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Abstract We assessed the ability of several penalized regression methods for linear
and logistic models to identify outcome-associated predictors and the impact of pre-
dictor selection on parameter inference for practical sample sizes. We studied effect
estimates obtained directly from penalized methods (Algorithm 1), or by refitting
selected predictors with standard regression (Algorithm 2). For linear models, penal-
ized linear regression, elastic net, smoothly clipped absolute deviation (SCAD), least
angle regression and LASSO had a low false negative (FN) predictor selection rates
but false positive (FP) rates above 20 % for all sample and effect sizes. Partial least
squares regression had few FPs but many FNs. Only relaxo had low FP and FN rates.
For logistic models, LASSO and penalized logistic regression had many FPs and few
FNs for all sample and effect sizes. SCAD and adaptive logistic regression had low or
moderate FP rates but many FNs. 95 % confidence interval coverage of predictors with
null effects was approximately 100 % for Algorithm 1 for all methods, and 95 % for
Algorithm 2 for large sample and effect sizes. Coverage was low only for penalized
partial least squares (linear regression). For outcome-associated predictors, coverage
was close to 95 % for Algorithm 2 for large sample and effect sizes for all meth-
ods except penalized partial least squares and penalized logistic regression. Coverage
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was sub-nominal for Algorithm 1. In conclusion, many methods performed compara-
bly, and while Algorithm 2 is preferred to Algorithm 1 for estimation, it yields valid
inference only for large effect and sample sizes.

Keywords Biased estimates - Post-model selection inference - Finite sample
inference - Shrinkage - Variable selection

1 Introduction

Many regression procedures have been proposed in the recent literature that use penal-
ties on regression coefficients in order to achieve sparseness or shrink them toward
zero. These methods are popular for the analysis of datasets with large numbers of
predictors, as they allow efficient selection of regression variables. While in many
applications the primary interest is in identifying outcome associated covariates, it is
nonetheless sometimes also desirable to gain scientific insights into the data generating
process, and draw statistical inference on the parameters associated with the selected
variables. Biases in estimates as well as in standard errors and confidence intervals
become important if investigators focus on the magnitude of the observed effects.

Selection of predictor variables is a special case of model selection, which can be
stated as follows. Let M denote the space of all candidate models that could be used
to describe the data D. For our purposes M is characterized in terms of distribution
functions that depend on parameters 8 and may or may not contain the true model
that gave rise to the data. The model selection problem is to choose a model M(D)
in M such that M is a “good” model in terms of parameter estimation or prediction.
If the focus is on inference regarding the parameters, then the quantity of interest
is B(M ). Model selection is a source of variability that is often ignored in standard
statistical approaches. However, several authors, e.g. Sen (1979), Pétscher (1991) and
Leeb (2005), have shown that the asymptotic distribution of the post-model selection
estimates n'/2 ([3 — B), where n denotes the sample size, is typically non-normal, and
depends on the unknown B in complex fashions.

Some analytical results are available for penalized maximum likelihood estimators
obtained from LASSO (Tibshirani 1996), SCAD (smoothly clipped absolute devia-
tion; Fan and Li 2001) and hard thresholding for linear regression models, see e.g.
Knight and Fu (2000), Leeb and Potscher (2009) and Pétscher and Schneider (2009).
These estimators have highly non-normal finite sample distributions and under con-
servative model selection their large sample distribution can be far from normal. Even
under consistent model selection (pointwise) asymptotic analysis gives highly mis-
leading results. In addition, the large sample properties depend on the choice of tuning
parameters. Therefore the naively estimated standard error for those estimates will be
biased and confidence intervals based on standard asymptotic theory for these methods
may not have proper coverage, not even asymptotically.

No comprehensive comparisons of penalized approaches with respect to their finite
sample properties have been performed to date, and little work has been done for
non-linear models. We thus studied the properties of estimates obtained from popu-
lar penalized likelihood approaches applied to linear and logistic regression models
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using simulated data, focusing on realistic effect and sample sizes to make conclu-
sions applicable to practical settings (Sect. 2.2). We first assess the methods’ ability to
identify truly outcome-associated predictors. We then study properties of effect esti-
mates obtained directly from penalized methods (Algorithm 1), or by refitting selected
predictors with standard regression (Algorithm 2) described in Sect. 2.3. The results
presented in Sect. 3 can help to avoid overly optimistic interpretation of parameters in
future research.

2 Methods

The goal of this analysis is to assess the impact of model selection on parameter
estimates in linear and logistic models. We evaluated the influence of sample size,
n, and magnitude of the regression coefficients for associations 8 on each method’s
ability to identify outcome associated predictors. We also studied properties of effect
estimates obtained directly from penalized methods (Algorithm 1), or by refitting
selected predictors with standard regression (Algorithm 2). A range of sample sizes,
algorithms and correlation structures among predictors are utilized.

2.1 Estimation methods and algorithms

We calculated both the LASSO (Tibshirani 1996), and least angle regression (LARS,
Efronetal. 2004) estimates with the function 1ars inthe 1ars library of the statistical
package R (IThaka and Gentlemen 1996). The elastic net was fit using the function enet
in the elasticnet library (Zou and Hastie 2005). We used the function relaxo
in the library relaxo in R to fit relaxed LASSO, a generalization of the LASSO
shrinkage technique (Meinshausen 2007). Generalized linear model (GLM) estimates
with L1 (LASSO) and/or L2 (ridge) penalties, or a combination are obtained using
the library and function penalized (Goeman 2010).

