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Abstract Understanding how viruses offer protection against closely related emerg-
ing strains is vital for creating effective vaccines. For many viruses, multiple serotypes
often co-circulate and testing large numbers of vaccines can be infeasible. Therefore
the development of an in silico predictor of cross-protection between strains is impor-
tant to help optimise vaccine choice. Here we present a sparse hierarchical Bayesian
model for detecting relevant antigenic sites in virus evolution (SABRE) which can
account for the experimental variability in the data and predict antigenic variability.
The method uses spike and slab priors to identify sites in the viral protein which are
important for the neutralisation of the virus. Using the SABRE method we are able to
identify a number of key antigenic sites within several viruses, as well as providing
estimates of significant changes in the evolutionary history of the serotypes. We show
how our method outperforms alternative established methods; standard mixed effects
models, the mixed effects LASSO, and the mixed effects elastic nets. We also propose
novel proposal mechanisms for the Markov chain Monte Carlo simulations, which
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improve mixing and convergence over that of the established component-wise Gibbs
sampler.

Keywords Spike and slab prior · Foot-and-mouth disease virus · Influenza virus ·
Antigenic variability · Bayesian hierarchical models · Mixed-effects models ·
LASSO · Markov chain Monte Carlo

1 Introduction

Ribonucleic acid (RNA) viruses such as Foot-and-mouth disease virus (FMDV) and
Influenza A (H1N1) have been shown to have high genetic variability (Holland et al.
1982). This variability results in changes to the virus proteins that effect recognition
by the host immune system, also known as antigenic differences. Differences in these
proteins, also known as antigenic proteins, affect how antigenically similar different
viruses are. As a consequence of the antigenic variability in the viruses, vaccines are
only effective against field strains that are genetically related and antigenically similar
to the vaccine strain (Mattion et al. 2004). This feature of FMDVand Influenzamakes it
important to estimate antigenic similarity among strains and therefore cross-protection,
the protection against one strain conferred by previous exposure to another strain by
either infection or vaccination (Paton et al. 2005).

RNA virus are classified into serotypes, genetically and antigenically distinct virus
lineages between which there is no effective degree of cross-protection. Individual
vaccines may protect against large groups of genetically diverse viruses within a
serotype, however there are antigenically distinct subtypes against which the vaccines
do not work. In FMDV, South African Territories types 1 and 2 (SAT1 and SAT2) are
responsible for themajority of FMDVoutbreaks in cattle in the region, while theH1N1
virus has been responsible for several major flu outbreaks; Spanish Flu in 1918 and
SwineFlu in 2009.Within these serotypes of FMDVand Influenza are significant levels
of antigenic variability, which allows us to examine the relationship between genetic
and antigenic variation and to determine which protein changes affect recognition by
the immune system. Given the importance of these serotypes in the region and the
difficulties with vaccination caused by antigenic variation, it is vital to understand
how genetic changes affect antigenicity and within-serotype cross-protection.

In the outer capsid or virus shell, proteins influence antigenicity. Many areas of
these proteins are exposed on the surface of the capsid and among these are antigenic
regions that are recognised by the host immune system. Single amino acid substitu-
tions (mutations) within these antigenic regions can dramatically affect recognition
by the immune system. Identifying the specific amino acid residues that comprise
these antigenic regions and the substitutions that cause antigenic differences is crit-
ical to understanding antigenic similarity among viruses and cross-protection within
serotypes. In the FMDV serotypes, both SAT1 and SAT2 are known to share onemajor
antigenic region, the highly flexible VP1 G-H loop (Crowther et al. 1993b), a cord of
connected amino acid residues. Additional residues have also been identified on the
SAT serotypes (Crowther et al. 1993b; Grazioli et al. 2006), as well as others on related
serotypes A, O, C and Asia1 which may also occur within the SAT serotypes (Grazioli
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et al. 2013; Kitson et al. 1990; Lea et al. 1994; Saiz et al. 1991). For the H1N1 virus,
experimental studies have identified four major antigenic sites (Caton et al. 1982), as
well as a number of other sites known to be important (McDonald et al. 2007).

Changes in the antigenic proteins occur as the strains within each serotype evolve.
The accumulation of these changes in geographically isolated virus lineages allows
for the division of serotypes into topotypes, groups of genetically similar viruses
associated with a particular geographic area (Knowles and Samuel 2003). Strains
within topotypes share a common evolutionary history that is distinct from strains
within other topotypes. Accounting for the genetic differences between topotypes
that have arisen due to their significantly different evolutionary paths is necessary
for understanding antigenic variability (Reeve et al. 2010). Interpreting the antigenic
consequences of genetic differences between topotypes can improve our understanding
of the evolutionary history of serotypes, as well as the likely extent of vaccine coverage
across topotypes.

In order to infer the antigenic importance of specific genetic changes that have
occurred during the evolution of the virus, we require in addition to genetic data, a
measure of the antigenic similarity of any two virus strains. Virus Neutralisation (VN)
titre and Haemagglutination inhibition (HI) assay give in vitro measures of antigenic
similarity between a protective, i.e. a potential vaccine, and a challenge strain, i.e. a
potential circulating virus (Hirst 1942; WHO 2011). They approximate the extent to
which one strain confers protection against another by recording themaximumdilution
at which the virus-specific antibody in a sample of antiserum from a cow (VN titre)
or ferret (HI assay) exposed to one strain of the virus (the protective strain) remains
able to neutralise a sample of a second virus strain (the challenge strain). Higher titres
or assay measures indicate that the antiserum still neutralises the challenge strains
at greater dilution and therefore that the protective and challenge strains are more
antigenically similar.

In principle, it is possible to identify experimentally how a mutation of the residues
affects antigenicity. However, due to the large number of co-circulating virus strains,
this is time consuming and expensive. Developing in silico predictors of VN titre
and HI assay that are robust and can account for experimental variation can help
substantially reduce the number of strains that must be tested in order to select an
effective vaccine strain. Previously mixed-effects models have been used on a variety
of datasets to model antigenic variability in both FMDV and Influenza by accounting
for the experimental variation in the VN titre or HI assay measurements (Reeve et al.
2010, 2016; Harvey et al. 2016).

However in order to identify antigenically important residues, we must infer which
explanatory variables are selected in the model.While stepwise regression techniques,
such as that of Reeve et al. (2010), can be used to select variables within standard
mixed-effects models, they do not explore all variable configurations and can result in
a non-optimal solution. An improved method, which allows for simultaneous variable
selection, is the Least Absolute Shrinkage and Selection Operator (LASSO) of Tibshi-
rani (1996), which uses an �1 penalty to select the variables. Schelldorfer et al. (2011)
have recently extended the LASSO to mixed-effects models with a single random
effect and we further extend the method here to work with multiple random effects
and the elastic net penalty (Zou and Hastie 2005).
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A drawback of the LASSO and elastic net, is the �1 regularisation term itself,
equivalent to a Laplace prior in a Bayesian context (Park and Casella 2008). This is
computationally efficient and leads to a convex optimisation problem for penalised
maximum likelihood or Bayesian maximum a posteriori (MAP) inference. However,
�1 regularisation gives an increased bias from shrinkage while not giving sufficient
sparsity, as discussed in Chapter 13 of Murphy (2012).

Spike and slab priors, as proposed in Mitchell and Beauchamp (1988), improve
variable selection and avoid excessive shrinkage, but lead to a non-convex optimisation
problem. The performance improvement of spike and slab priors over �1 regularisation
methods has previously been reported (Mohamed et al. 2012). Here these priors are
integrated into a Bayesian hierarchical mixed-effects model and this has a number of
advantages. In particular Bayesian hierarchical models allow consistent inference of
all parameters and hyper-parameters, and inference borrows strength by the systematic
sharing and combination of information; see Gelman et al. (2013).

The previously proposed models used datasets containing a variety of explanatory
variables in order to explain variation in VN titre and HI assay measurements. The
datasets, which we also use here, include variables showing the presence or absence of
amino acid substitutions (changes in protein composition caused by geneticmutations)
at different residues on the surface of the virus. The selection of these variables within
any model then indicates the relevance of that residue in determining the antigenic
similarity of the virus strains. Additionally, the datasets include variables to correct
for the phylogenetic structure of the serotypes, in order to account for the shared
evolutionary history of the strains. All the previous methods have used mixed-effects
models in order to correct for the experimental variation associated with the data
collection. The random effects include information about the strains tested, the animal
from which the serum was taken and when the lab work was completed and by whom.

