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Abstract

We apply the holonomic gradient method to compute the distribution function of a

weighted sum of independent noncentral chi-square random variables. It is the distribu-

tion function of the squared length of a multivariate normal random vector. We treat this

distribution as an integral of the normalizing constant of the Fisher-Bingham distribution

on the unit sphere and make use of the partial differential equations for the Fisher-Bingham

distribution.

Keywords and phrases: algebraic statistics, cumulative chi-square distribution, Fisher-Bingham
distribution, goodness of fit

1 Introduction

The weighted sum of independent chi-square variables appears in many important problems in
statistics. In the problems for testing against ordered alternatives, cumulative chi-square statistic
(cf. [7], [13]) has a good power. For studying the power function of the cumulative chi-square
statistic, we need to evaluate the distribution function of a sum of weighted independent noncen-
tral chi-square variables. Goodness of fit test statistics based on empirical cumulative distribution
function, such as the Cramér-von Mises statistic or the Anderson-Darling statistic ([1]), are infi-
nite sums of weighted independent chi-square variables. Chapter 4 of [4] gives a survey of these
statistics. Under an alternative hypothesis the chi-square variables are noncentral. For studying
the power function of these statistics we want to approximate the infinite sum by a finite sum of
sufficiently many terms and compute the cumulative distribution of the finite sum.

An exact evaluation of the cumulative distribution function of a weighted sum of independent
noncentral chi-square random variables was considered to be a difficult numerical problem (see
[2]). Although the moment generating function is explicitly given, its Fourier inversion to evaluate
the density function and the cumulative distribution function is difficult as extensively discussed
in Chapter 6 of [16]. See [3] for the similar problems in other areas of applied mathematics.

Recently in [14] we proposed the holonomic gradient method (HGM) for calculating distri-
bution functions and the maximum likelihood estimates using differential equations satisfied by
a probability density function with respect to the parameters. Since then the method has been
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successfully used in many problems, including the computations related to the Fisher-Bingham
distribution on the unit sphere ([10], [8], [9], [15]). In this paper we utilize the results on HGM
for the Fisher-Bingham distribution to evaluate the distribution function of a weighted sum of
noncentral chi-square random variables.

Let X denote a d-dimensional random vector following the multivariate normal distribution
N(µ,Σ). Consider the cumulative distribution function G(r) of ‖X‖:

G(r) =

∫

x2

1
+···+x2

d≤r2

1

(2π)d/2|Σ|1/2 exp
(

−1

2
(x− µ)⊤Σ−1(x− µ)

)

dx. (1)

We callG(r) the ball probability with radius r. By rotation we can assume that Σ = diag(σ2
1 , . . . , σ

2
d)

is a diagonal matrix without loss of generality. Hence G(r) is the distribution function of the square
root of a weighted sum of independent noncentral chi-square random variables, where weights are
σ2
i , i = 1, . . . , d. Furthermore the conditional distribution of X given its length r = ‖X‖ is the

Fisher-Bingham distribution. This fact allows us to directly apply the results for the Fisher-
Bingham distribution to the evaluation of the distribution of the weighted sum of independent
noncentral chi-square random variables. As we show in Section 4 our method works very well,
both in accuracy and speed.

The organization of this paper is as follows. In Section 2 we summarize known results on HGM
for the Fisher-Bingham distribution and show how they can be used to evaluate the distribution
of the a weighted sum of independent noncentral chi-square random variables. We also discuss
the problem of initial values needed to use HGM. In Section 3 we present asymptotic results for
the Fisher-Bingham integral and its derivatives for the case that the length of the multivariate
normal vector diverges to infinity. This result is used to check the the numerical accuracy of our
experiments in Section 4. We end the paper with some discussions in Section 5.

Acknowledgment. This work is supported by JSPS Grant-in-Aid for Scientific Research No.
25220001 and Grant-in-Aid for JSPS Fellows No. 02603125.

2 Holonomic system and initial values

Let

Σ = diag(σ2
1, . . . , σ

2
d), µ = (µ1, . . . , µd)

⊤.