To fit L2 penalized logistic regression models with a stepwise variable selection,
we used the function plr in the package stepPlr (Park and Hastie 2008). We also
used an R implementation of SCAD, available at http://www.stat.umn.edu/~hzou/
ftpdir/code/one-step-SCAD-funs.R (accessed 05/09).

For linear and binary outcome data regression coefficients for penalized partial
least squares were obtained using the function penalized.pls inthelibrary ppls
(Kramer et al. 2008).

We used fivefold cross validation to select tuning parameters for all the methods
that allowed that option.

Table 1 summarizes the algorithms and software packages.

2.2 Simulated data
2.2.1 Continuous outcome data

Each observation in a data set of size n contains the predictors X = (X1,..., X p)’ s
and the continuous outcome variable, Y. We assumed that only a small number of
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Table 1 Algorithms and software used in the simulation study

Algorithm Software

LASSO Rlibrary lars

relaxed LASSO R library relaxo

LARS R library lars

elastic net R library elasticnet

SCAD http://www.stat.umn.edu/~hzou/ftpdir/code/
one-step-SCAD-funs.R (accessed 05/09)

GLM with L1 and/or L2 penalties R library penalized

Penalized partial least squares R library ppls

Logistic regr. w L2 penalty and stepwise selection R library stepPlr

predictors p* < p are associated with ¥ and denote those by X* = (X7, ..., X;*)/,

a 1 x p* subvector of X. For ease of exposition we let the predictors in X be ordered

so that the first p* values of X correspond to X*. Given X* and 8* = (87, .. ., ,3;*)’,

a1l x p* vector with B* # 0, the response ¥ was generated from the linear model
Y = B3+ XYB* e, € ~N(O,0?). (1)

For each simulation, we then fit a linear model using all available predictors, X, i.e.
assuming
Y =B+ XB+e, e~N(O o), 2

using the methods given in Sect. 2.1 and obtained the 1 x p vector of parameter
estimates [?I of B. In all settings we studied, p = 50 and p* = 10 and the variance of
the error term in Eq. (1) was of = 1. We also assessed the robustness of the methods
by generating € from a t-distribution with two degrees of freedom.

We generated X from a multivariate normal distribution, with mean 0 and correlation
matrix Xx. To assess the impact of various correlation structures among the predictors
on the performance of the methods, we studied several choices of £x = (0;;),1, j =

1,..., p. They include the independence correlation structure, Xx = I, where I
denotes the p x p identity matrix, a block diagonal structure for Xx, where each
block submatrix has dimension 5 x 5 and constant entries o;; = 0.5,i # j for

li — jlI <5, and 0;; = 0 otherwise, and an autoregressive (AR) correlation structure
for £x with o;; = 0.5"=i! for |i — j| < 10 and o;j = 0 otherwise.

2.2.2 Binary outcome data

Binary data, labeled “controls” (Y = 0) and “cases” (Y = 1), were simulated similarly
to the continuous outcomes. The probability P(Y = 1) was a function of the predictors
X*, the p* dimensional subvector of X:

logit {P(Y = 1]X*)} = B + X* B*, 3)
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where logit(x) = exp(x)/{1 + exp(x)}. For each simulation we created a population
of subjects by drawing Y from a Bernoulli distribution with success probability given
by model (3) with 85 = —1, given X, and then sampled a fixed number of cases and
controls to obtain a case-control study, a design popular in biological applications.
Again, p = 50 and p* = 10.

For each simulation, we obtained estimates [?I by fitting a logistic model using all
available predictors, X, i.e. assuming

logit {P(Y = 1|X)} = o+ X B )

using the methods given in Sect. 2.1.

We study multivariate normally distributed predictors X that have mean zero and
Y x =1, and also binary predictors X, thatis X; = 0or X; = 1, with P(X; = 1) =
0.5.

2.2.3 Parameter choices and sample sizes

For simplicity, we assume that all outcome associated B* = (8 f‘, e, ;‘;*) coefficients
in models (1) and (3) have the same magnitude, but half of them are positively and half
of them are negatively associated with Y, i.e. the ;s differ by their sign. We chose
B =0.25,0.5 and 1.0 for both linear and logistic models. For continuous outcomes
the sample sizes were n = 100, n = 200, and n = 500. For the binary outcome setting
we used a case-control design with equal numbers of controls (n¢) and cases (r1) with
no = ny = 100, ngp = n; = 200, and ng = n; = 500. All simulations and analyses
were implemented in R.

2.3 Analysis

We assessed the performance of two strategies to obtain parameter estimates and their
standard errors for both linear and logistic regression models.

