Skip to main content
Log in

Spurious regression due to neglected of non-stationary volatility

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

This paper examines the effects of permanent changes in the variance of the errors on routine applications of standard t-ratio test in regression models. It is shown the asymptotic distribution of t-ratio test is not invariant to non-stationary in variance, and the phenomenon of spurious regression will occur independently of the structure assumed for these time series. The intuition behind this is that the non-stationary volatility can increase persistency in the level of regression errors, which then leads to spurious correlation. Monte Carlo experiment evidence indicates that, in contrast to the broken level/trend case, the presence of spurious relationship critically depends on the location and magnitude of changes, regardless of the sample size. Finally, some real data sets from the Shanghai stock database are reported for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Amado C, Teräsvirta T (2014) Modelling changes in the unconditional variance of long stock return series. J Empir Finance 22:15–35

    Article  Google Scholar 

  • Andrew DWK (1991) Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59:817–858

    Article  MathSciNet  MATH  Google Scholar 

  • Berkes I, Horva’th L, Kokoszka P, Shao Q (2005) Almost sure convergece of the bartlett estimator. Period Math Hung 51:11–25

    Article  MATH  Google Scholar 

  • Berkes I, Gombay E, Horváth L (2009) Testing for changes in the covariance structure of linear processes. J Stat Plan Inference 139:2044–2063

    Article  MathSciNet  MATH  Google Scholar 

  • Billingsley P (1968) Convergence of probability measures. Wiley, New York

    MATH  Google Scholar 

  • Busetti F, Taylor AMR (2003) Testing against stochastic trend in the presence of variance shifts. J Bus Econ Stat 48:225–234

    MATH  Google Scholar 

  • Chatelain JB, Ralf K (2014) Spurious regressions and near-multicollinearity, with an application to aid, policies and growth. J Macroecon 29:85–96

    Article  Google Scholar 

  • Chen G, Choi YK, Zhou Y (2005) Nonparametric estimation of structural change points in volatility models for time series. J Econom 126:79–114

    Article  MathSciNet  MATH  Google Scholar 

  • Choi C-Y, Hu L, Ogaki M (2008) Robust estimation for structural spurious regression and a Hausman-type cointegration tes. J Econ 142:327–351

    Article  MATH  Google Scholar 

  • Davidson J (1994) Stochastic limit theory. Oxford University Press, Oxford

    Book  Google Scholar 

  • de Jong R (2000) A strong consistency proof for heteroskedasticity and autocorrelation consistent covariance matrix estimators. Econometrica 64:813–836

    MATH  Google Scholar 

  • Entorf H (1997) Random walks with drifts: nonsense regression and spurious fixed-effect estimation. J Econ 25:287–296

    Article  MathSciNet  MATH  Google Scholar 

  • Granger CWJ, Newbold P (1974) Spurious regressions in econometrics. J Econ 2:111–120

    Article  MATH  Google Scholar 

  • Haldrup N (1994) The asymptotic of single-equation cointegratioin regressions with \(I(1)\) and \(I(2)\) variables. J Econ 63:153–181

    Article  MathSciNet  MATH  Google Scholar 

  • Hamori S, Tokihisa A (1997) Testing for a unit root in the presence of a variance shift. Econ Lett 57:245–253

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen BE (1992a) Consistent covariance matrix estimation for dependent heterogeneous processes. Econometrica 60:967–972

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen BE (1992b) Convergence to stochastic integrals for dependent heterogeneous processes. Econ Theory 8:489–500

    Article  MathSciNet  Google Scholar 

  • Hansen E, Rahbek A (1998) ARCH innovations and their impact on cointegration rank testing. Working Paper no. 22, University of Aarhus, Centre for Analytical Fianace

  • Horváth L, Kokoszka P (2003) A bootstrap approximation to a unit root test statistic for heavy-tailed observations. Stat Probab Lett 63:163–173