Using these variables and random effects, Reeve et al. (2010) identified a single
known antigenic residue, VP3 138, in the VP1 G-H loop from a relatively small
amount of SAT1 data. More recently Reeve et al. (2016) explored an extended SAT1
dataset, which includes an increased number of strains and repeated experiments, and
identified a number of known antigenic residues. Reeve et al. (2010) also used their
methods on a small SAT2 dataset but were unable to select any significant residues in
their model. Using a larger H1N1 dataset Harvey et al. (2016) identified a number of
known antigenic site from the four major antigenic regions and other known sites.

The main purpose of this paper is to develop a Sparse hierArchical Bayesian model
for detecting Relevant antigenic sites in virus Evolution (SABRE) and use it to analyse
the SAT1, SAT2 and H1N1 datasets from Reeve et al. (2010, 2016) and Harvey et al.
(2016).Wepropose and evaluate three different versions of the SABREmethod and use
them to identify a number of previously unidentified residues, as well as predicting
a number of sites that could be plausibly antigenic. Moreover we use the data to
investigate the antigenic changes in the evolutionary history of the different lineages
within the FMDV serotypes and we are able to make reasonable predictions based on
biologically estimated topotypes. In addition to these predictions of antigenic change,
we also propose a new method for understanding when non-antigenic changes occur
in the evolution of the virus.
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2 Classical methods

A variety of classical statistical methods have previously been applied in predicting
antigenically significant sites. Before we introduce the SABRE method, we review
some of these methods and propose variations which are applicable in this context.
For all of the methods we use the following notation; bold upper case letter, X, for
a matrix, bold lower case letter, x, for a column vector, and non-bold letter, x , for a
scalar. We do not distinguish between random variables and their realisations.

For further notational details see Tables 1 and 2 in the online supplementary mate-
rials.

2.1 Classical mixed-effects model

We define the response y = (y1, . . . , yN )� to be the log VN titre or log HI assay and
denote the explanatory variables,X, to be indicators of mutational changes at different
residues and information on the phylogenetic structure (see Sect. 4). The explanatory
variables,X, are given as amatrix of J +1 columns and N rows, where the first column
is a column full of ones for the intercept. Each column j of explanatory variables, x j ,
is then given an associated regression coefficient, w j , to control its influence on the
response.

We further set the random-effects design matrix, Z, as the matrix of indicators with
N rows and ||b|| columns, where ||.|| indicates the length of the vector. The random-
effects design matrix describes experimental conditions which must be accounted
for based on the information that is available (see Sect. 4). For our datasets this can
include information about the strains tested, the animal from which the serum was
taken and when the lab work was completed. The random-effects coefficients are
given as b = (b�

1 , . . . ,b�
G)�, with each bg relating to a group g ∈ {1, . . . , G},

e.g. challenge strain. Each bg has length ||bg|| and follows a zero mean Gaussian
distribution with a group dependent variance, bg ∼ N (bg|0, σ 2

b,gI), where I is the
identity matrix. This leads to the random-effects coefficients having the following
joint distribution b ∼ N (b|0,Σb). Here we define Σb to be a matrix with σ 2

b =
(σ 2

b,1, . . . , σ
2
b,1, σ

2
b,2, . . . , σ

2
b,G)� on the diagonal, i.e. Σb = diag(σ 2

b). In this case

each σ 2
b,g is repeated with length ||bg||. See Pinheiro and Bates (2000) for more details

on mixed-effects models.
We define the model as:

y = Xw + Zb + ε where ε ∼ N
(
ε|0, σ 2

ε I
)

(1)

assigning the model additive iid Gaussian errors. Using a simple application of Gaus-
sian integrals (Bishop 2006), we integrate over b to give the likelihood:

L
(
w, σ 2

ε ,Σb|y,X,Z
)

= N
(
y|Xw,ZΣbZ� + σ 2

ε I
)

. (2)

In classical mixed-effects models, model comparison techniques are often used to
choose which variables are included within the model. Reeve et al. (2010) used a mix-

123



808 V. Davies et al.

ture of forward inclusion and univariate analysis, making an adjustment for multiple
testing using the Holm–Bonferroni correction to ensure a sparse model (Holm 1979).
They firstly included terms to account for the evolutionary history of the viruses (see
Sect. 4). They then did a univariate test for significance on the residue variables, where
a p value of <0.05 corresponded to an antigenically important residue.

2.2 LASSO

Aproblemwith the classical mixed-effects models of Reeve et al. (2010) is their model
selection technique, which does not explore all variable configurations and can result
in a non-optimal solution. A classical alternative which does allow for simultaneous
variable selection is the LASSO of Tibshirani (1996, 2011). The LASSO achieves its
variable selection through an �1 penalty (equivalent to a Bayesian Laplace prior). In
the simplest case of linear regression, this gives the following parameter estimates:

ŵ = argmin
w

⎧⎨
⎩(y − Xw)2 + λ

J∑
j=1

|w j |
⎫⎬
⎭ (3)

where we do not penalise the intercept w0 so that the model remains scale invariant
(Hastie et al. 2009). This is a convex optimisation problem where a variety of fast
and effective algorithms exist (e.g. Efron et al. 2004; Hastie et al. 2009). The effect of
(3) is to simultaneously shrink and prune parameters w, thereby promoting a sparse
model. The degree of sparsity depends on the regularisation parameter λ, which can
be optimised with cross-validation or information criteria.

A recent extension of the standard LASSO is the mixed-effects LASSO proposed
by Schelldorfer et al. (2011), who marginalised over b to estimate the regression
coefficients w, random-effects variances σ 2

b and the variance of the noise σ 2
ε as:

(
ŵ, σ̂

2
b, σ̂

2
ε

)
= argmin

w,σ 2
b>0,σ 2

ε >0

⎧
⎨
⎩log |V| + (y − Xw)�V−1(y − Xw) + λ

J∑
j=1

|w j |
⎫
⎬
⎭
(4)

where V = ZΣbZ� + σ 2
ε I. For our study we choose the penalty parameter λ based

on the Bayesian Information Criterion (BIC), as in Schelldorfer et al. (2011).
A problem with the mixed-effects LASSO of Schelldorfer et al. (2011) is that

the method has only been developed for one random effect. While it is possi-
ble to map the Cartesian product of several random effects onto a single random
effect, doing so can lead to over-estimating the complexity of the model. We have
therefore developed our own mixed-effects LASSO which is able to handle mul-
tiple random effects. Our method uses a conjugate gradient optimisation strategy
available in R (R Core Team 2013), but requires a tolerance that must be deter-
mined by the user. In practise defining this tolerance is easy to do, as for a large
λ and standardised data there will be a group of regressors clearly grouped around
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zero. The tolerance can then be set such as to force these values to zero, i.e.
exclusion from the model, and then λ reduced to create the so called LASSO
path. Following the described optimisation strategy may not be as computationally
efficient as the purpose-built block coordinate descent scheme proposed in Schell-
dorfer et al. (2011), but we have found in practise that they achieve the same
results.

2.3 Elastic net

A potential improvement over the LASSO is the elastic net of Zou and Hastie (2005).
It has several advantages including the ability to select more than N variables in
a J > N situation, whereas the LASSO saturates to at most N variables. More
importantly for our application is that it also deals better with groups of correlated
variables. While the LASSO will arbitrarily select one of the correlated variables,
the penalty of the elastic net allows it to keep all of the variables in the model.
See Section 2.3 of Zou and Hastie (2005) for more information on the grouping
effect.

The elastic net combines �1 and �2 penalties and in the case of linear regression
gives the following parameter estimates:

ŵ = argmin
w

⎧
⎨
⎩(y − Xw)2 + αλ

J∑
j=1

|w j | + (1 − α)λ

J∑
j=1

|w j |2
⎫
⎬
⎭ (5)

where λ is the penalty parameter and α controls the ratio of the �1 and �2 penal-
ties. When α = 1 the elastic net is equivalent to the LASSO and likewise ridge
regression when α = 0. We have investigated values of α between 0.2 and 0.8 and
found the results varied across different datasets and did not show a clear best choice
of α; see Section 8 of the online supplementary materials. We have therefore set
α = 0.3 for the examples in the main paper following Ruyssinck et al. (2014) and
relegated the remaining results to the supplementary materials for conciseness; see
Sect. 6.1.