2.3.1 Linear regression

Algorithm 1 (Adaptive approach)

This is a one-stage approach that uses the estimates B obtained from the respective
procedure. We denote the vector of coefficients of ﬁ that are either the intercept or are
non-zero by [9 adapt»and by X s; the vector of predictors for the i” subject corresponding
to the intercept and the non-zero parameter estimates. The corresponding pagap: X 1

design matrix is Xs. We let 62,  be the mean squared error of the fit for /} but

adapt
with the degrees of freedom n — pugapr, Where pagp: is the dimension of ﬂada[,,. The

covariance matrix of B, is estimated as
— (5 A2 o ~r/ -1
cov (ﬂadapt) = Oadapt (XSXS) : ®)
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Algorithm 2 (Oracle approach)
This is a two stage approach. First we obtain XS as in Algorithm 1. In stage two we

regress Y on Xy to geta padap, x 1 vector ﬂ oracle Of New parameter estimates, which

include an intercept. We let 62 oracle

used, with n — paqap: degrees of freedom. The estimated covariance matrix of B8,
is then

be the mean squared error of the fit when ﬂ oracle 18

1

&0 (Boracte) = 62ucte (XsX5) - (©)
2.3.2 Logistic regression

Like for linear regression, Xs; is the vector of predictors for the i’ subject correspond-
ing to the intercept and the non-zero components of 8 and Xg is the corresponding
design matrix.

Algorithm 1 (Adaptive approach)
Again, ﬂ adapr denotes the vector of coefficients of ﬂ obtained from the respective

procedure that are either the intercept or are non-zero. Letting logit (p{') = X Si ﬁ adapts

Padapr = (DT (1 = pY), ..., py(1 — pi)) and Viagapr = Padap:1, where I denotes the
identity matrix, we compute the covariance matrix of the estimates as

A A A N -1
cov (ﬂadapt) = (XS VadﬂPTXfS‘) : (N

Algorithm 2 (Oracle approach)
First we obtain X, and then compute ﬂ oracle DY re-fitting the standard logistic
regression model with X instead of X to the outcome data. Letting logit (pf) =

ngiﬂuruc[g7 f)aracle = (ﬁ?(l - ﬁf s e Pn(l - Po)) and Voracle = f)oraclel, where I
denotes the identity matrix, we compute the covariance matrix of the estimates as

~ PN Ao\ —1
cov (ﬂoracle) = (XS VnracleXis“) . ®)

2.4 Performance criteria

We evaluated the influence of sample size, n, and magnitude of the associations $* on
each method’s ability to identify the true outcome associated predictors X* and on the
two algorithms described above to estimate the corresponding regression parameters

ﬂ*
2.4.1 Performance criteria for variable selection

False positives (FPs)Let B = (Bo, B1, ..., Bp) = (B*,0)', where Oisa 1 x (p — p*)
vector of zeros. A FP occurs for 8; when 8; = 0 but its regularized estimate /§ i # 0.
The FP rate for B; is the percentage of times an FP occurs for 8;, and the overall FP
rate is the average of the FP rates across all zero coefficients of .
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False Negatives (FNs) A FN occurs for 8; when 8; # 0 but its regularized estimate
,3 7 = 0. The FN rate for §; is the percentage of times a FN occurs for §;, and the
overall FN rate is the average of the FN rates across all non-zero coefficients of f.

2.4.2 Impact of model selection on parameter estimates, coverage computations

The following coverages of the 95 % confidence intervals (Cls) for linear and logistic
models were computed. The coverage of zeros is the number of times that either the
regularized estimate of a 8; = 0 coefficient is zero, i.e. ,3 ;= 0, or the 95% CI of
,3 ; # 0 includes zero divided by the number of p — p* of zero coefficients. The 95 %
CIs are computed using the asymptotic approximation, the normal distribution, and
the standard errors from either Algorithm 1 or Algorithm 2. We compute the coverage
of zeros separately for the zero and non-zero coefficients of § and report the average
overall §; =0and B; = ,8;‘ # 0 respectively.

The coverage of the true B* coefficients is the number of times that the 95 % CI
around ,BAadapt or /§omcle includes the true value of ﬂ;? (= Bj # 0) divided by the number
p* of non-zero coefficients B*. Again, we report the average over all coefficients

* . *
j,]=1,...,p .

3 Results
3.1 Results for linear regression

LARS

The FPrateranged from 11.1 to 34.8 %, and was slightly lower for the block correlation
structure than the AR or independent correlations (Fig. 1 and Supplemental Table 1).
The FN rate was below 0.05 for sample sizes n = 200 and n = 500 and around 20 %
for n = 100 for all effect sizes and correlations. The coverage of zero for 8; = 0 was
close to 100 % for Algorithm 1 and around 95 % for Algorithm 2. The coverage of zero
for B* # 0 was 0% for both algorithms for n = 500 for all effect sizes (Fig. 2). The
95% CI coverage of * for the /§ # 0 coefficients was around 95 % for Algorithm 2
with n = 500. It also was around 95 % for both algorithms for n = 200 and n = 500
for the block correlation structure, but for all other correlations Algorithm 1 had lower
coverage than Algorithm 2, generally below 90 % (Fig. 3).

LASSO

Similar to LARS, the FP rate was slightly lower for the block correlation structure
than the AR or independent correlations (Fig. 1 and Supplemental Table 2), and it
ranged from 10.3 to 44.6 %. The FN rate was below 5% for n = 200 and n = 500,
and for n = 100 with * = 0.5 and B* = 1. The coverage of zero for 8; = 0
was close to 100 % for Algorithm 1 and around 95 % for Algorithm 2 for all sam-
ple and effect sizes. The coverage of zero for 8* was 0% for both algorithms for
n = 500 for all effect sizes (Fig. 2). The coverage of B* for B # ( estimates was
slightly lower for Algorithm 1 than 2. Algorithm 2 had 95 % coverage for n = 500
and slightly below 95 % for n = 200 (Fig. 3). Algorithm 1 had somewhat higher,
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Fig. 2 Coverage of zero for B = 0 for the adaptive and oracle confidence intervals (fop two rows) and
coverage of zero for B* # 0 (bottom two rows)

albeit still less than 95 % coverage for the block correlation structure than the other
correlations.