    Article  MathSciNet  MATH  Google Scholar 

  • Inclán C, Tiao GC (1994) Use of cumulative sums of squares for retrospective detection of change of variance. J Am Stat Assoc 89:913–923

    MathSciNet  MATH  Google Scholar 

  • Jin H, Zhang J-S, Zhang S, Yu C (2013) The spurious regression of AR(p) infinite-variance sequence in the presence of structural breaks. Comput Stat Data Anal 67:25–40

    Article  MathSciNet  Google Scholar 

  • Jin H, Zhang J (2011) Modified tests for variance changes in autoregressive regression. Math Comput Simul 81:1099–1199

    Article  MathSciNet  MATH  Google Scholar 

  • Kim J-Y (2000) Detection of change in persistence of a linear time series. J Econ 95:97–116

    Article  MathSciNet  MATH  Google Scholar 

  • Kim S, Cho S, Lee S (2000) On the cusum test for parameter changes in GARCH(1,1) models. Commun Stat Theroy Methods 29:445–462

    Article  MathSciNet  MATH  Google Scholar 

  • Kim T-H, Leybourne S, Newbold P (2002) Unit root tests with a break in innovation variance. J Econ 109:365–387

    Article  MathSciNet  MATH  Google Scholar 

  • Kim T-H, Lee Y-S, Newbold P (2004) Spurious regression with stationary processes around linear trends. Econ Lett 83:257–262

    Article  MathSciNet  MATH  Google Scholar 

  • Kim K, Schmidt P (1993) Unit root tests with conditional heteroskedasticity. J Econ 59:287–300

    Article  Google Scholar 

  • Lamoreux CG, Lastrapes WD (1990) Persistence in variance, structural change and the GARCH model. J Bus Econ Stat 48:225–234

    Google Scholar 

  • Lee S, Park S (2001) The cusum of squares test for scale changes in infinite order moving average processes. Scand J Stat 28:625–644

    Article  MathSciNet  MATH  Google Scholar 

  • Marmol F (1998) Spurious regression theory with nonstationary fractionally integrated processes. J Econ 84:223–250

    Article  MathSciNet  MATH  Google Scholar 

  • Neumann MH, Paparoditis E (2000) On bootstrapping \(L_2\)-type statistics in density testing. Stat Probab Lett 50:137–147

    Article  MathSciNet  MATH  Google Scholar 

  • Noriega AE, Ventosa-Santaulària D (2007) Spurious regression and trending variables. Oxf Bull Econ Stat 69(I):439–444

    Article  Google Scholar 

  • Phillips PCB (1996) Understanding spurious regressions in econometrics. J Econ 33:311–340

    Article  MathSciNet  MATH  Google Scholar 

  • Phillips PCB, Perron P (1988) Testing for a unit root in time series regression. Biometrika 75:335–346

    Article  MathSciNet  MATH  Google Scholar 

  • Phillips PCB, Solo V (1992) Asymptotic for linear processes. Ann Stat 20:971–1001

    Article  MathSciNet  MATH  Google Scholar 

  • Stewart C (2011) A note on spurious significance in regressions involving \(I(0)\) and \(I(1)\) variables. Econ Lett 142:327–351

    Google Scholar 

  • Stout WF (1974) Almost sure convergence. Academic Press, New York

    MATH  Google Scholar 

  • Sun Y (2004) Spurious regressions between stationary generalized long memory processes. Econ Lett 90:446–454

    Article  MathSciNet  MATH  Google Scholar 

  • Tsay W-J, Chung C-F (2000) The spurious regression of fractionally integrated processes. J Econ 96:155–182

    Article  MathSciNet  MATH  Google Scholar 

  • van Dijk D, Osborn DR, Sensier M (2002) Changes in variability of the business cycle in the G7 countries. Erasmus University Rotterdam, Rotterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si Zhang.

