Skip to main content
Log in

Quadratic properties of least-squares solutions of linear matrix equations with statistical applications

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Assume that a quadratic matrix-valued function \(\psi (X) = Q - X^{\prime }PX\) is given and let \(\mathcal{S} = \left\{ X\in {\mathbb R}^{n \times m} \, | \, \mathrm{trace}[\,(AX - B)^{\prime }(AX - B)\,] = \min \right\} \) be the set of all least-squares solutions of the linear matrix equation \(AX = B\). In this paper, we first establish explicit formulas for calculating the maximum and minimum ranks and inertias of \(\psi (X)\) subject to \(X \in {\mathcal S}\), and then derive from the formulas the analytic solutions of the two optimization problems \(\psi (X) =\max \) and \(\psi (X)= \min \) subject to \(X \in \mathcal{S}\) in the Löwner partial ordering. As applications, we present a variety of results on equalities and inequalities of the ordinary least squares estimators of unknown parameter vectors in general linear models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cain BE, de Sá EM (1992) The inertia of Hermitian matrices with a prescribed \(2\times 2\) block decomposition. Linear Multilinear Algebra 31:119–130

    Article  MATH  MathSciNet  Google Scholar 

  • Chabrillac Y, Crouzeix JP (1984) Definiteness and semidefiniteness of quadratic forms revisited. Linear Algebra Appl 63:283–292

    Article  MATH  MathSciNet  Google Scholar 

  • Cohen N, Dancis J (1999) Inertias of block band matrix completions. SIAM J Matrix Anal Appl 9:583–612

    Article  MATH  MathSciNet  Google Scholar 

  • da Fonseca CM (1998) The inertia of certain Hermitian block matrices. Linear Algebra Appl 274:193–210

    Article  MATH  MathSciNet  Google Scholar 

  • Dancis J (1987) The possible inertias for a Hermitian matrix and its principal submatrices. Linear Algebra Appl 85:121–151

    Article  MATH  MathSciNet  Google Scholar 

  • Dancis J (1990) Several consequences of an inertia theorem. Linear Algebra Appl 136:43–61

    Article  MATH  MathSciNet  Google Scholar 

  • Dong B, Guo W, Tian Y (2014) On relations between BLUEs under two transformed linear models. J Multivar Anal 131:279–292

    Article  MATH  MathSciNet  Google Scholar 

  • Graybill FA (1961) An introduction to linear statistical models, vol I. McGraw-Hill, New York

    MATH  Google Scholar 

  • Hatcher A (2002) Algebraic topology. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Haynsworth EV (1968) Determination of the inertia of a partitioned Hermitian matrix. Linear Algebra Appl 1:73–81

    Article  MATH  MathSciNet  Google Scholar 

  • Haynsworth EV, Ostrowski AM (1968) On the inertia of some classes of partitioned matrices. Linear Algebra Appl 1:299–316

    Article  MATH  MathSciNet  Google Scholar 

  • James IJ (1976) The topology of Stiefel manifolds. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Johnson CR, Rodman L (1984) Inertia possibilities for completions of partial Hermitian matrices. Linear Multilinear Algebra 16:179–195

    Article  MATH  MathSciNet  Google Scholar 

  • Liu Y, Tian Y (2008) More on extremal ranks of the matrix expressions \(A-BX \pm X^{*}B^{*}\) with statistical applications. Numer Linear Algebra Appl 15:307–325

    Article  MATH  MathSciNet  Google Scholar 

  • Liu Y, Tian Y (2011) Max-min problems on the ranks and inertias of the matrix expressions \(A-BXC \pm (BXC)^{*}\) with applications. J Optim Theory Appl 148:593–622

    Article  MATH  MathSciNet  Google Scholar 

  • Marsaglia G, Styan GPH (1974) Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 2:269–292

    Article  MATH  MathSciNet  Google Scholar 

  • Penrose R (1955) A generalized inverse for matrices. Proc Camb Philos Soc 51:406–413

    Article  MATH  Google Scholar 

  • Penrose R (1956) On best approximate solution of linear matrix equations. Proc Camb Philos Soc 52:17–19

    Article  MATH  Google Scholar 

  • Searle SR (1971) Linear models. Wiley, New York

    MATH  Google Scholar 

  • Tian Y (2010) Equalities and inequalities for inertias of Hermitian matrices with applications. Linear Algebra Appl 433:263–296

    Article  MATH  MathSciNet  Google Scholar 

  • Tian Y (2011) Maximization and minimization of the rank and inertia of the Hermitian matrix expression \(A - BX - (BX)^{*}\) with applications. Linear Algebra Appl 434:2109–2139

    Article  MATH  MathSciNet  Google Scholar 

  • Tian Y (2012a) Solving optimization problems on ranks and inertias of some constrained nonlinear matrix functions via an algebraic linearization method. Nonlinear Anal 75:717–734

    Article  MATH  MathSciNet  Google Scholar 

  • Tian Y (2012b) Formulas for calculating the extremum ranks and inertias of a four-term quadratic matrix-valued function and their applications. Linear Algebra Appl 437:835–859

    Article  MATH  MathSciNet  Google Scholar 

  • Tian Y (2012c) Solutions to 18 constrained optimization problems on the rank and inertia of the linear matrix function \(A + BXB^{*}\). Math Comput Model 55:955–968

    Article  MATH  MathSciNet  Google Scholar 

  • Tian Y (2014) Some optimization problems on ranks and inertias of matrix-valued functions subject to linear matrix equation restrictions. Banach J Math Anal 8(2014):148–178

    Article  MATH  MathSciNet  Google Scholar 

  • Tian Y (2015a) A survey on rank and inertia optimization problems of the matrix-valued function \(A + BXB^{*}\). Numer Algebra Contr Optim 5:289–326

    Article  MATH  MathSciNet  Google Scholar 

  • Tian Y (2015b) How to characterize properties of general Hermitian quadratic matrix-valued functions by rank and inertia. In: Kyrchei I (ed) Advances in linear algebra researches. Nova Publishers, New York, pp 150–183

    Google Scholar 

  • Tian Y (2015c) A new derivation of BLUPs under random-effects model. Metrika 78:905–918

    Article  MATH  MathSciNet  Google Scholar 

  • Tian Y (2015d) A matrix handling of predictions under a general linear random-effects model with new observations. Electron J Linear Algebra 29:30–45

    Article  MATH  MathSciNet  Google Scholar 

  • Tian Y, Jiang B (2016) Equalities for estimators of partial parameters under linear model with restrictions. J Multivar Anal 143:299–313

    Article  MATH  MathSciNet  Google Scholar 

  • Tian Y, Zhang X (2016) On connections among OLSEs and BLUEs of whole and partial parameters under a general linear model. Stat Prob Lett 112:105–112

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang X, Tian Y (2016) On decompositions of BLUEs under a partitioned linear model with restrictions. Stat Pap 57:345–364

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to anonymous referees for their helpful comments and suggestions on an earlier version of this paper. This work was supported by the National Natural Science Foundation of China (Grant No. 11271384).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongge Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Jiang, B. Quadratic properties of least-squares solutions of linear matrix equations with statistical applications. Comput Stat 32, 1645–1663 (2017). https://doi.org/10.1007/s00180-016-0693-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-016-0693-z

Keywords

Navigation