Elastic net

The FP rate ranged from 30.6 to 47.4 % for independent predictors, while it was
below 4 % for the block correlation structure for all values of n and 8* (Table 4).
For the AR correlation structure the FP rate was less than 5% for n = 500 for all
values of *. The FN rate was low for all correlation structures, and less than 5 % for
n = 200 and 500, regardless of the effect sizes (Fig. 1 and Supplemental Table 3).
The coverage of the zero coefficients was close to 100 % for both algorithms. The
coverage of zero for coefficients corresponding to 8* was 0% for both algorithms
for n = 500 for all effect sizes (Fig. 2). Overall, the coverage of g* for ,3 # 0
coefficients was noticeably higher for Algorithm 2 than for Algorithm 1. Algorithm 2
had close to 95 % coverage with the exception of small sample sizes. For n = 100 with
B* = 0.25 the coverage fell below 90 %, likely due to variables not being selected
(Fig. 3).

Relaxo

The FP and FN rates were slightly lower for the block correlation structure than the
independent or AR correlations, but were less than 5 % for n = 200 and n = 500 for
all effect sizes and correlations (Fig. 1 and Supplemental Table 4). Both FP and FN
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Fig. 3 Coverage of the 95% CIs computed based on the adaptive (Algorithm 1) or oracle (Algorithm 2)
variance estimates of 8* for 8 # 0

rates also dropped quickly as n increased. For example, for the independent correlation
structure and 8* = 0.25 the FP and FN rates were 15.6 and 33.0 % for n = 100 and
3.1 and 0.4 % for n = 500, respectively. For all correlation structures the coverage
of zero for B = 0 was close to 100 % for both algorithms. The coverage of zero for
B* was close to 0% for both algorithms for n = 500 for all effect sizes (Fig. 2). The
coverage of B* for ,3 # 0 coefficients was similar for Algorithms 1 and 2, and close
to 95 % for n = 500 for all effect sizes, and for n = 200 with $* = 0.5 and 8* = 1.0
for all correlation structures (Fig. 3).

SCAD

The FP rates were very similar for all correlation structures and less than 5% for
n = 500 with B* = 1. The FN rate was generally low and dropped quickly as n
increased (Fig. 1 and Supplemental Table 5). For n = 200 or n = 500 it was less than
5% for all values of B*. It was greater than 10 % only for n = 100 with §* = 0.25.
The coverage of zero for B = 0 was close to 100 % for Algorithm 1 and 95 % for
Algorithm 2. The coverage of zero for f* was 0% for both algorithms for n = 500
for all effect sizes (Fig. 2). For all correlation structures the coverage of the 95 % Cls
of g* for ,3 # 0 coefficients was close to 95% for n = 500 for Algorithm 2 for
all effect sizes, and for Algorithm 1 for n = 500 with f* = 1. Again, the coverage
was noticeably higher for Algorithm 2 than for Algorithm 1 and it increased for both
algorithms with sample and effect size (Fig. 3).
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Penalized penalized linear regression

The FP rate ranged from 17.9 % for n = 100 with 8* = 0.5 and the block correlation
structure to 48.5 % for n = 100 with 8* = 0.25 and independent predictors (Fig. 1
and Supplemental Table 6). The FN rate was 16.2% for n = 100, g* = 0.25 for
the independent correlation structure, but for all other n and effect sizes it was less
than 1 %. For all correlation structures the coverage of zero for the § = 0 coefficients
for Algorithm 1 was higher than 99 % for all sample sizes and effect sizes, while for
Algorithm 2 the coverage was around 95 %. The coverage of zero for 8* was 0% for
both algorithms for n = 500 for all values of *. For independent X, the coverage of
B* of the 95 % ClIs for B # 0 coefficients ranged from 78.7 to 86.6 % for Algorithm
1. It was around 95 % for Algorithm 2 only for n = 500, but lower for n = 100 and
n = 200. Similar patterns were seen for the AR correlation structure. For the block
correlation structure both algorithms had close to 96 % coverage for n = 200 and
n = 500 for all effect sizes (Fig. 3).

Fartial least squares

The FP rate was less than 5 % for most correlation structures and effect sizes, the only
outlier was the FP value of 15.3% for n = 500 and 8* = 1 with the independent
correlation structure (Fig. 1 and Supplemental Table 7). However, the FN rate ranged
from 15.3 % for n = 500, B* = 1 and the AR correlation structure to 87.6 % for n =
100 with 8* = 0.25 for independent predictors, and was above 60 % for all correlation
structures and most sample sizes. The FN rate was lower for larger effect and sample
sizes. The coverage of zero for f; = 0 was around 100 % for both algorithms for
settings. The coverage of zero for 8* for n = 500 ranged from 15.3 to 81.2 %, and
was not different for the two algorithms (Fig. 2). For both algorithms the coverage of
B* of the 95 % Cls for ﬁ # 0 was very low for all correlation structures, ranging from
0 to 65.7 % (for independent X, with n = 500 and 8* = 1) (Fig. 3).

