)). N = 90, SNR= 7.
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Figure 3: The final GeD spline fits: (a) linear, f̂ (δ8,2, α̂;x); (b) quadratic, f̂
(
t̄7,3, θ̂;x

)
; (c)

cubic, f̂
(
t̄6,4, θ̂;x

)
; (d) graphs of f̂ (δ8,2, α̂;x) - the solid line, Cf(t̃7,3,α̂;x) - the dot-dashed line

and Cf (̄t7,3,α̂;x) - the dashed line; The dotted curve in (a), (b), (c) is the true function.

Table 2: Summary of GeD (No 1-3) and PNOM and NOM spline fits. N = 90, SNR= 7.
No Fit n k Internal knots αexit, β L2-error, MSE

1 Fig. 4,(a) 2 8 {-1.1,-0.33,-0.12,-0.05,0.05,0.12,0.32,0.96} 0.9,0.5 0.2699,0.000189

2 Fig. 4,(b) 3 7 {-0.69,-0.22,-0.09,0.00,0.09,0.22,0.64} 0.9,0.5 0.2944,0.000127

3 Fig. 4,(c) 4 6 {-0.51,-0.17,-0.04,0.04,0.16,0.47} 0.9,0.5 0.2631,0.000119

4 PNOM 4 6 {-0.53,-0.16,-0.06,0.05,0.17,0.51} - 0.2623,0.000131

5 NOM 4 6 {-0.48,-0.15,-0.07,0.05,0.18,0.40} - 0.2614,0.000154
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obtained applying the LS non-linear optimization method (NOM) and its penalized version

(PNOM), due to Lindstrom (1999). As can be seen, the three fits are very close, comparing

the L2-errors, the MSE and the location of the knots. However, the GeD fit recovers best the

original function as indicated by the corresponding MSE values. The computation time for the

three GeDS fits is 0.87 seconds whereas for PNOM and NOM it is respectively, 4.5 hours and

1.4 hours, using the Mathematica function NMinimize.

On this example, we test GeDS by fitting 1000 simulated data sets. Frequency plots of the

number of internal knots of the 1000 linear GeD spline fits and box plots of the MSE values

of the linear, quadratic and cubic GeDS fits are presented in Figure 4, for choices of values of

the parameter αexit = 0.8, 0.9, 0.95, and choices for parameter β = 0.3, 0.5, 0.7. The frequency

plots given on the left panels of Figure 4 show that for this test example a choice of αexit = 0.8

leads to a relative underfitting, whereas setting αexit = 0.95 results in overfitting, regardless

of the level of the parameter β. The choice αexit = 0.9 provides the best distribution of the

number of knots chosen for the linear fit at the end of Stage A, in particular when β = 0.5 or

β = 0.7. Recall that a higher value of β assigns more weight to the within-cluster mean relative

to the within-cluster range for clusters of residuals of same sign. The box plots presented in the

right panels of Figure 4 illustrate that, for the particular level of smoothness of the test function

and the chosen SNR=7, the results for β = 0.5 and β = 0.7 are substantially better than those

for β = 0.3, with the cubic and the quadratic GeDS fits being very close for both αexit = 0.9

and αexit = 0.95. For levels of β = 0.7 and αexit = 0.9 for instance, the 1000 linear, quadratic

and cubic GeD spline fits, with median number of regression functions n+k = 10, have median

L2-errors 0.2604, 0.2679, 0.2637 (MSE values 0.000186, 0.000151, 0.000137) respectively, which

are slightly lower than 0.277, obtained by Schwetlick and Schütze (1995) for a quartic (of order

5) fit with the same number of regression parameters and optimally located knots. The optimal

quartic fit of Schwetlick and Schütze (1995) is obtained starting from 15 knots and after three

time-consuming knot generation, removal and relocation stages.