Additional information

Supported in part by a National Natural Science Foundation of China Grant Nos. 71103143, 71273206 and 71473194, Shaanxi Natural Science Foundation of China Grant Nos. 2013KJXX-40 and 16JK1500.

Appendix

Appendix

Proof of Lemma 1

Part (1) We consider two case: when \(r\le \tau \), by Assumption 1 and a functional central limit theorem as in Hansen (1992a), we have

$$\begin{aligned} T^{-1/2}\sum ^{[Tr]}_{t=1}\lambda _{1,t}\varepsilon _{t} \Rightarrow \sigma _\varepsilon \int ^r_0\lambda _{0}d{\dot{B}}_\varepsilon (s), \end{aligned}$$
(7.1)

and for the other case \(r>\tau \), the limit is

$$\begin{aligned} T^{-1/2}\sum ^{[Tr]}_{t=1}\lambda _{1,t}\varepsilon _{t} \Rightarrow \sigma _\varepsilon \int ^\tau _0\lambda _0d{\dot{B}}_{\varepsilon }(s) +\sigma _\varepsilon \int ^r_\tau \lambda _1d{\dot{B}}_{\varepsilon }(s). \end{aligned}$$
(7.2)

Therefore, we get

$$\begin{aligned} T^{-1/2}\sum ^{[Tr]}_{t=1}x_{1,t} \Rightarrow {\dot{\lambda }}\sigma _\varepsilon {\dot{\lambda }}^{-1}\int ^r_0[\lambda _0{\mathbf {1}}_{\{s\le \tau \}} +\lambda _1{\mathbf {1}}_{\{s>\tau \}}]d{\dot{B}}_{\varepsilon }(s)={\dot{\lambda }}\sigma _\varepsilon {\dot{B}}_{x}(r). \end{aligned}$$

Similarly, it is straightforward to show that

$$\begin{aligned} T^{-1}\sum ^{T}_{t=1}x^2_{1,t}\!=\!T^{-1}\sum ^{[T\tau ]}_{t=1}\lambda ^2_0\varepsilon ^2_{t} +T^{-1}\sum ^{T}_{t=[T\tau ]+1}\lambda ^2_1\varepsilon ^2_{t} \mathop {\rightarrow }\limits ^{p}\tau \lambda ^2_0\sigma ^2_\varepsilon +(1-\tau )\lambda ^2_1\sigma ^2_\varepsilon \!=\!{\dot{\lambda }}^2\sigma ^2_\varepsilon . \end{aligned}$$

Part (2) The convergence of \(T^{-1/2}\sum \nolimits ^{[Tr]}_{t=1}y_{1,t}\) and \(T^{-1}\sum \nolimits ^{T}_{t=1}y^2_{1,t}\) to \({\dot{\omega }}\sigma _\xi {\dot{B}}_{y}(r)\) and \({\dot{\omega }}^2\sigma ^2_\xi \) can be respectively proved by above exactly the same steps as in (1) case.

Part (3) We first deal with \(\tau \le \varsigma \). Note that \(\varepsilon _{1,t}\) and \(\xi _{1,t}\) are independent, when \(r\le \tau \), yielding

$$\begin{aligned} T^{-1/2}\sum ^{[Tr]}_{t=1}\lambda _{1,t}\varepsilon _{1,t}\omega _{1,t}\xi _{1,t} \Rightarrow \sigma _\varepsilon \sigma _\xi \int ^r_0\lambda _{0}\omega _0d{\dot{B}}_{\varepsilon \xi }(s), \end{aligned}$$
(7.3)

which follows the results in Stout (1974) and Davidson (1994).