Like the LASSO, we can expand the elastic net into the context of a mixed-effects
model, something that we propose here:

(
ŵ, σ̂

2
b, σ̂

2
ε

)
= argmin

w,σ 2
b>0,σ 2

ε >0

⎧⎨
⎩log |V| + (y − Xw)�V−1(y − Xw)

+αλ

J∑
j=1

|w j | + (1 − α)λ

J∑
j=1

|w j |2
⎫
⎬
⎭ (6)

where V = ZΣbZ� + σ 2
ε I. We use the same optimisation strategy we proposed for

the mixed-effects LASSO.
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μ0,h σ2
0,h αw,h βw,h

μw,h σ2
w,h

wj,h

βπ γj y Zk

π Xγj ,j

σ2
ε

bk,g μb,g

απ

αε

βε

σ2
b,g

αb,g

βb,g

w0

μw0 σ2
w0

h = 1, . . . , H

j = 1, . . . , J
k =

1, . . . , ||b||

g = 1, . . . , G
For: j = 1, . . . , J
γj ∼ Bern(γj |π)
π ∼ B(π|απ, βπ)

y ∼ N (y|1w0 +Xγwγ + Zb, σ2
εI) σ2

ε ∼ IG(σ2
ε |αε, βε) w0 ∼ N (w0|μw0 , σ

2
w0

σ2
ε)

For: k = 1, . . . , ||b||
bk,g ∼ N (bk,g|μb,g, σ

2
b,g)

For: j = 1, . . . , J

wj,h ∼ δ0(wj,h) if γj = 0
N (wj,h|μw,h, σ2

w,hσ2
ε) if γj = 1.

For: h = 1, . . . , H
μw,h ∼ N (μw,h|μ0,h, σ2

0,hσ2
ε)

σ2
w,h ∼ IG(σ2

w,h|αw,h, βw,h)

For: g = 1, . . . , G
σ2

b,g ∼ IG(σ2
b,g|αb,g, βb,g)

Fig. 1 Compact representation of the conjugate SABREmethod as a PGM. The grey circles refer to the data
and fixed (higher-order) hyperparameters, while the white circles refer to parameters and hyperparameters
that are inferred. PGMs for the semi-conjugate and conjugate binary mask versions of the SABRE method
are given in Figures 1 and 3 of the online supplementary materials

3 SABRE methods

The LASSO and elastic net have multiple weaknesses, as we have discussed in Sect. 1,
and they have been shown to be sub-optimal compared to Bayesian approaches (Dal-
ton and Dougherty 2012; Mohamed et al. 2012) such as the spike and slab prior
(Mitchell and Beauchamp 1988). In the remainder of this section we incorporate the
spike and slab prior into a hierarchical Bayesian model as shown in the Probabilistic
Graphical Model (PGM) in Fig. 1. Figure 1 shows a particular version of the SABRE
method, the conjugate SABRE method, but this section also discusses two other ver-
sions of the SABRE method; the semi-conjugate SABRE method (Figure 1 in the
online supplementary materials) and the binary mask SABRE method (Figure 3 of
the online supplementary materials). The parameters of the models are sampled from
their posterior distributions using Markov chain Monte Carlo (MCMC).
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3.1 Likelihood

The likelihood for our Bayesian model is similar to the classical mixed-effects model
described in Sect. 2.1, however we include only the relevant residue and phylogenetic
tree variables, Xγ , and regressors, wγ . As with classical mixed-effects models we
separate the intercept, w0, from the other regressors such that it is always included in
the model; see Fig. 1. We expect the intercept to be high as each strain should offer
strong protection against itself and hence there should be high log VN titre or log HI
assay, y, when all covariates are equal to zero, i.e. the protective and challenge strains
are the same.

p
(
y|w0,wγ ,b, σ 2

ε ,Xγ ,Z
)

= N
(
y|1w0 + Xγwγ + Zb, σ 2

ε I
)

. (7)

The relevance of the j th column of X is determined by γ j ∈ {0, 1}, where feature j
is said to be relevant if γ j = 1, giving γ = (γ1, . . . , γJ )� ∈ {0, 1}J . We then define
Xγ to be the matrix of relevant explanatory variables with ||γ || columns and N rows,
where ||γ || = ∑J

j=1 γ j is the number of non-zero elements of γ . Similarly wγ is
given as the column vector of regressors, where the inclusion of each parameter is
dependent on γ . This is demonstrated by the following example:

X =
⎡
⎣

x1,1 x1,2 x1,3
x2,1 x2,2 x2,3
x3,1 x3,2 x3,3

⎤
⎦; Xγ =

⎡
⎣

x1,1 x1,3
x2,1 x2,3
x3,1 x3,3

⎤
⎦; w =

⎡
⎣

w1
w2
w3

⎤
⎦; wγ =

[
w1
w3

]
;

γ =
⎡
⎣

γ1 = 1
γ2 = 0
γ3 = 1

⎤
⎦. (8)

An alternative to this model is the binary mask model; e.g. Chapter 13 of Murphy
(2012). In binary mask models the indicator variables, γ , ‘mask’ or hide the impact
of the non-zero coefficients, w, and explanatory variables, X, when the variable is not
selected:

p
(
y|w0,w, γ ,b, σ 2

ε ,X,Z
)

= N
(
y|1w0 + XΓw + Zb, σ 2

ε I
)

(9)

where Γ = diag(γ ). We have tested the binary mask version of the model against
the other versions of the SABRE method in Sect. 6.1 and found that the results are
reasonably similar. For clarity of the paper we have moved a more in depth description
of the model into Section 5 of the online supplementary materials, as we believe that
the spike and slab model makes more sense theoretically as the variance of the fixed
effects, σ 2

w,h , is only calculated based on those variables included in the model.

3.2 Noise and intercept priors

As with the classical methods described in Sect. 2, we assume additive iid Gaussian
noise with variance σ 2

ε . In a Bayesian context we wish to infer σ 2
ε , so we specify the

conjugate prior:
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σ 2
ε ∼ IG

(
σ 2

ε |αε, βε

)
(10)

where the hyper-parametersαε andβε are fixed, as indicated by the grey nodes in Fig. 1.
Additionally we also require a prior on our intercept, w0;

w0 ∼ N
(
w0|μw0 , σ

2
w0

σ 2
ε

)
. (11)

We treat the intercept differently from the remaining regressors, wishing to use vague
prior settings so as not to penalise this term and effectively make the model scale
invariant (Hastie et al. 2009).

The distribution of w0 also has σ 2
ε included, which makes the model conjugate

rather than semi-conjugate, as discussed in Chapter 3 of Gelman et al. (2013). Addi-
tionally, there are relationships between w0, wγ , μw = (μw,1, . . . , μw,H )� (defined
in Sect. 3.3) and the error variance, σ 2

ε , increasing information sharing and meaning
that the error variance in terms of model fit is reflected in the distribution of the regres-
sion coefficients; see Fig. 1. In addition to the increased information sharing, conjugate
models also have a computational advantage as the sampling strategy can be improved
through using collapsed Gibbs sampling. The difference between the conjugate and
semi conjugate SABRE models in terms of accuracy and computational efficiency is
discussed in Sect. 6.1. Additionally, the PGM for the semi-conjugate version of our
model is given in Figure 1 of the online supplementary materials.

3.3 Spike and slab priors

Spike and slab priors have been used in a number of different contexts and have
been shown to outperform �1 methods both in terms of variable selection and out-of-
sample predictive performance (Mohamed et al. 2012). They were originally proposed
by Mitchell and Beauchamp (1988) as a mixture of a Gaussian distribution and Dirac
spike, but have also been used as a mixture of two Gaussians (George and McCulloch
1993, 1997). Binary mask models (e.g. Jow et al. 2014) have also been used as an
alternative to the spike and slab prior in a number of applications, as is discussed in
Chapter 13 of Murphy (2012). A binary mask based version of the conjugate SABRE
method is compared in Sect. 6.1 and given in Section 5 of the online supplementary
materials.