Continuing with the same test example, for N = 90 and SNR = 7, in Figure 5, the number

of knots and the MSE values for the 1000 GeD spline fits obtained with β = 0.7 and αexit = 0.9,

and illustrated in black on Figure 4 (c), are compared with the results obtained applying the

GeDS methodology to the same 1000 data sets but with two alternative model selection criteria,

namely GCV and SURE given by (15) and (14). As can be seen, the GCV, with a choice of
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Figure 4: Frequency plots of the number of knots, l, (left panels) and box plots of the MSE values
(right panels) of the 1000 GeD spline fits obtained with three different choices of values of the
exit parameter α, and three choices of parameter β illustrated on (a), (b) and (c) respectively.
N = 90, SNR= 7.
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Figure 5: Frequency plots of the number of knots, l, (left panels) and box plots of the MSE
values (right panels) of the 1000 linear GeD spline fits for three different choices of model
selection criterion, GCV, GeDS and SURE

d(k) = k + 1, leads to slight underfitting, and the SURE, with choice of D = 1.2, has a more

dispersed distribution of the number of knots, both resulting in somewhat worse MSE values

given on the top right panel of Figure 5. We have tried a few different choices for the parameters

d(k) and D, e.g. D = 3 and d(k) = 3k + 1, and have chosen those giving the best results.

Using the same test example, the performance of GeDS has also been tested when the number

of simulated data points increases from N = 90 to N = 180, and when the SNR worsens from

SNR=7 to SNR=5 approximately. Results of this test suggest very robust performance of our

estimator. For details we refer to the online supplement.

4.2 Real data example.

In this section, we use the GeDS method to fit a high pressure neutron barium-iron-arsenide

(BaFe2As2) powder diffraction data from Kimber et al. (2009), with number of observations

N = 1151. These authors explore the superconductivity properties of BaFe2As2 by conducting

a neutron diffraction experiment and using the Rietveld method (see e.g. Will 2006) to fit

the observed BaFe2As2 neutron diffraction profile. The latter profile includes the observed

neutron diffraction intensity, viewed as a response variable, dependent on the angle of dispersion

of the neutrons, known as the Bragg angle, denoted 2θ. As can be seen from Figure 6, this

dependence is highly non-linear with numerous intensity peaks occurring at certain angle values.

Important information about the structural properties of the BaFe2As2 compound are retrieved

by analyzing the position of the peaks (the 2θ values at which they occur) and their shape
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(heights and widths). Although the Rietveld method is extensively used to fit X-ray and neutron

diffraction patterns in structural physics, chemistry and materials science, it has some recognized

disadvantages. The non-linear least squares Rietveld procedure is complex, time consuming and

not easy to implement, there are numerous unknown parameters (about 12 per peak), and there

is a sophisticated goodness-of-fit refinement stage involving manual adjustment of the estimated

parameters through a visual inspection of the residuals.

In Fig. 6 (a), the quadratic GeD spline fit obtained with β = 0.6 and αexit = 0.99 in 1581

secs, and with 227 knots and L2-error of 10847, is given together with its corresponding residual

plot. It can be compared with the Rietveld fit obtained by Kimber et al. (2009), as presented in

Figure 6 (b), whose L2-error is 26936. In Figure 6 (c), a quadratic least squares spline fit with

227 uniform knots is illustrated and the residual plot shows that it provides a significantly less

accurate approximation to the data, confirmed by its L2-error of 64790. More importantly, it

can be seen that the heights and the widths of the peaks are poorly fitted. Clearly, the GeDS

fit captures best the positions, the heights and the widths of the peaks and therefore enables a

more accurate estimation of the structural parameters of the BaFe2As2 compound.

5 Discussion and conclusions.

In summary, the GeDS method is motivated by a novel geometric interpretation of spline regres-

sion parameter estimation as location of control points i.e., control polygons (see section 2 for

details). The latter can serve as an important bridge between non-parametric spline estimation

and computer aided geometric design, that can further enrich both areas with new ideas and

insights. GeDS is based on the core novel idea of first fitting a polygon in stage A, capturing

the shape of the data and then approximating it in stage B, by a variation-diminishing higher

order spline function which is also an LS fit to the data (see section 3). For the purpose of con-

structing a linear spline fit in stage A, one can in principle use one of the alternative spatially

adaptive methods, proposed in the literature, with an appropriately chosen model selector (e.g

AIC, GCV or SURE).