Similarly, observing that for \(\tau <r\le \varsigma \),

$$\begin{aligned} T^{-1/2}\sum ^{[Tr]}_{t=1}\lambda _{1,t}\varepsilon _{1,t}\omega _{1,t}\xi _{1,t} \Rightarrow \sigma _\varepsilon \sigma _\xi \int ^\tau _0\lambda _{0}\omega _0d{\dot{B}}_{\varepsilon \xi }(s) +\sigma _\varepsilon \sigma _\xi \int ^r_\tau \lambda _{1}\omega _0d{\dot{B}}_{\varepsilon \xi }(s),\nonumber \\ \end{aligned}$$
(7.4)

and for \(\varsigma <r\),

$$\begin{aligned}&T^{-1/2}\sum ^{[Tr]}_{t=1}\lambda _{1,t}\varepsilon _{1,t}\omega _{1,t}\xi _{1,t} \Rightarrow \sigma _\varepsilon \sigma _\xi \left\{ \int ^\tau _0\lambda _{0}\omega _0d{\dot{B}}_{\varepsilon \xi }(s)\right. \nonumber \\&\quad \left. +\int ^\varsigma _\tau \lambda _{1}\omega _0d{\dot{B}}_{\varepsilon \xi }(s) +\int ^r_\varsigma \lambda _{1}\omega _1d{\dot{B}}_{\varepsilon \xi }(s)\right\} . \end{aligned}$$
(7.5)

Just as relations (7.3), (7.4) and (7.5) imply that

$$\begin{aligned} T^{-1/2}\sum ^{[Tr]}_{t=1}x_{1,t}y_{1,t} \Rightarrow \,&{\dot{\pi }}\sigma _\varepsilon \sigma _\xi {\dot{\pi }}^{-1}\int ^r_0[\lambda _0\omega _0{\mathbf {1}}_{\{s\le \tau \}} +\lambda _1\omega _0{\mathbf {1}}_{\{\tau<s\le \varsigma \}}\\&+\,\lambda _1\omega _1{\mathbf {1}}_{\{\varsigma <s\}}]d{\dot{B}}_{\varepsilon \xi }(s) =\,{\dot{\pi }}\sigma _\varepsilon \sigma _\xi {\dot{B}}_{\varepsilon \xi }(r). \end{aligned}$$

Hence, we conclude that

$$\begin{aligned} T^{-1}\sum ^{T}_{t=1}x^2_{1,t}y^2_{1,t}= & {} T^{-1}\left\{ \lambda ^2_0\omega ^2_0\sum ^{[T\tau ]}_{t=1}\varepsilon ^2_{t}\xi ^2_{t} +\lambda ^2_1\omega ^2_0\sum ^{[T\varsigma ]}_{t=[T\tau ]+1}\varepsilon ^2_{t}\xi ^2_{t} +\lambda ^2_1\omega ^2_1\sum ^{T}_{t=[T\varsigma ]+1}\varepsilon ^2_{t}\xi ^2_{t}\right\} \\&\mathop {\rightarrow }\limits ^{p}\sigma ^2_\varepsilon \sigma ^2_\xi \{\tau \lambda ^2_0\omega ^2_0+(\varsigma -\tau )\lambda ^2_1\omega ^2_0 +(1-\varsigma )\lambda ^2_1\omega ^2_1\}={\dot{\pi }}^2\sigma ^2_\varepsilon \sigma ^2_\xi . \end{aligned}$$

Thus following the proof of \(\tau \le \varsigma \), one can verify the negligibility of \(\tau >\varsigma \) case.

Part (4) For following convenience, let \(\sigma ^2_{1,x}=\sum ^{T-1}_{k=-T+1}h\left( k/q_T\right) \gamma _{1,x}(k)\), where for \(k\ge 0, \gamma _{1,x}(k)=T^{-1}\sum ^{T-k}_{t=1}E(x_{1,t}x_{1,t+k})\), while \(\gamma _{1,x}(k)=\gamma _{1,x}(-k)\) for \(k<0\), it suffices to prove that \(\sigma ^2_{1,x}-{\dot{\lambda }}^2\sigma ^2_\varepsilon \rightarrow 0\) as \(T\rightarrow \infty \).