The idea behind the spike and slab prior is that the prior reflects whether the feature
is relevant based on the values of γ . In this way we expect thatw j,h = 0 if γ j = 0, i.e.
the feature is irrelevant, and conversely it should be non-zero if the variable is relevant,
w j,h �= 0 if γi = 1. For generality, we allow the models the option to have multiple
groups of variables h ∈ {1, . . . , H} which are defined by j , i.e. w j,h is shorthand for
w j,h j . However this is not used in the results reported in Sect. 6. A conjugate prior,
with σ 2

ε added for further conjugacy, is then assigned where the feature is relevant and
a Dirac spike at zero where it is not:
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p
(
w j,h |γ j , μw,h, σ 2

w,h, σ 2
ε

)
=

{
δ0(w j,h) if γ j = 0

N
(
w j,h |μw,h, σ 2

w,hσ 2
ε

)
if γ j = 1

(12)

for j ∈ 1, . . . , J and where δ0 is the delta function. Here we have a spike at 0 and as
σ 2

w,hσ 2
ε → ∞ the distribution, p(w j,h |γ j = 1), approaches a uniform distribution, a

slab of constant height.
The prior for the variance of the parameters selected is then given by:

σ 2
w,h ∼ IG

(
σ 2

w,h |αw,h, βw,h

)
. (13)

By choosing the same fixed hyper-parameters, αw,h and βw,h for each h, we lose
information coupling between the different groups, although this could be regained
with an additional layer in the hierarchical model.

In addition to σ 2
w,h , we use the hyper-parameters μw,h to reflect the likely non-zero

means of each group h:

μw,h ∼ N
(
μw,h |μ0,h, σ 2

0,hσ 2
ε

)
(14)

where the hyper-parameters μ0,h and σ 2
0,h are fixed and σ 2

ε is again included in the
variance for further conjugacy. This specification comes from our biological under-
standing of the problem. In the FMDV and H1N1 data we are likely to observe a
comparatively large intercept, with negative regression coefficients, w j,h , reflecting
the fact that any mutational changes are likely to reduce the similarity between virus
strains, therefore reducing the measured VN titre or HI assay.

For mathematical convenience we then define the prior distribution of w∗
γ =

(w0,w�
γ )� as:

w∗
γ ∼ N

(
w∗

γ |mγ , σ 2
ε Σw∗

γ

)
(15)

where mγ = (μw0 , μw,1, . . . , μw,1, μw,2, . . . , μw,H )� and Σw∗
γ

= diag(σ 2
w∗) with

σ 2
w∗ = (σ 2

w0
, σ 2

w,1, . . . , σ 2
w,1, σ

2
w,2, . . . , σ

2
w,H )�. Each μw,h and σ 2

w,h is repeated with
length ||wγ ,h || dependent on γ .

The final part of the spike and slab prior is to set a prior for γ , the parameters which
determine the relevance of the variables:

p(γ |π) =
J∏

j=1

Bern(γ j |π) (16)

where π is the probability of the individual variable being relevant. The value of π

can either be set as a fixed hyper-parameter as in Sabatti and James (2005), where the
authors argue that it should be determined by underlying knowledge of the problem.
Alternatively it can be given a conjugate Beta prior:

π ∼ B(π |απ, βπ ) (17)
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as has been used here. This is a more general model, which subsumes a fixed π as a
limiting case for απβπ/((απ + βπ)2(απ + βπ + 1)) → 0 and has also been shown to
act as a multiplicity correction in Scott and Berger (2010).

3.4 Random-effects priors

In mixed-effects models the random effects, bk,g , are usually given group dependant
Gaussian priors where the group g is defined by k, i.e. bk,g is shorthand for bk,gk :

bk,g ∼ N
(

bk,g|μb,g, σ
2
b,g

)
. (18)

We define this to have a fixedmean,μb,g = 0, and a common variance parameter, σ 2
b,g ,

with a conjugate Inverse-Gamma prior for each random-effects group g, as shown in
Fig. 2a:

σ 2
b,g ∼ IG

(
σ 2

b,g|αb,g, βb,g

)
(19)

where αb,g and βb,g are fixed hyper-parameters for each g and we define b ∼
N (b|0,Σb) where Σb = diag(σ 2

b) with σ 2
b = (σ 2

b,1, . . . , σ
2
b,1, σ

2
b,2, . . . , σ

2
b,G)�

such that each σ 2
b,g is repeated with length ||bg||.

An alternative to this hierarchical prior setting is the folded-non-central-t prior
distribution described in Gelman (2006), which gives a redundant multiplicative
reparameterisation to the model given in (18), (19) and Fig. 2a. This prior has sev-
eral potential advantages over the Inverse-Gamma prior. Firstly it is considered to
be a prior that better represents non-informativeness. While the posterior distribu-
tion can be sensitive to the fixed hyper-parameter settings of an Inverse-Gamma
prior, the impact is reduced when the folded-non-central-t prior is used. In that case
the posterior distribution does not have a sharp peak at zero unlike with an vague

y Zk

bk,g μb,g

σ2
b,g

αb,g

βb,g
k =
1, . . . , ||b||

g = 1, . . . , G

y ∼ N (y|1w0 +Xγwγ + Zb, σ2
ε)

For: k = 1, . . . , ||b||
bk,g ∼ N (bk,g|μb,g, σ

2
b,g)

For: g = 1, . . . , G
σ2

b,g ∼ IG(σ2
b,g|αb,g, βb,g)

(a)

y Zk

ξ ηk,g μη,g

μξ σ2
ξ σ2

η,g

αη,g

βη,g
k =
1, . . . , ||η||

g = 1, . . . , G

y ∼ N (y|1w0 +Xγwγ + Zηξ, σ2
ε) ξ ∼ N (ξ|μξ, σ

2
ξ )

For: k = 1, . . . , ||η||
ηk,g ∼ N (ηk,g|μη,g, σ

2
η,g)

For: g = 1, . . . , G
σ2

η,g ∼ IG(σ2
η,g|αη,g, βη,g)

(b)

Fig. 2 PGMs for the two different specifications of the hierarchical random-effects model. a Classical
random-effects model using Gaussian and Inverse-Gamma priors. b Half-t prior specified in a hierarchical
manner, as suggested by Gelman (2006)
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Inverse-Gamma prior, reducing problems with underestimating the variance. Sec-
ondly, Gelman (2006) found that the folded-non-central-t prior results in a more
realistic posterior distribution of σ 2

b,g when there are only a few random effects (usu-
ally less than 8) in each group g. The author showed that the posterior distribution
reflected the marginal distribution well at its low end, but removed its unrealisti-
cally heavy tail; see Figure 2 in Gelman (2006). Doing this ensures that σ 2

b,g is
not overestimated and does not lead to non-optimal shrinkage of bg . Finally the
overparameterisation can improve sampling by reducing the dependence between
parameters in the hierarchical model leading to improved MCMC convergence (Gel-
man 2004).

The redundant multiplicative reparameterisation used for this prior specification
sets b = ηξ and is given by the following conjugate priors and shown in Fig. 2b:

ηk,g ∼ N
(
ηk,g|μη,g, σ

2
η,g

)
(20)

ξ ∼ N
(
ξ |μξ , σ

2
ξ

)
(21)

where μξ and σ 2
ξ are fixed for identifiability, μη,g = 0, ηk,g is shorthand for ηk,gk and

each bk,g = ξηk,g . Following Gelman (2006), we fix μξ = 0 which leads to the half-t
distribution. We then set a prior on σ 2

η,g:

σ 2
η,g ∼ IG

(
σ 2

η,g|αη,g, βη,g

)
(22)

where αη,g and βη,g are fixed hyper-parameters. In terms of classical mixed-effects
models, the variance is given by σ 2

b,g = ξ2σ 2
η,g . For convenience we define

η ∼ N (η|0,Ση) when μη,g = 0 for all g and where Ση = diag(σ 2
η) with

σ 2
η = (σ 2

η,1, . . . , σ
2
η,1, σ

2
η,2, . . . , σ

2
η,G)� where each σ 2

η,g is repeated with length ||ηg||.