Many free-knot spline smoothers have been proposed in the statistical literature and it is

difficult to exhaustively compare GeDS with all of them. Instead we have used results from

other comparative studies for spline smoothers, e.g. those due to Lee (2002a,b) and Luo and
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Figure 6: Estimated fits to BaFe2As2 data and their corresponding residuals: (a) quadratic GeD
spline fit with 227 knots; (b) the Rietveld fit obtained by Kimber et al. (2009); (c) quadratic
LS spline fit with 227 uniform knots.
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Wahba (1997) to compare and contrast the performance of GeDS. In summary, GeDS has per-

formed favorably in comparison with most methods implemented in these papers (see the online

supplement for details of this comparison). Our method exhibits the following features which

make it an attractive alternative to existing methods (cf. section 4 and the online supplement

to the paper). GeDS:

• has an intuitive geometric interpretation which allows to follow the entire fitting process.

Its shape preserving (VDS) knot positioning avoids “knot confounding” and “lethargy”

problems which occur with other methods (see e.g., Zhou and Shen 2001 or Jupp 1978);

• does not rely on costly non-linear optimization as is the case for other free-knot methods

and model selection criteria, which is problematic in high dimensions, i.e. for highly

spatially inhomogeneous functions requiring many knots;

• produces simultaneously linear, quadratic, cubic, and possibly higher order spline fits and

offers the flexibility to choose the degree of the final fit providing best compromise between

smoothness and accuracy;

• can be flexibly tuned by the choice of the two parameters, αexit and β, taking into consid-

eration the prior information (if available or otherwise, estimated) about the smoothness

of the underlying function and related SNR;

• is fast and produces very accurate fits for a reasonably wide range of SNR values and

smooth or wiggly functions;

• has strong practical appeal especially in fast and accurate (real time) smoothing of spa-

tially inhomogeneous functions with possible discontinuities, as demonstrated in section

4.2, based on the BaFe2As2 data.

In conclusion, the proposed univariate GeDS method provides a novel solution to the spline

regression problem and in particular, to the problem of estimating the number and position of

the knots. It is motivated by geometric arguments and can be extended to multivariate non-

parametric smoothing as well as to generalized linear models. Details of how this may be done

are outside the scope of this paper and are the subject of ongoing research.
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6 Supplemental materials.

As mentioned and referenced in the body of this paper, supplemental materials are available

online. It contains the following files.

Online supplement to: Geometrically designed, variable knot regression splines This

is a supporting document with two sections. Section 1.1 includes results of a simulation

study illustrating the theoretical bounds of section 3.1 given by Theorem 3.4 and its corol-

laries 3.5 and 3.6. This section also contains Remarks 3.2 and 3.3 which provide further

insight into the optimality of the knot positioning in stages A and B. Section 1.2 contains

further results of the sensitivity test of GeDS based on Example 1 from section 4.1 of the

paper. Section 2 provides further detailed sensitivity tests and comparison of GeDS with

other existing free-knot spline methods from the literature, given e.g. in Lee (2002a,b)

and Luo and Wahba (1997), based on stylized examples of both smooth and highly spa-

tially inhomogeneous functions introduced by Donoho and Johnstone (1994). (Kaishev et

al.(2015)GeDS online supplement.pdf)

Data file File containing the BaFe2As2 data used in section 4.2. (data.xls)
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Appendices

A Proofs of the results of section 3.1

Proof of Theorem 3.4. Note that, for n = 2, ξi ≡ ξ∗i , i = 1, . . . , p, hence V a[g] ≡ V [g] and the

bound in (23), which is zero, is sharp. For n > 2, from (4) it follows that ξ∗1 ≡ a ≡ ξ1 and
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ξ∗p ≡ b ≡ ξp, and from the definitions of V [g] and V a[g], (9) and (22) respectively, we have