We define new parameters λi, τi, i = 1, . . . , d, by

λi = − 1

2σ2
i

, τi =
µi

σ2
i

and the Fisher-Bingham integral f(λ, τ, r) by

f(λ, τ, r) =

∫

Sd−1(r)

exp

(

d
∑

i=1

λit
2
i +

d
∑

i=1

τiti

)

dt, (2)

where λ = (λ1, . . . , λd), τ = (τ1, . . . , τd), S
d−1(r) =

{

t ∈ Rd | t21 + · · ·+ t2d = r2
}

is the sphere of
radius r and dt is the volume element of Sd−1(r) so that

∫

Sd−1(r)

dt = rd−1Sd−1, Sd−1 = Vol(Sd−1(1)) =
2πd/2

Γ(d/2)
.
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Then G(r) in (1) is written as

G(r) =

∏d
i=1

√
−λi

πd/2
exp

(

1

4

d
∑

i=1

τ 2i
λi

)

∫ r

0

f(λ, τ, s)ds. (3)

We will numerically integrate the right-hand side of (3). We denote the partial differential operator
with respect to λ by ∂λ. For t ∈ Sd−1(r), (t21 + · · ·+ t2d)/r

2 = 1 and

f(λ, τ, r) =

∫

Sd−1(r)

1

r2
(t21 + · · ·+ t2d) exp

(

d
∑

i=1

λit
2
i +

d
∑

i=1

τiti

)

dt

=
1

r2
(∂λ1

+ · · ·+ ∂λd
) f(λ, τ, r). (4)

By HGM we evaluate ∂λi
f(λ, τ, r), i = 1, . . . , d, and use (4) to compute f(λ, τ, r). In fact we also

evaluate ∂τif(λ, τ, r), i = 1, . . . , d.
Define a 2d-dimensional vector of partial derivatives of f(λ, τ, r) by

F = (∂τ1f, . . . , ∂τdf, ∂λ1
f, . . . , ∂λd

f)⊤ . (5)

Elements of F are called “standard monomials” in HGM. By Theorem 3 of [9] we have

∂rF = PrF, (6)

where the 2d× 2d matrix Pr = (pij), called the Pfaffian matrix, is of the form

Pr =
1

r



















2r2λ1 + 1 O τ1 · · · τ1
. . .

...
O 2r2λd + 1 τd · · · τd
r2τ1 O 2r2λ1 + 2 1

. . .
. . .

O r2τd 1 2r2λd + 2



















, (7)

with O denoting an off-diagonal block of 0’s and 1 denoting an off-diagonal block of 1’s. The
elements pij of Pr are expressed as

rpij = (2λir
2 + 1)δij +

d
∑

k=1

τiδj(k+d) (1 ≤ i ≤ d),

rp(i+d)j = τir
2δij + (2λir

2 + 2)δj(i+d) +
∑

k 6=i

δj(k+d) (1 ≤ i ≤ d),

for 1 ≤ j ≤ 2d, where δij denotes Kronecker’s delta. Given initial values for the elements of F at
r = r0, we can apply a standard ODE solver to (6) for numerically evaluating F.

For the initial values at a small r = r0 > 0, we can use the following series expansion of the
Fisher-Bingham integral ([11]):

f(λ, τ, r) = rd−1Sd−1 ×
∑

α,β∈Nd
0

r2|α+β| (d− 2)!!
∏d

i=1(2αi + 2βi − 1)!!

(d− 2 + 2|α|+ 2|β|)!!α!(2β)! λ
ατ 2β , (8)
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where N0 = {0, 1, 2, . . .} and for a multi-index α ∈ N
d
0 we define

α! =

d
∏

i=1

αi!, α!! =

d
∏

i=1

αi!! and |α| =
d
∑

i=1

αi.

By term by term differentiation of this series we can evaluate derivatives of f(λ, τ, r). For com-
puting the initial values, we apply the following approximation:

∂f

∂τi
= Sd−1r

d+1τi +O(rd+3) (i = 1, . . . , d), (9)

∂f

∂λi
= Sd−1r

d+1 +O(rd+3) (i = 1, . . . , d). (10)

By this approximation, we reduce the computational time for the initial values. However the
accuracy of the result does not decrease at all as we will show in Section 4.