3.5 Posterior inference

In order to explore the posterior distribution of the parameters we use anMCMC algo-
rithm. Having chosen conjugate priors where possible means we can run a Gibbs
sampler for the majority of parameters (Ripley 1979; Geman and Geman 1984).
The only exception is γ , although it is possible to use component-wise Gibbs sam-
pling with a small adaptation; see Sect. 3.6.1. Additionally we sample the intercept
and regression parameters together and define w∗

γ = (w0,w�
γ )�, X∗

γ = (1,Xγ ),

mγ = (μw0 , μw,1, . . . , μw,1, μw,2, . . . , μw,H )� andΣw∗
γ

= diag(σ 2
w∗)with σ 2

w∗ =
(σ 2

w0
, σ 2

w,1, . . . , σ 2
w,1, σ

2
w,2, . . . , σ

2
w,H )�. Each μw,h and σ 2

w,h is repeated with length
||wγ ,h || dependent on γ , as indicated below (15).

The conditional distributions for those parameters amenable to standard Gibbs
sampling are derived in Section 2 of the online supplementary materials and given
here, where by a slight abuse of notation θ ′ denotes all the other parameters, excluding
the ones on the left of the conditioning bar:
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w∗
γ |θ ′,X∗

γ ,Z, y ∼ N
(
w∗

γ |Vw∗
γ
X∗�

γ (y − Zb) + Vw∗
γ
Σ−1

w∗
γ
mγ , σ 2

ε Vw∗
γ

)
(23)

b|θ ′,X∗
γ ,Z, y ∼ N

(
b| 1

σ 2
ε
VbZ� (

y − X∗
γw

∗
γ

)
,Vb

)
(24)

σ 2
b,g|θ ′,X∗

γ ,Z, y ∼ IG
(
σ 2

b,g| ||bg||/2 + αb,g, βb,g + 1
2b

�
g bg

)
(25)

μw,h |θ ′,X∗
γ ,Z, y ∼ N

(
μw,h |V −1

μγ ,h

(∑ (
wγ ,h

)
/σ 2

w,h + μ0,h/σ 2
0,h

)
, σ 2

ε Vμγ ,h

)

(26)

σ 2
w,h |θ ′,X∗

γ ,Z, y ∼ IG
(
σ 2

w,h | ||wγ ,h ||/2 + αw,h, βw,h

+ 1
2σ 2

ε

(
wγ ,h − 1μw,h

)� (
wγ ,h − 1μw,h

))
(27)

σ 2
ε |θ ′,X∗

γ ,Z, y ∼ IG
(
σ 2

ε |
(

N + ||w∗
γ || + H

)
/2 + αε, βε + 1

2 Rσ 2
ε

)
(28)

π |θ ′,X∗
γ ,Z, y ∼ B (π |απ + ||γ ||, βπ + J − ||γ ||) (29)

where we sample σ 2
b,g , μw,h and σ 2

w,h for each g and h respectively. We also define

Vw∗
γ
=

(
X∗�

γ X∗
γ +Σ−1

w∗
γ

)−1
,Vb=

(
1
σ 2

ε
Z�Z + Σ−1

b

)−1
,Vμγ ,h =

((
||wγ ,h ||/σ 2

w,h

)−1

+
(
σ 2
0,h

)−1
)−1

and Rσ 2
ε

=
(
y − X∗

γw
∗
γ − Zb

)� (
y − X∗

γw
∗
γ − Zb

)
+

(
w∗

γ − mγ

)�

Σ−1
w∗

γ

(
w∗

γ −mγ

)
+ ∑H

h=1(μw,h − μ0,h)2/σ 2
0,h for notational simplicity.

In order to use the half-t prior instead of the standard Inverse-Gamma prior we
set b = ηξ and σ 2

b,g = ξ2σ 2
η,g . This would also need to be done for sampling γ

in Sect. 3.6. We can then sample η, ξ and σ 2
η,g from their conditional distributions,

replacing (24) and (25):

η|θ ′,X∗
γ ,Z, y ∼ N

(
η| ξ

σ 2
ε
VηZ� (

y − X∗
γw

∗
γ

)
,Vη

)
(30)

ξ |θ ′,X∗
γ ,Z, y ∼ N

(
ξ |Vξ

[
μξ

σ 2
ξ

+ 1
σ 2

ε
η�Z� (

y − X∗
γw

∗
γ

)]
, Vξ

)
(31)

σ 2
η,g|θ ′,X∗

γ ,Z, y ∼ IG
(
σ 2

η,g|||ηg||/2 + αη,g, βη,g + 1
2η

�
g ηg

)
(32)

where Vη = (
ξ2

σ 2
ε
Z�Z + Σ−1

η )−1 and Vξ = ( 1
σ 2

ξ

+ 1
σ 2

ε
η�Z�Zη)−1.

Collapsing will lead to improvedmixing and convergence, e.g. Andrieu and Doucet
(1999). We take advantage of the induced conjugacy to sample the parameters γ , w∗

γ ,

μw = (μw,1, . . . , μw,H )�, σ 2
ε and π as a series of collapsed distributions rather than

through Gibbs sampling:

p
(
γ ,w∗

γ ,μw, σ 2
ε , π

)
= p (γ ) p (π |γ ) p

(
σ 2

ε |π, γ
)

p
(
μw|σ 2

ε , π, γ
)

× p
(
w∗

γ |μw, σ 2
ε , π, γ

)
(33)

= p (γ ) p (π |γ ) p
(
σ 2

ε |γ
)

p
(
μw|σ 2

ε , γ
)

p
(
w∗

γ |μw, σ 2
ε , γ

)

(34)
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where the conditionality on θ ′, X, Z and y has been dropped and the simplification
from (33) to (34) follows from the conditional independence relations shown in Fig. 1,
exploiting the fact thatπ is d-separated from the remaining parameters in the argument
via γ . These distributions are achieved by collapsing over parameters as derived in
Sections 2, 3 and 4 of the online supplementary materials, and are used for all of our
conjugate models.

3.6 Sampling the latent indicators

Sampling γ is more difficult, as it does not naturally take a distribution of standard
form. However we can still get a valid conditional distribution and use a variety of
techniques to sample from it. Here we have used collapsing methods following Sabatti
and James (2005) to achieve faster mixing and convergence:

p
(
γ |θ ′,X∗

γ ,Z, y
)

∝
∫

p
(
γ , π, σ 2

ε ,w∗
γ ,μw|θ ′,X∗

γ ,Z, y
)

dμwdw∗
γ dπdσ 2

ε (35)

∝
∫

p (γ |π) p (π) p
(
y|w∗

γ ,X∗
γ ,Z, σ 2

ε

)
p

(
w∗

γ |μw, σ 2
ε

)

× p
(
μw|σ 2

ε

)
p

(
σ 2

ε

)
dμwdw∗

γ dπdσ 2
ε (36)

where the factorisation follows from the conditional independence relations depicted
in Fig. 1 and the fixed hyper-parameters (given as grey circles in Fig. 1) have been
dropped to improve notational clarity. The full distribution is available in Section 3 of
the online supplementary materials.

Multiple methods have been proposed for sampling the latent variables, γ . In this
paper we look at two of these in particular; the component-wise Gibbs sampling
approach and a Metropolis–Hastings step (Metropolis et al. 1953; Hastings 1970).
In the latter we can propose changes to multiple parameters simultaneously for a
computational improvement.

3.6.1 Component-wise Gibbs sampling

A component-wise Gibbs sampler can be used to consecutively sample each γ j

from γ in a random order dependent on the current state, c, of all the other γ s,

γ c
− j =

(
γ c
1 , . . . , γ c

j−1, γ
c
j+1, . . . , γ

c
J

)
. We can define the conditional distribution

of the i th iteration of γ j to be a Bernoulli distribution with probability p(γ j =
1|θ ′, γ c

− j ,X
∗
γ ,Z, y) = a

a+b , where we define a ∝ p(γ j = 1, γ c
− j |θ ′,X∗

γ ,Z, y)
and b ∝ p(γ j = 0, γ c

− j |θ ′,X∗
γ ,Z, y) using (36).