Under the Assumptions 1 and 2, de Jong (2000) and Andrew (1991) guaranteed that \(\sigma ^2_{\varepsilon ,T}\rightarrow \sigma ^2_{\varepsilon }\), where \(\sigma ^2_{\varepsilon ,T}=\sum ^{T-1}_{k=-T+1}h\left( k/q_T\right) \gamma _{\varepsilon }(k), \gamma _{\varepsilon }(k)=E(\varepsilon _t\varepsilon _{t+|k|})\). Thus, we only just need to prove \(\sigma ^2_{1,x}-{\dot{\lambda }}^2\sigma ^2_{\varepsilon ,T}\rightarrow 0\). The remaider of the proof is necessary to show that, as \(T\rightarrow \infty \), (i) \(\sigma ^2_{1,x}-{\tilde{\sigma }}^2_{1,x}\rightarrow 0\), where \({\tilde{\sigma }}^2_{1,x}=\sum ^{T-1}_{k=-T+1}h\left( k/q_T\right) \gamma _{\varepsilon }(k)T^{-1}\sum ^{T-|k|}_{t=1}\lambda ^2_t\); (ii) \({\tilde{\sigma }}^2_{1,x}-{\dot{\lambda }}^2\sigma ^2_{\varepsilon ,T}\rightarrow 0\).

We first verify the (i) case. Observe that

$$\begin{aligned} \left| \sigma ^2_{1,x}-{\tilde{\sigma }}^2_{1,x}\right|= & {} \left| \sum ^{T-1}_{k=-T+1}h\left( k/q_T\right) \frac{1}{T}\sum ^{T-|k|}_{t=1}(\lambda _t\lambda _{t+|k|}-\lambda ^2_t)\gamma _{\varepsilon }(k)\right| \nonumber \\ \!\le & {} \! \sum ^{T-1}_{k=-T+1}h\left( k/q_T\right) \frac{1}{T}\sum ^{T-|k|}_{t=1}\lambda _t|\lambda _{t+|k|}-\lambda _t| \cdot \sum ^{T-1}_{k=-T+1}|\gamma _{\varepsilon }(k)|=I\cdot { II}.\qquad \end{aligned}$$
(7.6)

By the theorem 3.1 of Phillips and Perron (1988) and corollary 14.3 of Davidson (1994), we obtain that for some \(C>0, \sum ^\infty _{k=0}|\gamma _\varepsilon (k)|<C\sum ^\infty _{k=0}\varphi ^{1-d/2}_{\varepsilon ,k}<\infty \), thus \(II<\infty \).

Let us now consider that \(I=o_p(1)\). Define \(\breve{\lambda }=\max \{\lambda _0,\lambda _1\}\), as \(T\rightarrow \infty \), we have

$$\begin{aligned} \sum ^{T-|k|}_{t=1}\lambda _t|\lambda _{t+|k|}-\lambda _t|\le \breve{\lambda }\sum ^{T-|k|}_{t=1}|\lambda _{t+|k|}-\lambda _t|\le \breve{\lambda }\cdot |k||\lambda _1-\lambda _0|\le |k|\breve{\lambda }^2, \end{aligned}$$

and therefore,

$$\begin{aligned} I\le \frac{\breve{\lambda }^2}{T} \sum ^{T-1}_{k=-T+1}h\left( k/q_T\right) |k|=\frac{\breve{\lambda }^2q^2_T}{T} \sum ^{T-1}_{k=-T+1}h\left( k/q_T\right) \frac{|k|}{q_T}\frac{1}{q_T}\rightarrow 0, \end{aligned}$$

since \(\sup _{T\ge 1}q^{-2}_T\sum ^{T-1}_{k=-T+1}|h(k/q_T)||k|<\infty \) and \(q^2_T/T=o_p(1)\) under Assumption 2. Because \(I\rightarrow 0\) and II is bounded, this implies \(\sigma ^2_{1,x}-{\tilde{\sigma }}^2_{1,x}\rightarrow 0\).