As r → ∞, the absolute values of f(λ, τ, r) and its derivatives become exponentially small, as
we analyze the behavior in the next section. Hence we also consider the following vector

Q = exp(−r2λ1 − r|τ1|)
(

1

r
∂τ1f, ∂τ2f, . . . , ∂τdf,

1

r2
∂λ1

f, ∂λ2
f, . . . , ∂λd

f

)⊤

. (11)

Then from (6) it is easy to obtain ∂rQ as

∂rQ =
(

D−1∂rD − (2rλ1 + |τ1|)I2d +DPrD
−1
)

Q, (12)

where I2d is the identity matrix with size 2d and

D = diag

(

1

r
, 1, . . . , 1,

1

r2
, 1, . . . , 1

)

.

The equation (11) is a refinement of the equation (21) in [9]. By Proposition 3.1 in the next section,
each element of Q converges to some non-zero value when r goes to the infinity. This prevents the
adaptive Runge-Kutta method from slowing down.

3 Laplace approximation close to the infinity

In our implementation of HGM, we start from a small r = r0 > 0 and numerically integrate F in
(5) up to r = 1 and then integrate Q in (11) toward r = ∞. In order to assess the accuracy of
Q for large r, we derive the asymptotic values of the elements of Q by the Laplace method. The
Laplace approximation, including higher order terms, for the Fisher-Bingham integral itself was
given in [12]. However here we also need approximations for its derivatives, which were not given
in [12]. Hence we give the approximations of the main terms of the Fisher-Bingham integral and
its derivatives and a sketch of their proofs.

We first consider the case of single largest λ1. We state the following result.
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Proposition 3.1. Suppose 0 > λ1 > λ2 ≥ · · · ≥ λd. Then, as r → ∞,

f(λ, τ, r) =
π(d−1)/2

∏d
i=2(λ1 − λi)1/2

(erτ1 + e−rτ1) exp

(

r2λ1 −
d
∑

i=2

τ 2i
4(λi − λ1)

)

(1 + o(1)). (13)

∂λ1
f(λ, τ, r) = r2f(λ1, τ1, r)(1 + o(1)), (14)

∂λj
f(λ, τ, r) =

{

(

τj
2(λj − λ1)

)2

+
1

2(λ1 − λj)

}

f(λ, τ, r)(1 + o(1)), (j = 2, . . . , d) (15)

∂τ1f(λ, τ, r) = r
erτ1 − e−rτ1

erτ1 + e−rτ1
f(λ, τ, r)(1 + o(1)), (16)

∂τjf(λ, τ, r) =
τj

2(λ1 − λj)
f(λ, τ, r)(1 + o(1)), (j = 2, . . . , d). (17)

Note that for τ1 > 0, in (13) e−rτ1 is exponentially smaller than erτ1 and it can be omitted.
However we leave e−rτ1 there for consistency with the case of τ1 = 0. Also we found that leaving
e−rτ1 in (13) greatly improves the approximation.

We now give a rough proof of Proposition 3.1. In the proof, the main contributions from the
neighborhoods of maximal points are carefully evaluated, but the contributions from outside the
neighborhoods are not bounded rigorously. Replacing ti by rti and integrating over Sd−1(1) can
write

f(λ, τ, r) = rd−1

∫

Sd−1(1)

exp

(

r2
d
∑

i=1

λit
2
i + r

d
∑

i=1

τiti

)

dt, (18)

∂λj
f(λ, τ, r) = rd+1

∫

Sd−1(1)

t2j exp

(

r2
d
∑

i=1

λit
2
i + r

d
∑

i=1

τiti

)

dt, (19)

∂τjf(λ, τ, r) = rd
∫

Sd−1(1)

tj exp

(

r2
d
∑

i=1

λit
2
i + r

d
∑

i=1

τiti

)

dt. (20)

For very large r
r2(λ1t

2
1 + λ2t

2
2 + · · ·+ λdt

2
d), 1 = t21 + · · ·+ t2d, (21)

takes its maximum value at two points t1 = ±1, t2 = · · · = td = 0. The main contributions to
(18)–(20) come from neighborhoods of these two points (±1, 0, . . . , 0). The contribution from the
complement of these two neighborhoods should be exponentially small as r → ∞, although we do
not give a detailed argument. We also have to consider the effect of r