3.1.1 Non-normal error distribution

When we generated outcome data from a linear model (1) where the error term €
followed a t-distribution with 2 degrees of freedom for independent X (Table 2),
the FP rate was lower for LARS, LASSO, elastic net and relaxo while for these
methods the FN rate was higher compared to normally distributed errors. In contrast,
for SCAD, the FP rate was much higher and the FN rate much lower than for normal
errors. Simulation runs based on penalized partial least squares regression failed to
give reasonable results in so many instances that we do not present any results for this
method.

For all methods the coverage of zero for the § = 0 coefficients for Algorithms 1 and
2 was very similar to the normal case. For all methods the coverage of zero for 8* was
much higher than for normally distributed errors. The coverage of 8* of the 95 % Cls
for /§ # 0 coefficients however was much lower than in the normal case for Algorithm
1 and Algorithm 2 and much below the nominal 95 %. When the errors were generated
from a t-distribution with 15 degrees of freedom however (Supplemental Table 8), the
coverage was much improved and similar to that seen for normally distributed error
terms.
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3.1.2 Results for p > n

We also attempted to assess the performance of the methods when p > n by generating
data with p = 500 and p* = 10 for n = 100, 200 and n = 500 for independent
predictors X. SCAD, elastic net and penalized linear regression resulted in so many
error messages that we do not present any findings for these algorithms.

Results for LARS, LASSO and relaxo are given in Table 3. For both LARS and
LASSO, the FP rate was lower than for the p < n setting for n = 100 and 200,
but was above 74 % for n = 500 for all values of 8* The FN rate was low except
for * = 0.25 with n = 100. The coverage of zero for the 8 = 0 coefficients for
Algorithm 1 was higher than 99 % for all sample sizes and effect sizes, while for
Algorithm 2 the coverage was below 70 %. The coverage of zero for §* ranged from
0to 93 % for Algorithm 1 and from O to 26 % for Algorithm 2. The coverage of 8* of
the 95 % CIs for 3 # 0 coefficients was less than 9 % for both algorithms.

For relaxo, the FP and FN rates were similar to those seen for LARS and LASSO
for n = 100 and n = 200, with the exception of the FP rates for n = 500, which
were less than 2 %. The coverage of zero for the 8 = 0 coefficients for Algorithm 1
ranged from 2 to 83 %, for all sample sizes and effect sizes, while for Algorithm 2 the
coverage was below 62 %. The coverage of zero for 8* was below 5 % for g* = 0.5
and B* = 1 for both algorithms. The coverage of * of the 95% Cls for B #0
coefficients was less than 10 % for both Algorithm 1 and 2.

3.1.3 Summary of results for linear regression

The estimation methods that had a high false positive (FP) rate were LARS, LASSO,
elastic net, SCAD and penalized linear regression. Not surprisingly, the FN rate of
these methods was low. Partial least squares regression had a low FP rate at the cost
of having many false negatives. Only relaxo had both a low FP and FN rate. The
coverage of zero for the B = 0 coefficients for Algorithm 1 was close to 100 % for
all methods, while for Algorithm 2 it was closer to 95 %. The coverage of zero of the
B* coefficients was close to zero for all methods with the exception of penalized least
squares (Fig. 3). The coverage of the true 8* coefficients of the 95 % Cls around B#0
was typically higher for Algorithm 2 than for Algorithm 1. For Algorithm 2 it was
close to 95 % for large sample sizes and effect sizes for all methods with the exception
of penalized partial least squares, for which coverage even for n = 500 with g* = 1
was around 65 %. When p > n, the coverage of both algorithms was much lower than
95 %, however.

3.2 Results for logistic regression

LASSO

The FP rate was somewhat higher for binary predictors than for independent normally
distributed X, but for both it was appreciable, with values up to 44 % even for large
effect and sample sizes (Table 4). The FN rate was above 50 % for 8* = 0.25, but was
less than 6 % for binary predictors with §* = 1.0 for all sample sizes, for §* = 0.5
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for n = 200 and 500, and for normally distributed X with 8* = 1.0 for n = 200 and
500. The coverage of zero for B = 0 was nearly 100 % for Algorithm 1 and closer
to 95% for Algorithm 2. The coverage of zero for 8* was higher for Algorithm 1
than Algorithm 2. For Algorithm 1 the coverage of zero for 8* ranged from 0% for
n = 500 with * = 1 and binary predictors to 99.7 % for n = 100 with g* = 0.25.
The coverage of * of the 95 % Cls around ;§ # 0 was very low for both algorithms,
with the exception of n = 500 and 8* = 1.0 for normally distributed and g* = 0.5
and g* = 1.0 for binary X, where coverage was close to 95 %.

SCAD
For both, independent normally distributed and binary X the FP rate was very low; the
largest value was 5% for n = 500 with 8* = 0.5, while the FN rate was extremely
high, with values above 80 % for many other settings (Table 5). Only for n = 500 with
B* = 1.0 and for binary predictors also for f* = 0.5 was the FN rate below 15 %.
The coverage of zero for B i = 0 was nearly 100 % for both algorithms. The coverage
of zero for 8* # 0 was similar for both algorithms and ranged from 0.04 to 99.6 %. It
dropped as sample size and effect size increased. The coverage of 8* of the 95 % Cls
around ;§ # 0 was very low for both algorithms, with the exception of n = 500 and
B* = 1.0 for both normally distributed and binary predictors, for which the coverage
was approximately 93 %.