Regarding (ii), by setting \({\tilde{\lambda }}^{2}=T^{-1}\sum ^T_{t=1}\lambda ^2_t\), after some algebra it follows that

$$\begin{aligned} \left| {\tilde{\sigma }}^2_{1,x}-{\dot{\lambda }}^{2}\sigma ^2_{\varepsilon ,T}\right| \le \left| {\tilde{\sigma }}^2_{1,x}-{\tilde{\lambda }}^{2}\sigma ^2_{\varepsilon ,T}\right| +\left| {\tilde{\lambda }}^{2}\sigma ^2_{\varepsilon ,T}-{\dot{\lambda }}^{2}\sigma ^2_{\varepsilon ,T}\right| . \end{aligned}$$

It is straightforward to see that,

$$\begin{aligned} \left| {\tilde{\sigma }}^2_{1,x}-{\tilde{\lambda }}^{2}\sigma ^2_{\varepsilon ,T}\right|= & {} \left| \sum ^{T-1}_{k=-T+1}h(k/q_T)\gamma _\varepsilon (k)\frac{-1}{T}\sum ^{T}_{t=T-|k|+1}\lambda ^2_t\right| \nonumber \\\le & {} \frac{\breve{\lambda }^2}{T}\sum ^{T-1}_{k=-T+1}|h(k/q_T)||k||\gamma _\varepsilon (k)|. \end{aligned}$$
(7.7)

We conclude by showing that the foregoing results continue to hold and obtain \({\tilde{\sigma }}^2_{1,x}-{\tilde{\lambda }}^{2}\sigma ^2_{\varepsilon ,T}\rightarrow 0\). Moreover, under the Assumptions 1, \({\tilde{\lambda }}^{2}\sigma ^2_{\varepsilon ,T}-{\dot{\lambda }}^{2}\sigma ^2_{\varepsilon ,T}\rightarrow 0\) follows because the limit of \({\tilde{\lambda }}^{2}\) is \({\dot{\lambda }}^2\). Therefore, the limit of (7.6) and (7.7) tend to zero and the proof is completed. \(\square \)

Proof of Lemma 2

The proof follows trivially from Lemma 1 and is omitted for brevity. \(\square \)

Proof of Theorem 1

By Lemmas 1 and 2, it guarantees that

$$\begin{aligned} T^{1/2}\hat{\beta }= & {} \frac{T^{-1/2}\sum \limits ^T_{t=1}x_{1,t}y_{1,t} -T^{-1/2}\left( T^{-1/2}\sum \limits ^T_{t=1}x_{1,t}\right) \left( T^{-1/2}\sum \limits ^T_{t=1}y_{1,t}\right) }{T^{-1}\sum \limits ^T_{t=1}x^2_{1,t}-T^{-1/2}\left( T^{-1/2}\sum \limits ^T_{t=1}x_{1,t}\right) \left( T^{-1/2}\sum \limits ^T_{t=1}x_{1,t}\right) }\nonumber \\\Rightarrow & {} \frac{{\dot{\pi }}\sigma _\xi }{{\dot{\lambda }}^2\sigma _\varepsilon }\cdot {\dot{B}}_{xy}(1). \end{aligned}$$
(7.8)

From the weak convergence \(\sum ^T_{t=1}x_{1,t}=O_p(T^{1/2})\) and \(\sum ^T_{t=1}y_{1,t}=O_p(T^{1/2})\), it implied that \(\hat{\eta }_t=(y_{1,t}-T^{-1}\sum ^T_{i=1}y_{1,i})-\hat{\beta }(x_{1,t}-T^{-1}\sum ^T_{i=1}x_{1,i}) =y_{1,t}-\hat{\beta }x_{1,t}+o_p(1)\). Thus, we have