∥V [g]− V a[g]∥∞ = maxt∈[a,b]

∣∣∣∣∣
p∑

i=1

(g(ξ∗i )− g(ξi))Ni,n(t)

∣∣∣∣∣
≤ maxt∈[a,b]

p∑
i=1

|(g(ξ∗i )− g(ξi))|Ni,n(t)

≤ maxt∈[a,b]

p∑
i=1

{
maxj∈{2,...,p−1}

∣∣(g (ξ∗j )− g(ξj))
∣∣}Ni,n(t)

≤ maxj∈{2,...,p−1}
∣∣(g (ξ∗j )− g(ξj))

∣∣maxt∈[a,b]

p∑
i=1

Ni,n(t)

= maxj∈{2,...,p−1}
∣∣(g (ξ∗j )− g(ξj))

∣∣ , (27)

where the last equality follows from the partition of unity property of B-splines (see section 2).

Applying the definition of the modulus of continuity to (27) we have

∥V [g]− V a[g]∥∞ ≤ maxj∈{2,...,p−1}
∣∣(g (ξ∗j )− g(ξj))

∣∣ ≤ ω
(
g;maxj∈{2,...,p−1}

∣∣ξ∗j − ξj
∣∣) .(28)

From the definition (4) of the Greville sites ξ∗i we have ξ∗j = (tj+1 + . . . + tj+n−1)/(n − 1),

j = 2, . . . , p − 1. From (21), it follows that tj+1 =
(
ξj−(n−2) + . . .+ ξj

)
/(n − 1), . . . , tj+n−1 =(

ξj + . . .+ ξj+(n−2)

)
/(n − 1), where we have defined ξ1−l := a and ξp+l := b, l = 1, 2, . . ..

Consider the maxj∈{2,...,p−1}

∣∣∣ξj − ξ∗j

∣∣∣ and assume it is achieved for some jm, 2 ≤ jm < p − 1.

Expressing ξ∗jm in terms of ξjm , using the above equalities, after some algebra, it is not difficult

to see that

∣∣ξjm − ξ∗jm
∣∣ = 1

(n− 1)2

∣∣∣∣∣
n−2∑
i=1

i
(
ξjm+(n−1−i) + ξjm−(n−1−i)

)
− (n− 1)(n− 2)ξjm

∣∣∣∣∣ (29)

and if we now rearrange the terms in the sum in (29), we obtain

∣∣ξjm − ξ∗jm
∣∣ = 1

(n− 1)2

∣∣∣∣∣
n−2∑
i=1

i
((
ξjm+(n−1−i) − ξjm

)
−
(
ξjm − ξjm−(n−1−i)

))∣∣∣∣∣ . (30)
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Assume that
∑n−2

i=1 i
(
ξjm+(n−1−i) − ξjm

)
>
∑n−2

i=1 i
(
ξjm − ξjm−(n−1−i)

)
. In this case, it is not

difficult to see that (30) is bounded by

∣∣ξjm − ξ∗jm
∣∣ ≤ 1

(n− 1)2

n−2∑
i=1

i
(
ξjm+(n−1−i) − ξjm

)
≤ 1

(n− 1)2
(n− 2)(n− 1)

2

(
ξjm+(n−2) − ξjm

)
≤ (n− 2)

2(n− 1)

(
ξjm+(n−2) − ξjm

)
≤ (n− 2)2

2(n− 1)
maxj∈{1,...,p−1}(ξj+1 − ξj). (31)

Similarly, it can be shown that if
∑n−2

i=1 i
(
ξjm+(n−1−i) − ξjm

)
≤
∑n−2

i=1 i
(
ξjm − ξjm−(n−1−i)