Penalized logistic regression
For the independent normally distributed and binary predictors X the FP rate was
similar, and ranged from 44.2 to 72.0 %. We observed an FP of 45.3 % for independent
normal X even for 8* = 1 andn = 500 (Table 6). The FN rate depended more strongly
on the effect size, was somewhat higher for normally distributed X but in all cases
decreased noticeably as n increased. For example, for normally distributed predictors
with g* = 0.5, the FN rate was 28.3% for n = 100, 13.4% for n = 200 and 3 %
for n = 500. The coverage of zero for § = 0 was nearly 100 % for Algorithm 1 and
between 91.5 and 94.8 % for Algorithm 2. The coverage of zero for 8* ranged from
from 0.0 to 99.9 % for Algorithm 1 and was slightly lower for Algorithm 2. It dropped
as sample size and effect size increased for both algorithms. The coverage of 8* of
the 95 % Cls around B # 0 was slightly lower for Algorithm 1 than 2. For 8* = 0.5
and 8* = 1.0 with n = 500 Algorithm 2 had a coverage of nearly 95 %.

Adaptive logistic regression
For all X the FP rate was less than 10 % for n = 200 and n = 100 for all effect sizes,
while the FN rates for those n ranged from 67 to 85 % (Table 7). For n = 500, the FP
rate was 5 % for * = 0.25 and 20 and 22 % for f* = 0.5 and B* = 1 respectively,
with corresponding FN rates of 77,22 and 0. %. For binary predictors the F/P rate was
higher, and ranged from 6 to 23 %, and FN rates ranged from O to 81 %. The coverage
of zero for B = 0 was nearly 100 % for Algorithm 1 for sample sizes n = 100 and
n = 200. For n = 500 with effect sizes * = 0.5 and * = 1.0 the coverage for
Algorithm 1 was 95 %. The coverage of zero for * ranged from from 0.0 to 99 % for
Algorithm 1 and was slightly lower for Algorithm 2. It dropped as sample size and
effect size increased for both algorithms. The coverage of 8* of the 95 % ClIs around
B # 0 was slightly lower for Algorithm 1 than 2. However, Algorithm 2 had 94 %
coverage only for n = 500 and 8* = 1.0 and 8* = 0.5. For all other sample and

@ Springer



685

On the impact of model selection on predictor. . .

1X9) QU Ul 7 WILIoI[y 0) qPbue w03y 01 spuodsario) ,

aanesou asyey N ‘eantsod Is[ey 4.7
X s10301paid oy Jo uonnquusip oy st X7

LE6O 0¥6'0 £00°0 #00°0 886°0 066'0 LS00 7100 0001 00S [erwourg
7980 0L8°0 160°0 €01°0 786°0 L86°0 9210 0200 0001 002 [erwourg
691°0 SEro €780 168°0 8660 6660 96L°0 #00°0 0001 001 [erwourg
LS80 058°0 0110 €€10 €860 L86°0 871°0 810°0 00S°0 00S [erwourg
1€2°0 6¥C0 1SL°0 8LL'O 066°0 766°0 TELO S10°0 00S°0 00T [erwourg
620°0 LEOO $96°0 6L6°0 866°0 6660 SP6'0 2000 0050 001 [erwourg
TIo 611°0 L98°0 7880 $66°0 9660 8680 S00°0 ST0 00 [erwourg
110°0 S10°0 786°0 $86°0 6660 6660 LL6'O 2000 ST0 00T [erwourg
€000 9000 766°0 9660 6660 6660 786°0 2000 ST0 001 [erwourg
ST6'0 726'0 150°0 SS0°0 986°0 L86°0 LETO ¥20°0 0001 00 [ULION
0190 #29°0 LLEO 66£°0 LL6O 786°0 T o 1€0°0 0001 002 [ULION
€600 7010 6680 LE6'O 9660 6660 S06°0 S00°0 0001 001 [PULION
S6+°0 €050 v1S°0 SIS0 896°0 1L6°0 9250 7500 00S°0 00S [eULIoN
LY00 1900 £€6°0 LE6O 766°0 $66°0 8€6°0 LO00 0050 002 [euLION
LOO0 ¥10°0 $86°0 686°0 866°0 6660 986°0 2000 0050 001 [euLION
€100 S10°0 6L6°0 086°0 L66°0 L66°0 6L6°0 £00°0 ST0 00 [BULION
2000 S00°0 766°0 766°0 L66°0 8660 T66°0 €000 ST0 00T [PUION
1000 #00°0 $66°0 9660 8660 6660 $66°0 2000 ST0 001 [eUION
(a10810) (depy) (apoeI10) (1depy) (go1oeI10) (pdepy)
07 44 0=4¢
0# m. 10J . g JO SID % S6 JO 95eIOA0D) 10J 019Z JO 93eIA0D) el N el «f u Xy

sjonuod Ou pue sased [ Y)im eIep [0IJU0-9SED UO PIskq S[OPOW UOIssaISaI oNsISO] 10J QVIS S dqeL