∑d
i=1 τiti. But it is of the

order O(r), whereas (21) is of the order O(r2). Hence r
∑d

i=1 τiti only perturbs the maximizing
values (±1, 0, . . . , 0) by the term of the order O(1/r). Based on these considerations write

t21 = 1− t22 − · · · − t2d, t1 = ±
√

1− t22 − · · · − t2d
.
= ±

(

1− 1

2
(t22 + · · ·+ t2d)),

where |t2|, . . . , |td| are small. As shown below, |ti|, i = 2, . . . , d, are of the order O(1/r). We now
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consider the neighborhood of (1, 0, . . . , 0). By completing the squares we have

r2
d
∑

i=1

λit
2
i + r

d
∑

i=1

τiti

= r2λ1 + rτ1 + r2
d
∑

i=2

(

(λi − λ1 −
τ1
2r

)t2i +
τi
r
ti
)

+ o(1)

= r2λ1 + rτ1 +

d
∑

i=2

[

(λi − λ1 −
τ1
2r

)(rti +
τi

2(λi − λ1 − τ1
2r
)
)2 −

τ 2j
4(λi − λ1 − τ1

2r
)

]

+ o(1) (22)

= r2λ1 + rτ1 +

d
∑

i=2

[

(λi − λ1)(rti +
τi

2(λi − λ1)
)2 −

τ 2j
4(λi − λ1)

]

+ o(1).

Furthermore around (1, 0, . . . , 0) the volume element dt of the unit sphere Sd−1(1) is approximately
equal to the Lebesgue measure dt2 . . . dtd, with the error of the order t22 + · · ·+ t2d. Hence by the
change of variables

ui = rti, i = 2, . . . , d,

the contribution to f(λ, τ, r) from the neighborhood of (1, 0, . . . , 0) is evaluated as

exp(r2λ1 + rτ1)

∫

Rd−1

exp((λi − λ1)(ui +
τi

2(λi − λ1)
)2 −

τ 2j
4(λi − λ1)

)du1 . . . dud

= exp

(

r2λ1 + rτ1 −
d
∑

i=2

τ 2i
4(λi − λ1)

)

π(d−1)/2

∏d
i=2(λ1 − λi)1/2

. (23)

Similarly by changing the sign of τ1 we can evaluate the contribution from the neighborhood
of (−1, 0, . . . , 0) as

exp

(

r2λ1 − rτ1 −
d
∑

i=2

τ 2i
4(λi − λ1)

)

π(d−1)/2

∏d
i=2(λ1 − λi)1/2

. (24)

Adding (23) and (24) we obtain (13).
For ∂λ1

f(λ, τ, r) and ∂τ1f(λ, τ, r), we can just put t1 = ±1 in (19) and (20). Adding contribu-
tions from two neighborhoods we obtain (14) and (16).

For ∂xi
f(λ, τ, r) and ∂τif(λ, τ, r), j ≥ 2, we write

tj =
uj

r
=

1

r

(

uj +
τj

2(λj − λ1)
− τj

2(λj − λ1)

)

,

t2j =
1

r2

(

uj +
τj

2(λj − λ1)
− τj

2(λj − λ1)

)2

and take the expectation with respect to a normal density. Then we obtain (15) and (17). Although
we did not give a detailed analysis of the remainder terms, we can show that the relative errors in
(14)–(17) are of the order O(1/r). This completes the proof of Proposition 3.1.

A generalization of Proposition 3.1 to the case that λ1 = · · · = λm > λm+1 ≥ · · · ≥ λd is given
in Appendix. We note that numerically HGM works fine even if some of the λ’s are close to one
another, because the Pfaffian system does not have a singular locus except at r = 0 and the main
exponential order is the same in Proposition 3.1 and in Proposition A.1. However when we want
to check whether the ratio of HGM to the asymptotic value is close to one, then we have difficulty
when some of the λ’s are close to one another.
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4 Numerical experiments

In this section we describe our numerical experiments on the performance of HGM. The programs
and the raw data of our numerical experiments are obtained at

http://github.com/tkoyama-may10/ball-probability/

Our programs utilize the Gnu Scientific Library[6].
In our experiments we compute the initial values of r−(d+1)F at r = r0 = 1.0× 10−6 by (9) and

(10). The reason for multiplying F by r−(d+1) is that the values of elements of F are too small at
r0 for floating point numbers. Then up to r = 1, we solve the differential equation (6) numerically.
In our implementation, we utilize explicit embedded Runge-Kutta Prince-Dormand (8, 9) method
and we set the accuracy to 1.0× 10−6. In order to prevent the elements of F becoming too large,
we re-scale the elements of F several times. Then at r = 1 we switch to Q in (11) and solve (12).