3.6.2 Block Metropolis–Hastings sampling

Block Metropolis–Hastings sampling can improve mixing and convergence through
proposing sets, S, of latent indicator variables, γ S , simultaneously, where γ S denotes
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a column vector of all the γ j s where j ∈ S and γ −S its compliment. The proposals
are then accepted with the following acceptance rate:

α
(
γ ∗

S, γ c
S|θ ′,X∗

γ ,Z, y, γ c
−S

)

:= min

⎧⎨
⎩

q
(
γ c

S|γ ∗
S, π

)
p

(
γ S = γ ∗

S, γ
c
−S|θ ′,X∗

γ ,Z, y
)

q
(
γ ∗

S|γ c
S, π

)
p

(
γ S = γ c

S, γ
c
−S|θ ′,X∗

γ ,Z, y
) , 1

⎫⎬
⎭ (37)

whereq(.) is a proposal density,whichwe set to be:q(γ ∗
S|γ c

S, π) = ∏
j∈S Bern(γ

∗
j |π).

Proposed moves for independent sets of randomly ordered inclusion parameters, γ ∗
S ,

are then accepted if α(γ ∗
S, γ

c
S|θ ′,X∗

γ , Z, y, γ c
−S) is greater than a random variable

u ∼ U[0, 1], until updates have been proposed for all the latent indicator variables.

4 Data

The antigenic similarity between two viruses can be measured by VN titre or HI
assay. To get these measurements an antiserum is created from a single strain, the
protective, and measured in its ability to neutralise a sample of a different strain, the
challenge. However the resulting measures are affected by a number of experimental
effects, which can potentially include the challenge strain, antiserum and date; see
Sects. 4.2, 4.3, 4.4 and 4.5 . The experimental effects are accounted for via the random
effects, with the random-effects coefficients, bk,g , representing an unknown effect
of a particular random effect level on the measured log VN titre or log HI assay.
Once this has been accounted for, it should then be possible to explain the underlying
true log VN titre or log HI assay values by looking at the difference in the protein
structure of the two viruses. This difference can be attributed to the presence (1) or
absence (0) of an amino acid substitution at each specific residue which is exposed
on the surface of the capsid or virus shell. This information can be added into the
model as fixed-effects and the selection of a particular residue, or variable, indicates
its importance in explaining antigenicity. Residues in the FMDV datasets are given
by their protein sequence alignment (Reeve et al. 2010), where for example VP3 138
represents position 138 on the VP3 protein. Residues in the H1N1 dataset are given
by their position on the H1 common alignment (Harvey et al. 2016).

However, sometimes we observe antigenic differences between virus lineages that
we unable to attribute to amino acid changes at any specific residue. In these cases
we wish to relate the changes to the evolutionary history of the virus. We do this
through the inclusion of variables related to different properties of the branches of the
phylogenetic tree. The reconstruction of phylogenetic trees is not the subject of this
article, and thereforewe use trees generated from the structural proteins of SAT1, SAT2
and H1N1 viruses presented by Reeve et al. (2010, 2016) and Harvey et al. (2016).
Where possible, for each of the branches we include variables related to the effect
of the challenge and protective strains, as well as to account for unknown antigenic
effects; see Section 6 of the supplementary details for more information.

123



A sparse hierarchical Bayesian model for detecting… 819

4.1 Simulated data

To test the effectiveness of the methods described in Sects. 2 and 3 , we have used
a simulation study. We simulated 12 sets of simulated data based on the structure of
the FMDV datasets. For the first 9 sets of simulated data, the datasets contain 100
measurements for training and 900 measurements for testing. For each of these sets
of simulated data we varied the number of variables, ||w|| ∈ {40, 60, 80}, and the size
of the error, σ 2

ε ∈ {0.01, 0.1, 0.3}, to test the methods under different circumstances.
The final 3 sets of simulated data were used to test the model under the p > N setting
with each of the datasets containing 50 measurements for training and 900 for testing.
We then set ||w|| = 200 and again varied the size of the error, σ 2

ε ∈ {0.01, 0.1, 0.3}.
Additionally in each of the 12 sets of simulated data we added two groups of random
effects to each dataset to represent experimental variation, both with 8 levels.

To reflect the fact that we expect many of the variables to have no influence on the
response we drew a probability π from U(0.2, 0.4) for each of the first 9 sets of data
and fixed it to π = 0.05 for the other 3 sets of data. The range of values for π in the
first 9 sets of data reflects the values we expect to see for the FMDV and Influenza
datasets, while the value for the other sets of data, π = 0.05, represents a value found
regularly in the literature for other biological problems. With this probability, each of
the variables in the dataset was then given a regressor simulated from U(−0.4,−0.2)
and zero otherwise, remembering that we expect the variables to have a negative effect
as any mutational changes will reduce the response, VN titre. Each response yi was
then generated with an intercept of 10 and perturbed with N (0, 0.02) iid additive
Gaussian noise.

4.2 SAT1 data

The original SAT1 dataset analysed in Reeve et al. (2010) is made up of 246 VN
titre measurements of comparisons between 3 protective and 20 challenge strains. For
each of these measurements, there are 754 residues in the amino acid sequence of the
structural proteins. Of these 306 are exposed on the surface of the capsid, and 137 are
variable between the 20 test viruses, producing usable indicator variables to assess
the antigenic effect of amino acid substitutions. The phylogenetic tree contains 38
branches, and we have included variables on the phylogenetic trees to account for the
type of effect where possible (see Section 6 of the supplementary materials), resulting
in 64 different indicator variables to help determine the effect of each branch. To
complete the analysis we removed groups of variables with correlation coefficients of
one, leaving only one variable included but using information from the whole group
in order to classify the included variable (see Table 3 and Section 7 of the online
supplementary materials). This gave the final dataset 138 variables in total. Random
effects were included to account for the antiserum and challenge strain.

4.3 Extended SAT1 data

After the original analysis of the SAT1 data in Reeve et al. (2010), more data
was collected, including additional strains and repeated experiments, for the SAT1
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serotype (Reeve et al. 2016). This data includes the original SAT1 data and
consists of a total of 2125 VN titre measurements with 5 protective and 42
challenge strains. Of the 306 surface exposed sites, the amino acid sequence is
variable between the viruses at 146. 132 variables were also provided from the
phylogenetic structure. Once groups of variables with correlation coefficients of
one were removed, 221 variables were left in the model. Random effects were
included to account for the antiserum, challenge strain and date of the experi-
ment.

4.4 SAT2 data

The SAT2 data was originally analysed in Reeve et al. (2010) and contains 320 VN
titre measurements of 4 protective and 22 challenge strains. It contains data on 128
variable surface exposed residues and 80 variables associated with different types of
phylogenetic changes. After removing variables with correlation coefficients of one
as before, this left 148 different variables to be included in the model. Random effects
were included to account for the antiserum and challenge strain.

4.5 Influenza A (H1N1) data

Harvey et al. (2016) used a H1N1 dataset that contained 506 challenge strains and
43 protective strains. Here we have uses a slightly smaller dataset in order to fully
account for the effect of the phylogenetic structure; see Section 6 of the supplementary
materials. The dataset used here contains 15,693 HI assay measurements with 43
challenge and 43 protective strains. As this full dataset is too large to analyse using
the conjugate SABRE method we have summarised the data to 570 mean HI assay
measurement for each combination of challenge and protective strains. For each pair
of challenge and protective strains the 279 explanatory variables, 53 surface exposed
residues and 226 variables related to the phylogenetic data, remain the same. Doing
this however means we cannot use the date of the experiment as a random effect group
and additionally the dataset does not contain antiserum data, meaning we have only
used the challenge strain as a random effect group.

5 Computational inference

Our code for the classical mixed-effects models has been implemented in R (R Core
Team 2013) using the package lme4 (Bates et al. 2015). To choose these models we
used forward inclusionwhile adjusting formultiple testing using theHolm–Bonferroni
correction. The code for the mixed-effects LASSO, mixed-effects elastic net and the
SABRE methods was written directly into R and the software is freely available from
the authors upon request.

For our MCMC chains, we sampled 10,000 and 15,000 iterations respectively for
the simulated and real data before removing an appropriate portion for burn-in. This
was determined by running 4 chains for each model and computing the potential
scale reduction factor (PSRF) (Gelman and Rubin 1992) from the within-chain and
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between-chain variances (Plummer et al. 2006).We take a PSRF≤ 1.05 as a threshold
for convergence and terminate the burn-in when this is consistently satisfied for 95%
of the variables. In general, the fixed hyper-parameters, shown as grey nodes in Fig. 1,
were set to give a vague distribution for the flexible (hyper-)parameters, shown aswhite
nodes. The only exception was the prior on π , defined in (17), which was set to be
weakly informative such thatαπ = 1 andβπ = 4. This corresponds to prior knowledge
that only a small number of residues or branches have a significant antigenic effect.