pringer

as



R. M. Pfeiffer et al.

686

1X9) QU Ul 7 WILIoI[y 0) qPbue w03y 01 spuodsario) ,

aanesou asyey N ‘eantsod Is[ey 4.7
X s10301paid oy Jo uonnquusip oy st X7

€60 66L°0 0000 0000 €760 166°0 0000 Y6170 I 00S [erwourg
7680 708°0 ¥20°0 €ero £€6°0 $66°0 1000 98%°0 I 00T [erwourg
7780 90L°0 S0T0 ¥TL0 S16°0 8660 620°0 96%0 I 001 [erwourg
1¥6°0 #3870 SH0°0 TIT0 w60 £66°0 2000 8750 0] 00S [erwourg
LL8O 658°0 65€°0 6£8°0 LE6O L66°0 0500 1€9°0 S0 002 [erwourg
€LL'O TL8°0 €190 1L6'0 7160 666°0 SIT0 0TL0 S0 001 [erwourg
9980 1060 LOS0 1160 976°0 8660 €800 8790 ST0 00S [erwourg
0590 €0L°0 9LL0 0660 1%6°0 6660 8LT0 8LS0 ST0 00T [erwourg
0€S°0 $09°0 7580 L66°0 0£6°0 0001 65€°0 €550 ST0 001 [erwourg
7€6°0 SE8°0 €000 S€0°0 776°0 766°0 0000 19%°0 I 00S [ULION
816°0 ¥9L°0 691°0 9090 LE6O 8660 L10°0 €5¥°0 I 00T [ULION
06L°0 7280 0Lt 6¥6°0 760 0001 €01°0 919°0 I 001 [PULION
9260 €680 €620 €PL0 S¥6°0 L66°0 0€0°0 $€9°0 S0 00S [eULIoN
S6L°0 75870 19°0 €L6'0 9¢6°0 6660 PELO 90L0 $0 00T [euLION
1190 889°0 0080 766°0 ST6'0 0001 €820 629°0 $0 001 [euLION
91L0 S9L°0 9PL0 986°0 8760 6660 TIT0 929°0 ST0 00S [BULION
TIS0 8550 8L8°0 8660 876°0 0001 €Tr0 1150 ST0 00T [PUION
S6£°0 65+°0 ¥16°0 6660 776°0 6660 610 o ST0 001 [eUION
(a10810) (depy) (aroe10) (depy) (g1o”I0) (¥depy)
07 +d 0o=¢
0# m\ 10J ¢ JO SID 9% S6 JO 93RI9A0D 10J 019Z JO 98BIA0D) el N el g4 «d u Xy

sfonuod Ou pue sased [ Y)Im BIep [0NU0D-9SED U0 Paskq UOISSAITI oNsISO] pazifeusd 9 Jqe],

pringer

as



687

On the impact of model selection on predictor. . .

1X9} A} Ul ¢ WLy 0} qPbue ‘| wpLoS[y 01 spuodsario)
2Ane3au as1e) N ‘oanisod as[e) 4.7

¥6°0 780 0 0 960 660 0 91°0 I 00S [erwourg
160 8L0 €0°0 91°0 $6°0 86°0 200 120 I 00T [erwourg
€60 18°0 S0°0 0 $6°0 860 €0°0 €0 900) 00S [erwourg
650 LSO 950 €L0 960 660 €€°0 91°0 S0 00T [erwourg
170 €v'0 $9°0 ¥8°0 L60 660 150 Tro ST0 00 [erwourg
€10 S1°0 68°0 96°0 860 660 9L°0 L0°0 ST0 00T [erwourg
80°0 10 €6°0 86°0 86°0 660 18°0 90°0 ST0 001 [erwourg
¥6°0 780 100 90°0 $6°0 86°0 0 TT0 I 00S [PWION
6L0 69°0 TT0 670 $6°0 86'0 Y10 0 I 00T [PwION
€L°0 L9°0 v€0 19°0 $6°0 86°0 70 T0 S0 00S [PwIoN
€20 §T0 80 €60 L60 660 L9°0 80°0 S0 00T [PwIoN
10 [4¥0) 160 860 860 660 80 900 900) 001 [EWLION
€10 S1°0 68°0 96°0 860 I LLO S0°0 ST0 00 [euLION
S0°0 LO0 $6°0 660 860 I 780 v0°0 ST0 00T [euLION
$0°0 90°0 L6°0 660 860 I 80 $0°0 ST0 001 [EWION
(apoeIQ) (depy) (spoRI0) (depy) (qe10010) (p¥depy)
07 0o=¢
0# m 10J g JO SID % G6 JO 93e19A0D 10J 019Z JO A3BIAA0D) el N el J4 el u wyod|y

sfonuod Ou pue sased u yjim BIep [ONU0I-ISED UO Paseq uolssaidar onsiSo) aandepy £ dqey,

pringer

as



688 R. M. Pfeiffer et al.

effect sizes coverage ranged from 4 to 93 % for Algorithm 2 and from 6 to 82 % for
Algorithm 1.