Note that we can not take r = 0 as an initial point. The point r = 0 is in the singular locus
of the differential equation (6) since the denominator of Pr becomes zero at the point. Hence,
numerical differential equation solvers can not compute the differentiation of F at the point.

Our implementation computes the initial value of F by the approximations (9) and (10), which
use only the first term of the series expansions. Hence, we have to take very small value for r in
order to reduce the error.

Each component of vector F takes very small value at r0 = 10−6. We deal with this problem
by storing not the value of F itself but the product of F and a large constant in double precision
type array. Related to this problem, there is another problem that the value of each component
of F increases rapidly when we solve ordinary differential equation (6) numerically. We multiply
vector F by a small constant when a component of F becomes larger than a fixed value. By this
way, our implementation prevents values in double precision type array becoming too large.

Our first experiment is for d = 3 and the following parameter values

σ1 = 3.00, σ2 = 2.00, σ3 = 1.00,

µ1 = 1.00, µ2 = 0.50, µ3 = 0.25, (25)

i.e.,

λ1 = −0.0555556, λ2 = −0.125, λ3 = −0.5,

τ1 = 0.111111, τ2 = 0.125, τ3 = 0.25.

By HGM we compute G(r). We show its graph in Figure 1 to confirm that our implementation
correctly calculated the asymptotic behavior as G(r) → 1 as r → ∞.

For this example, we also check the accuracy by computing the ratios of f(λ, τ, r) and the
elements of F to their asymptotic expressions in Proposition 3.1. The left figure of Figure 2 shows
the ratio of f(λ, τ, r) to its asymptotic expression and the right figure shows the ratios of elements
of F to their asymptotic expressions. Note that the value of the ratio corresponding to ∂f/∂λi

is very close to that of ∂f/∂τi so that the triangles overlap with the circles. We see that the
numerical integration involved in HGM, starting from a small r0, is remarkably accurate, so that
the ratios numerically converge to 1 as r → ∞.

In our second example we consider diagonal matrices Σ(1) and Σ(2) with diagonal elements

(σ2
k)

(1) =
d+ 1

k(k + 1)
(1 ≤ k ≤ d), (26)

7
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Figure 1: CDF G(r) for the first experiment
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Figure 2: Ratios to the Laplace approximations

and

(σ2
k)

(2) =
2(d+ 2)(d+ 3)

k(k + 1)(k + 2)(k + 3)
(1 ≤ k ≤ d), (27)

respectively. These weights are considered for cumulative chi-square statistics in [7]. Let

µ(1) = 0,

µ(2) =
(

0 0.01 0.02 · · · 0.01× (d− 1)
)⊤

.
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For each dimension d, we computed the probability P (10−6 ≤ ‖X‖ < 40.0) and measured the
computational times in seconds. We considered the following four patterns of parameters:

(Σ(1), µ(1)), (Σ(1), µ(2)),

(Σ(2), µ(1)), (Σ(2), µ(2)).

The experimental results are shown in Table 1. 1−p stands for the values 1−P (10−6 ≤ ‖X‖ < 40.0)
are generally accurate to 10−8.

Table 1: Accuracy and computational times for Σ(1) and Σ(2)

dimension
Σ(1) Σ(2)

µ = 0 µ 6= 0 µ = 0 µ 6= 0
1− p times(s) 1− p times(s) 1− p times(s) 1− p times(s)

10 1.60e-08 0.03 1.60e-08 0.03 1.60e-08 0.11 2.10e-09 0.11
11 1.76e-08 0.03 1.57e-08 0.04 1.76e-08 0.12 1.56e-09 0.14
12 1.61e-08 0.04 1.15e-08 0.04 1.61e-08 0.16 9.59e-10 0.17
13 1.81e-08 0.04 1.05e-08 0.04 1.80e-08 0.20 7.90e-10 0.19
14 2.02e-08 0.04 9.95e-09 0.05 2.02e-08 0.24 6.94e-10 0.25
15 2.34e-08 0.04 9.58e-09 0.06 2.34e-08 0.30 6.44e-10 0.30
16 2.77e-08 0.06 9.73e-09 0.07 2.77e-08 0.36 2.89e-10 0.36
17 3.40e-08 0.07 4.85e-09 0.08 3.40e-08 0.41 2.74e-10 0.42
18 1.89e-08 0.08 4.62e-09 0.08 1.89e-08 0.49 2.82e-10 0.52
19 2.08e-08 0.08 4.40e-09 0.10 2.09e-08 0.56 4.05e-10 0.57
20 2.33e-08 0.10 4.32e-09 0.11 2.41e-08 0.65 1.13e-09 0.65