The following hyper-parameters, shown as grey nodes in Fig. 1, are fixed to give
vague distributions: αb,g = βb,g = αη,g = βη,g = 0.001 and μb,g = μη,g = 0
for all g, αw,h = βw,h = 0.001, μ0,h = 0 and σ 2

0,h = 100 for all h, μξ = 0,

σ 2
ξ = 100, μw0 = max(y), σ 2

w0
= 100 and αε = βε = 0.001. The only unusual

choice is μw0 = max(y) which follows from us expecting a high intercept with the
regression coefficients then having a negative effect on the response. This is a result
of strains having high reactivity with themselves, and any changes making the strains
less similar, reducing their reactivity.

To analyse the best proposal method we tested the component-wise Gibbs sampler
and several specifications of the Metropolis–Hastings sampler on the original SAT1,
extendedSAT1andH1N1datasets. For theMetropolis–Hastings sampler,we proposed
the inclusion or exclusion of the variables in groups of 5, 10, 15, 20 and 30.We analysed
convergence by monitoring the percentage of variables with a PSRF ≤ 1.05, similar
to Grzegorczyk and Husmeier (2013).

For selecting variables in the mixed-effects LASSO and elastic net we used BIC as
in Schelldorfer et al. (2011). For the SABRE method there are a variety of techniques
that have been used in the literature to choose a cut-off. Often a cut-off of 0.5 is used and
this has been shown to be the best predictive model under strict conditions (Barbieri
and Berger 2004). Alternatively the top J π̂ ranked variables have been taken, where
J is the number of variables and π̂ is the posterior mean of π , defined in (16) and
(17), i.e. the global probability of variables being included in the model.

6 Results and discussion

To recapitulate, we have introduced a hierarchical Bayesian modelling framework
(called SABRE) for selecting relevant antigenic sites in viral evolution. There are
two fundamentally different approaches to variable selection: the slab and spike prior,
whereby the influence of an input variable is controlled via the prior distribution of its
associated regression parameters, and the binary mask model, where variables are put
through a binary multiplicative filter. There are also different prior distributions one
can choose: a conjugate prior, and a semi-conjugate prior. This gives us three variants
of the proposed modelling framework:

– The conjugate SABRE model, with slab and spike prior
– The semi-conjugate SABRE model, with slab and spike prior
– The binary mask SABRE model.

These three variants are depicted as probabilistic graphical models in Fig. 1
of the main paper, and in Figures 1 and 3 of the supplementary material. We
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Fig. 3 Gaussian Kernel density estimation plots of random effects variances and a comparison of poste-
rior inclusion probabilities. Gaussian kernel density estimation plots are shown for the sampled posterior
densities of the log random effect variance. This is given for the two groups of random effects, a challenge
strain and b antiserum, under a vague Inverse-Gamma prior (solid) and the half-t prior (dotted) proposed
in Gelman (2006). c Plot showing the comparative posterior inclusion probability for each variable for the
two models

have compared their performance with that of two established methods from the
literature: the mixed-effects model with stepwise variable selection, and the mixed-
effects LASSO. Since there are indications from the literature that the elastic
net offers an improvement over the LASSO, we have also modified the mixed-
effects LASSO model from the literature (Schelldorfer et al. 2011) by a novel
mixed-effects elastic net model. This gives us three classical methods for compar-
ison:

– Mixed-effects model with stepwise variable selection
– Mixed-effects LASSO model
– Mixed-effects elastic net model.

We have applied and assessed the proposed methods with a three-pronged
approach. Firstly, we have tested them on a large set of synthetic benchmark
data, where the true structure of the model is known, and it is therefore straight-
forward to quantify the accuracy of inference. This is discussed in Sect. 6.1.
Secondly, we have applied the methods to real data for which partial biologi-
cal prior knowledge is known, which can be used to partially assess the model
predictions. These findings are presented in Sect. 6.2. Finally, in Sect. 6.3, we
present novel applications to new data, from a less well known serotype of FMDV
and the H1N1 serotype of the Influenza virus. Here, little reliable biological prior
knowledge is available, and the purpose of our study is new hypothesis genera-
tion.

As discussed in Sect. 3.4, we have also tested the choice of the random-effects prior
on the SAT2 dataset. Figure 3a, b show posterior samples of the log variance of the
two random-effects groups from the conjugate SABRE method comparing the half-t
and Inverse-Gamma priors, and shows no notable differences. Similarly Fig. 3c shows
that the inclusion probabilities for the two competing models are approximately the
same. Based on these findings, we only report the results obtained with the conjugate
Inverse-Gamma prior.
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6.1 Simulated data with known ground truth

Table 1 compares the different methods in terms of variable selection,WidelyApplica-
ble Information Criterion (WAIC) score (Watanabe 2010), predictive performance and
fixed effects coefficients inference using the simulated datasets described in Sect. 4.1.1

To measure variable selection we have ranked the covariates in terms of their signifi-
cance or influence. For the Bayesian methods, the ranking is defined by the marginal
posterior probabilities of inclusion. For the alternative methods, we explain the way
the ranking is obtained below. Since for the simulated data the true covariates are
known, this ranking can be used to produce a receiver operating characteristic (ROC)
curve (e.g. Hanley and McNeil 1982; Section 5.7. of Murphy 2012), where for all
possible values of the inclusion threshold, the sensitivity or recall (the relative propor-
tion of true positive covariates: TP/(TP+FN)) is plotted against the complementary
specificity (the relative proportion of false positive covariates: FP/(FP+TN)).2 By
numerical integration we obtain the area under the ROC curve (AUROC) as a global
measure of accuracy, where larger values indicate a better performance, starting from
AUROC = 0.5 to indicate random expectation, to AUROC = 1 for perfect variable
identification.

In addition to ranking the covariates to get ROC curves for the SABRE methods,
we also need to rank the alternative established methods for a comparison. For the
classical mixed-effects models this is done by removing the significance threshold
and ranking the edges by order of inclusion. For the mixed-effects LASSO and elastic
net we predicted models for a variety of different penalty parameters, λ, to create
the so called LASSO path and create a ranking based on when variables become 0.
For the mixed-effects elastic net we only show the results for α = 0.3 following
Ruyssinck et al. (2014), however the remaining results are available in Section 8
of the online supplementary materials. Alternative AUROC values based on using
model selection and then ranking the variables based on the absolute values of the
regression coefficients (Aderhold et al. 2014), aswell as other results, are also available
in Section 8 of the online supplementary materials.

Table 1 also measures the accuracy of predicting out of sample observations, yout,
and the fixed effects coefficients, w in terms of Mean Squared Errors (MSEs). For
the Bayesian methods, the predictions are made by sampling from the model and
then choosing which variables are included based on taking the top J × π̂ variables
with the highest inclusion probabilities. The model is then sampled with just those
variables set to be included and the estimates calculated. For themixed-effects LASSO,
mixed-effects elastic net and classical mixed effects models the regression coefficients
can be taken from the chosen model. The random effects coefficients can then be
calculated using the best linear unbiased estimator and predictions of the out of sample
observations, yout, made.

1 We do not do a comparison with the classical mixed effects models in the cases where p > N . This is
a result of it not being possible to complete the model selection procedure in this case as the regression
coefficients, w, are unidentifiable.
2 TP: true positive count, FP: false positive count, TN: true negative count, FN: false negative count.
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In terms of variable selection, the AUROC values shown in Fig. 4 and Table 1
show that all the SABRE methods outperform the alternative methods; the mixed-
effects LASSO, the mixed effects elastic net and the classical mixed effects models.
This is achieved across all datasets and is highlighted in Fig. 5, which compares
the difference in AUROC values obtained by the different methods and that of the
conjugate SABRE method. A negative score signifies a reduction in performance
compared to the conjugate SABREmethod. Figure 5 shows that the conjugate SABRE
method performs significantly better than themixed-effects LASSO, themixed-effects
elastic net and the classical mixed-effects models in all sets of data.