$$\begin{aligned} \hat{\gamma }_\eta (k)= & {} \frac{1}{T}\sum ^{T-|k|}_{t=1}\hat{\eta }_t\hat{\eta }_{t+|k|} =\frac{1}{T}\sum ^{T-|k|}_{t=1}(y_{1,t}-\hat{\beta }x_{1,t})(y_{1,t+|k|}-\hat{\beta }x_{1,t+|k|})\nonumber \\= & {} \frac{1}{T}\sum ^{T-|k|}_{t=1}\left( y_{1,t}y_{1,t+|k|}-\hat{\beta }y_{1,t}x_{1,t+|k|} -\hat{\beta }y_{1,t+|k|}x_{1,t}+\hat{\beta }^2x_{1,t}x_{1,t+|k|}\right) \nonumber \\= & {} \frac{1}{T}\sum ^{T-|k|}_{t=1}y_{1,t}y_{1,t+|k|}+\hat{\beta }^2\frac{1}{T}\sum ^{T-|k|}_{t=1}x_{1,t}x_{1,t+|k|}, \end{aligned}$$
(7.9)

which follows \(T^{-1}\sum ^T_{t=1}x_{1,t}y_{1,t+|k|}=o_p(1)\) and \(T^{-1}\sum ^T_{t=1}x_{1,t+|k|}y_{1,t}=o_p(1)\) as \(x_{1,s}\) and \(y_{1,t}\) are supposed to be independent for all \(s,t\ge 1\).

Together with (2.7) and (7.9), yields that

$$\begin{aligned} \hat{\sigma }^2_\eta =\sum ^{T-1}_{k=-T+1}h\left( \frac{k}{q_T}\right) \frac{1}{T}\sum ^{T-|k|}_{t=1}y_{1,t}y_{1,t+|k|} +\hat{\beta }^2\sum ^{T-1}_{k=-T+1}h\left( \frac{k}{q_T}\right) \frac{1}{T}\sum ^{T-|k|}_{t=1}x_{1,t}x_{1,t+|k|}. \end{aligned}$$

Using the Lemma 1 and fact \(\hat{\beta }\) is of \(O_p(T^{-1/2})\), we obtain

$$\begin{aligned} \hat{\sigma }^2_\eta \mathop {\rightarrow }\limits ^{p}{\dot{\omega }}^2\sigma ^2_\xi +\hat{\beta }^2{\dot{\lambda }}^2\sigma ^2_\varepsilon ={\dot{\omega }}^2\sigma ^2_\xi +o_p(1). \end{aligned}$$
(7.10)

Combining these results with the asymptotic behavior of \(\hat{\beta }\), we get

$$\begin{aligned} t_{\hat{\beta }}=\frac{T^{1/2}\hat{\beta }}{\hat{\sigma }_\eta \left( T^{-1}\sum ^T_{t=1}x^2_{1,t}\right) ^{1/2}+o_p(1)} \Rightarrow \frac{{\dot{\pi }}}{{\dot{\omega }}{\dot{\lambda }}}\cdot {\dot{B}}_{xy}(1). \end{aligned}$$

Finally, we also have

$$\begin{aligned} TR^2=T\hat{\beta }^2 \cdot \frac{T^{-1}\sum \limits ^T_{t=1}x^2_{1,t}+o_p(1)}{T^{-1}\sum \limits ^T_{t=1}y^2_{1,t}+o_p(1)} \mathop {\rightarrow }\limits ^{p}\frac{{\dot{\pi }}^2}{{\dot{\lambda }}^2{\dot{\omega }}^2}\cdot {\dot{B}}^2_{xy}(1). \end{aligned}$$

Hence, the proof of Theorem 1 is completed.

Proof of Theorem 2

The idea of the proof is similar to Theorem 1 but, instead of Lemma 1, Lemma 2 is needed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, H., Zhang, S. & Zhang, J. Spurious regression due to neglected of non-stationary volatility. Comput Stat 32, 1065–1081 (2017). https://doi.org/10.1007/s00180-016-0687-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-016-0687-x

Keywords

Navigation