)
the

bound in (31) also holds. Thus, from (31) and (28) we have

∥V [g]− V a[g]∥∞ ≤ ω

(
g;

(n− 2)2

2(n− 1)
maxj∈{1,...,p−1}(ξj+1 − ξj)

)
. (32)

Using the monotonicity and subadditivity of ω(g;h) in h, from (32) we finally obtain

∥V [g]− V a[g]∥∞ ≤
⌈
(n− 2)2

2(n− 1)

⌉
ω
(
g;maxj∈{1,...,p−1}(ξj+1 − ξj)

)
where ⌈ν⌉ :=min{z ∈ Z : ν ≤ z}. This completes the proof of Theorem 3.4. �

Proof of Corollary 3.5. This follows directly from (32) and from the definition, (24) of ω(g;h),

i.e.

∥V [t]− V a[t]∥∞ =

∥∥∥∥∥t−
p∑

i=1

δi+1Ni,n(t)

∥∥∥∥∥
∞

≤ (n− 2)2

2(n− 1)
maxj∈{1,...,p−1}(δj+2 − δj+1).
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Proof of Corollary 3.6. From (27), for n = 3 and g = f̂ , we have

∥V [f̂ ]− V a[f̂ ]∥∞ ≤ maxj∈{2,...,p−1}

∣∣∣f̂ (δl,2, α̂; ξ∗j
)
− f̂ (δl,2, α̂; δj+1)

∣∣∣ (33)

= maxj∈{2,...,p−1}

∣∣∣∣∣
p∑

i=1

α̂iNi,2

(
ξ∗j
)
−

p∑
i=1

α̂iNi,2(δj+1)

∣∣∣∣∣
= maxj∈{2,...,p−1}

∣∣∣∣∣
p∑

i=1

α̂iNi,2

(
ξ∗j
)
− α̂j

∣∣∣∣∣
= maxj∈{2,...,p−1}

∣∣∣∣∣∣
j+1∑

i=j−1

α̂iNi,2

(
ξ∗j
)
− α̂j

∣∣∣∣∣∣ (34)

Recall that n = 3 and hence, ξ∗j = (tj+1 + tj+2)/2, and tj+1 = (δj + δj+1)/2, tj+2 = (δj+1 +

δj+2)/2. Therefore, we need to consider the cases when δj < ξ∗j ≤ δj+1, or δj+1 ≤ ξ∗j < δj+2,

2 ≤ j ≤ p − 1. In the first case, applying the Mansfield-De Boor-Cox recurrence formula we

know that if δj < ξ∗j < δj+1, then
∑j+1

i=j−1 α̂iNi,2

(
ξ∗j

)
= α̂j−1Nj−1,2

(
ξ∗j

)
+ α̂jNj,2

(
ξ∗j

)
, which

is a convex combination of only two B-spline coefficients. Thus, (34) becomes

maxj∈{2,...,p−1}
∣∣α̂j−1Nj−1,2

(
ξ∗j
)
+ α̂jNj,2

(
ξ∗j
)
− α̂j

∣∣
= maxj∈{2,...,p−1}

∣∣∣∣α̂j−1

δj+1 − ξ∗j
δj+1 − δj

+ α̂j

ξ∗j − δj

δj+1 − δj
− α̂j

δj+1 − δj
δj+1 − δj

∣∣∣∣
= maxj∈{2,...,p−1} |(α̂j−1 − α̂j)|

(
δj+1 − ξ∗j
δj+1 − δj

)
< maxj∈{2,...,p−1} |(α̂j−1 − α̂j)|

(
1
4 (δj+1 − δj)

δj+1 − δj

)
=

1

4
maxj∈{2,...,p−1} |(α̂j−1 − α̂j)| , (35)

where we have used the fact that δj+2 − δj+1 > 0 to arrive at the last inequality. Similarly, it

is not difficult to see that the same bound as in (35) holds in the case when δj+1 ≤ ξ∗j ≤ δj+2.

This completes the proof of Corollary 3.6. �
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