3.2.1 Summary of results for logistic regression

LASSO and penalized logistic regression had a high FP rate and a low FN rate. SCAD
had a low FP rate at the cost of having many FNs. Adaptive logistic regression had a
moderate FP rate and a high FN rate. The coverage of zero for the 8 = 0 coefficients
was close to 100 % for Algorithm 1, while for Algorithm 2 it was closer to 95 % for
all methods. The coverage of zero of the B* coefficients was close to zero for all
methods with the exception of penalized logistic regression. The coverage of the true
B* coefficients of the 95 % Cls around B = 0 was close to 95 % for Algorithm 2 for
large sample sizes and effect sizes for all methods with the exception of penalized
logistic regression for which coverage even for n = 500 with * = 1 was around
80 %. 1t was lower for Algorithm 1.

4 Discussion

Penalized estimation methods deliberately introduce a bias to reduce variability of the
estimates to identify outcome-associated variables, and have been typically applied
to prediction. Nonetheless, penalized regression techniques are also used sometimes
when the aim is inference. For example, they have been applied to molecular genetic
data for both prediction, and identification of disease susceptibility genes. We therefore
assessed the performance of several readily available penalized estimation methods
for linear and logistic regression. We performed only a small simulation study for the
setting of p > n for which asymptotic results on consistent variable selection are
very limited. Our main focus was on situations often encountered in practical settings,
where the sample size n ranges from twofold larger to tenfold larger than the number
of parameters, p.

First we quantified the methods’ ability to identify truly outcome associated pre-
dictors, i.e. to estimate the sparsity patterns of a vector 8 of regression coefficients.
For linear models, penalized linear regression, elastic net, smoothly clipped absolute
deviation (SCAD), least angle regression (LARS) and LASSO had a low false neg-
ative (FN) predictor selection rates but false positive (FP) rates above 20% for
all sample and effect sizes. Partial least squares regression had few FPs but many
FNs. Only relaxo had low FP and FN rates. For logistic models, LASSO and
penalized logistic regression had many FPs and few FN's for all sample and effect
sizes. SCAD and adaptive logistic regression had low or moderate FP rates but
many FNs.

We also evaluated inference properties for the various procedures. We studied effect
estimates obtained directly from penalized methods (Algorithm 1), or by refitting
selected predictors with standard regression (Algorithm 2). 95 % confidence interval
coverage of predictors with null effects was approximately 100 % for Algorithm 1 for
all methods, and 95 % for Algorithm 2 for large sample and effect sizes. Coverage
was low only for penalized partial least squares (linear regression). For outcome-
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associated predictors, coverage was close to 95 % for Algorithm 2 for large sample
and effect sizes for all methods except penalized partial least squares and penal-
ized logistic regression. Coverage was sub-nominal for Algorithm 1. In conclusion,
while Algorithm 2 is preferred to Algorithm 1, estimates from Algorithm 2 are still
prone to some bias arising from the selection of predictors, which affects those asso-
ciated with moderate effect sizes more strongly than predictors with large effect
sizes.

All procedures were somewhat sensitive to violations of the assumption of normality
for the error distribution for the linear model. When we generated outcome data from a
linear model where the error term € followed a t-distribution with 2 degrees of freedom
the FN rate was higher compared to normally distributed errors for LARS, LASSO,
elastic net and relaxo, while for SCAD the FP rate was much higher, and penalized
partial least squares regression generally failed to give results. For outcome-associated
predictors, the coverage of the 95 % ClIs was much below the nominal 95 % for all
procedures.

We addressed the problem of coverage much more extensively than previous pub-
lications (e.g. Wang and Leng 2007; Kabaila and Leeb 2006), including many popular
penalized methods in our simulations, and also focused on false positive and false
negative findings. We simulated practically relevant settings that reflect the number
of predictors seen in many datasets, and showed that even for large sample sizes esti-
mates are subject to undue bias and variance from the model selection procedure.
Refitting attenuates the bias, but does not eliminate it in all but the cases where there is
large sample size combined with estimating large effects. In these settings the residual
bias not compensated for in refitting was small enough to be negligible. In all other
settings where data is limited or effect sizes are small, the bias and variance are large
enough to invalidate inference after model selection on those parameters, even for
Algorithm 2.

When simulations were based on p > n, SCAD, elastic net, and penalized linear
regression (the implementations we used) resulted in so many error messages that it
was not meaningful to present any findings for them. For LARS and LASSO the FN
rate was low and the FP rate was lower than for the p < n setting for moderate sample
sizes but was above 74 % for n = 500 for all values of 8*. For relaxo, the FP and FN
rates were similar to those seen for LARS and LASSO but low also for large n. The
coverage of B* of the 95 % Cls for ,é # 0 coefficients was much below the nominal
level for both Algorithm 1 and 2.

There is a growing literature on valid inference after model selection. E.g., Efron
(2014), Wasserman and Roeder (2009) and Meinshausen et al. (2009) proposed
approaches based on resampling or data splitting. Lockhart et al. (2014) derived the
exact asymptotic null distribution of a test statistic for significance of variables that
enter the LASSO model for general design matrices X and extends results to elastic
net estimates. Berk et al. (2013) proposed an approach for post-selection inference
(“PoSI”) that is valid over all possible selected models and does not assume the lin-
ear model is correct. A better understanding of the small sample properties of some
of these techniques is still needed. Nonetheless translation of the above mentioned
approaches and others into statistical practice is also important to avoid misleading
inference and irreproducible scientific findings.
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