As the radius r increases or the dimension d of the sphere increases, our implementation takes
long time to evaluate. Table 1 shows that the computational complexity also depends on the values
of λ. However we do not know what value of λ makes the computational time worse.

As our third example we consider how our method works for large dimension. Corresponding to
the asymptotic null distribution of Anderson-Darling statistic, which is an infinite sum of weighted
χ2 variables, consider the weights

σ2
k =

1

k(k + 1)
, µk = 0 (1 ≤ k ≤ d).

Here we truncate the infinite series at d. We computed the probability and measured its com-
putational time. We fixed the radius as r = 20.0. The results on the computational time are
shown in Table 2 and its figure. Even for d = 100, our method is accurate and fast enough to
be practical. This is a remarkable progress since the implementation of HGM in [9] can compute
only up to dimension d = 8. The key idea for this progress are the simple approximation of the
initial values (9) and (10) for HGM and the refined differential equation (12) based on the Laplace
approximation.

The computational bottleneck of HGM is the computation of PrF in each step of solving the
ODE. By the form of the matrix Pr, the number of additions in each step increases in order O(d2).
We guess this is a reason that growth of computational times in the figure of Table 2 seems to be
in the order O(d2).
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Table 2: Computational times for Anderson-Darling statistic

dim 1− p time(s)
30 5.70e-08 1.03
35 3.76e-08 1.59
40 4.85e-08 2.36
45 6.13e-08 3.30
50 8.97e-08 4.42
55 5.29e-08 5.94
60 7.91e-08 7.56
65 6.28e-08 9.69
70 1.02e-07 12.05
75 6.77e-08 14.63
80 7.22e-08 17.81
85 6.25e-08 21.33
90 5.64e-08 25.10
95 5.21e-08 29.54
100 4.90e-08 35.05
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Graph of computational times

As our fourth example we consider the case where Σ is the identity matrix and µ = 0. In this
case, the Fisher–Bingham integral can be written by the density function of χ-distribution, and
we have

f(r) =
2πd/2

Γ(d/2)
rd−1e−r2/2.

Table 3 shows the result for f(1.0) by HGM and difference 2πd/2

Γ(d/2)
rd−1e−r2/2 − f(1.0) for each

dimension.

Table 3: Comparison to χ-distribution: Σ = I and µ = 0.

dim hgm exact−hgm
3 7.621888 1.35e-06
4 11.972435 7.09e-07
5 15.963247 4.85e-07
6 18.806257 3.70e-07
7 20.060008 3.34e-07
8 19.693866 3.13e-07
9 18.005821 2.88e-07
10 15.467527 2.47e-07

As our fifth example we consider the case where

Σ = diag

(

1√
2
,
1√
2
,
1√
4
,
1√
4
,
1√
6
,
1√
6
, · · · , 1√

2n
,

1√
2n

)

, µ = 0 (d = 2n).

In this case, the ball probability (1) equals to

P

(

1

2
X2

1 +
1

2
X2

2 +
1

4
X2

3 +
1

4
X2

4 +
1

6
X2

5 +
1

6
X2

6 + · · ·+ 1

2n
X2

2n−1 +
1

2n
X2

2n < r2
)
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where X1, . . . , X2n are independent and identically distributed with the standard normal distri-
bution. Since the distribution of 1

2k

(

X2
2k−1 +X2

2k

)

is the exponential distribution with the rate

parameter k, the above probability is equal to (1− e−r2)n [5, p.21]. The second column in Table 4
shows the result of HGM for the ball probability at r = 1.0. The third column shows the difference
between HGM and the exact value.

Table 4: Comparison at specific parameters.

dim hgm exact−hgm
6 0.252580 4.97e-09
8 0.159661 2.54e-09
10 0.100925 1.61e-09
12 0.063797 1.03e-09
14 0.040327 8.16e-10
16 0.025492 7.07e-10
18 0.016114 3.04e-10
20 0.010186 2.37e-10

5 Summary and discussion

In this paper we applied HGM for computing distribution function of a weighted sum of inde-
pendent noncentral chi-square random variables. We found that our method is numerically both
accurate and fast, after we implemented the following ideas. First, during the application of Runge-
Kutta method, we re-scaled the vector F in (5) as needed to keep its elements within the precision
for floating point numbers. Also we divided the interval for integration into (0, 1] and [1,∞) and
switched from F to Q in (11) in view of the asymptotic values for Q. Our experience in this
paper shows that re-scaling of the standard monomials is important in numerical implementation
of HGM.

In our implementation, the numerical integration starts from a small r = r0 > 0 and the
integration proceeds to r = ∞. On the other hand, we have asymptotic results for large r in Section
3. Then we might consider reversing the direction of integration and start with initial values at
very large r. We may call the former the “forward integration” and the latter the “backward
integration”. However we found that the backward integration is not numerically stable. Hence
the asymptotic values can not be used as initial values. In this paper we used the asymptotic
values just for checking the accuracy HGM in the forward direction.

It is an interesting question, whether the asymptotic values can be used to adjust the values
of the forward integration. We may look at the difference between F by forward HGM and its
asymptotic value for very large r and use the difference to adjust F at intermediate values of r.
However it is not clear how this adjustment can be implemented.

A A general form of Proposition 3.1

In Proposition 3.1 we assumed λ1 > λ2. In this appendix we state the following proposition for the
general case λ1 = · · · = λm > λm+1 without a proof. For this case, the integrand for the Fisher-
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Bingham integral takes its maximum on the (m− 1)-dimensional sphere Sm−1(1), rather than on
a finite number of points. However by appropriate choice of coordinates and by multiplication of
the volume Vol(Sm−1(1)), the derivation of Proposition A.1 is basically the same as Proposition
3.1.

Proposition A.1. Assume that

0 > λ1 = · · · = λm > λm+1 ≥ · · · ≥ λd.

If 0 = τ1 = · · · = τm, then as r → ∞,

f(λ, τ, r) = rm−1Sm−1 exp

(

r2λ1 −
d
∑

i=m+1

τ 2i
4(λi − λ1)

)

π(d−m)/2

∏d
i=m(λ1 − λi)1/2

(1 + o(1)),

∂λj
f(λ, τ, r) =

r2

m
f(λ, τ, r)(1 + o(1)), j ≤ m,

∂τjf(λ, τ, r) = 0, j ≤ m,

∂τjf(λ, τ, r) = − τj
2(λj − λ1)

f(λ, τ, r)(1 + o(1)), j > m,

∂λj
f(λ, τ, r) =

(

1

2(λ1 − λj)
+

τ 2j
4(λj − λ1)2

)

f(λ, τ, r)(1 + o(1)), j > m.

If (τ1, . . . , τm) 6= (0, . . . , 0), define γ = (τ 21 + · · ·+ τ 2m)
1/2. Then, as r → ∞,

f(λ, τ, r) = exp

(

r2λ1 + rγ −
d
∑

i=m+1

τ 2i
4(λi − λ1)

)

(

2r

γ

)(m−1)/2
π(d−1)/2

∏d
i=m(λ1 − λi)1/2

(1 + o(1)),

∂τjf(λ, τ, r) = r
τj
γ
f(λ, τ, r)(1 + o(1)), τj 6= 0, j ≤ m,

∂λj
f(λ, τ, r) = r2

τ 2j
γ2

f(λ, τ, r)(1 + o(1)), τj 6= 0, j ≤ m,

∂τjf(λ, τ, r) = 0, τj = 0, j ≤ m,

∂λj
f(λ, τ, r) =

r

γ
f(λ, τ, r)(1 + o(1)), τj = 0, j ≤ m,

∂τjf(λ, τ, r) = − τj
2(λj − λ1)

f(λ, τ, r)(1 + o(1)), j > m,

∂λj
f(λ, τ, r) =

(

1

2(λ1 − λj)
+

τ 2j
4(λj − λ1)2

)

f(λ, τ, r)(1 + o(1)), j > m.
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