The performance in terms of predicting out of sample observations and inferring
fixed effects coefficients shown in Table 1 again shows the SABRE methods outper-
forming the alternative methods in most cases. Table 1 shows a huge improvement for
the SABRE methods in all cases except where both the error variance and number of
variables is small. This is especially the case with the mixed-effects LASSO and the
mixed-effects elastic net where the reliance on �1 regularisation causes a bias which
affects both the inference of the fixed effects coefficients and the variable selection, as
well as subsequently the out of sample predictions. The alternative methods do out-
perform the SABRE methods in some sets of data, however this is limited to a small
number of cases which can mainly be explained by the model selection technique
used with the SABRE methods not accurately selecting the correct cut-off when the
AUROC value is close to 1.

We have also explored multiple different versions of the SABRE method, namely
the semi-conjugate (Figure 1 of the online supplementarymaterials), conjugate (Fig. 1)
and binary mask conjugate (Figure 3 of the online supplementary materials) SABRE
methods. As far as we are aware the quantitative comparison between a spike and
slab based method and a binary mask based one is the first of its kind. Our results
given in Table 1, as well as Figs. 4 and 5 , show a strong similarity in performance
between the methods. The comparison of AUROC values given in Fig. 5 clearly shows
a large overlap in both methods’ variable selection performance and this is backed up
by the paired t-tests given in Table 5 of the online supplementary materials. The only
exception to this is theAUROCvalues for the sets of datawith n = 50 and ||w = 200||,
which show a small significant improvement for the spike and slab model. This result
is not repeated across different datasets so it is logical to conclude that these models
perform similarly in general. Identifying that these methods give similar results is
important, as in practise bothmethods are discussed and used throughout the literature,
e.g. Murphy (2012), and Jow et al. (2014).

We have also compared the conjugate and semi-conjugate SABRE models, as
depicted in Fig. 1 here and Figure 1 in the online supplementary materials. Overall,
our results, shown in Table 1 and Tables 4–7 of the supplementary material, suggest
that the two methods perform similarly across the wide range of simulated data sets.
A paired t-test, summarised in Table 6 of the supplementary material, identifies two
data sets (||w|| = 40, σ 2

ε = 0.3; ||w|| = 60, σ 2
ε = 0.3) where the conjugate SABRE

model outperforms the semi-conjugate SABRE model. Formal model selection based
on WAIC also shows a slight, but significant preference for the conjugate model in 9
out of 12 sets of data (see Tables 4–7 of the online supplementary material).
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Fig. 4 Bar plots of AUROC values from the Simulation Study Results in Table 1. The bar plots give
AUROC values for the Conjugate (C), Semi-Conjugate (SC) and Binary Mask Conjugate (BM C) SABRE
methods (black bars), themixed-effects (M-E) LASSO, themixed-effects elastic net (M-EEN)withα = 0.3
(both grey bars) and the classical mixed-effects models (white bars) applied to the simulated data described
in Sect. 4.1. a N = 100, ||w|| = 40, σ 2

ε = 0.03. b N = 100, ||w|| = 40, σ 2
ε = 0.1. c N = 100, ||w|| = 40,

σ 2
ε = 0.3. d N = 100, ||w|| = 60, σ 2

ε = 0.03. e N = 100, ||w|| = 60, σ 2
ε = 0.1. f N = 100, ||w|| = 60,

σ 2
ε = 0.3. g N = 100, ||w|| = 80, σ 2

ε = 0.03. h N = 100, ||w|| = 80, σ 2
ε = 0.1. i N = 100, ||w|| = 80,

σ 2
ε = 0.3. j N = 50, ||w|| = 200, σ 2

ε = 0.03. k N = 50, ||w|| = 200, σ 2
ε = 0.1. l N = 50, ||w|| = 200,

σ 2
ε = 0.3
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Fig. 5 Box plots of the difference in AUROC values for each method in comparison to the conjugate
SABRE method. The box plots give the difference in AUROC values for each of the methods after the
AUROC value of the conjugate SABRE method has been subtracted for the appropriate dataset. Negative
values indicate that the conjugate method has outperformed the alternative method. Each box plot contains
100 datasets as described in Sect. 4.1. The alternative methods are the Semi-Conjugate (SC) and Binary
Mask Conjugate (BM C) SABRE methods, the mixed-effects (M-E) LASSO, the mixed-effects elastic net
(M-E EN) with α = 0.3 and the classical mixed-effects models. a N = 100, ||w|| = 40, σ 2

ε = 0.03.
b N = 100, ||w|| = 40, σ 2

ε = 0.1. c N = 100, ||w|| = 40, σ 2
ε = 0.3. d N = 100, ||w|| = 60, σ 2

ε = 0.03.
e N = 100, ||w|| = 60, σ 2

ε = 0.1. f N = 100, ||w|| = 60, σ 2
ε = 0.3. g N = 100, ||w|| = 80, σ 2

ε = 0.03.
h N = 100, ||w|| = 80, σ 2

ε = 0.1. i N = 100, ||w|| = 80, σ 2
ε = 0.3. j N = 50, ||w|| = 200, σ 2

ε = 0.03.
k N = 50, ||w|| = 200, σ 2

ε = 0.1. l N = 50, ||w|| = 200, σ 2
ε = 0.3
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Fig. 6 Convergence diagnostics for the combined simulated datasets. Convergence diagnostics for the
conjugate SABRE method with the collapsed sampling scheme (CSS) (solid line), the semi-conjugate
SABRE method without CSS (crosses) and the BM conjugate SABRE method with CSS (circles). The
lines show the proportion of parameters converged (PSRF < 1.05) versus the number of iteration of the 4
MCMC chains. The proportion is based on all of the simulated datasets with n = 100 from Sect. 4.1

The final contribution of our simulation study is to test whether the use of the
collapsed sampling scheme in conjunction with increased conjugacy achieves an
improvement in terms of MCMC mixing and convergence. Figure 6 indicates that
a slight improvement is achieved with the conjugate SABRE model over the semi-
conjugate onewhen themethodswere tested on the sets of datawithn = 100.However,
this difference is not statistically significant, as becomes clear when considering the
confidence intervals (not shown in Fig. 6 to avoid clutter). This finding suggests that
the major bottleneck in the MCMC sampling scheme is caused by the latent variables
γ rather than the regression parameters.

6.2 Real data with partial ground truth

Both SAT1 datasets have been analysed using classical mixed-effects models. Orig-
inally Reeve et al. (2010) analysed the original SAT1 dataset (Sect. 4.2) and Reeve
et al. (2016) investigated an extended version of this dataset (Sect. 4.3). We have
used our method on each of these datasets in order to identify a number of candidate
residues which could be considered important for understanding antigenic variabil-
ity. Knowledge of which residues are antigenically important is partially incomplete.
Therefore, for validation purposes, residues were assigned to three different groups,
proven, plausible and implausible, based on how likely they are to be antigenic based
on experimental results.

For the SAT1 FMDV serotype, residues are included in the experimentally proven
group for three different reasons. Firstly we include any residues which have been
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experimentally validated as important within the SAT1 serotype by monoclonal anti-
body escape mutant studies (MAbs) (Grazioli et al. 2006). Secondly, we include
those residues which are part of cords of connected experimentally validated anti-
genic residues for four or more different serotypes; VP1 140–169 (part of the VP1
G-H loop), VP1 200–224 (VP1 C terminus), VP2 70–82 (VP2 B-C loop) and VP3
56–61 (VP3 B-B knob) (Aktas and Samuel 2000; Barnett et al. 1989; Crowther et al.
1993a; Baxt et al. 1989; Bolwell et al. 1989; Grazioli et al. 2006, 2013; Lea et al.
1994; Kitson et al. 1990; Mateu 1995; Saiz et al. 1991; Thomas et al. 1988a, b). As
antigenic sites have been found in a large number of different individual locations,
we include additional information from other serotypes when classifying whole loops
due the similar structure of the different serotypes. Finally, we also include a number
of topotype-defining branches that are known to represent significant changes in the
evolutionary history (Reeve et al. 2010).

We define the plausible group to consist of residues from any protein loop where
residues have been identified in three or less FMDVserotypes, excluding those residues
that are already classified as proven. Additionally, any non-topotype-defining branches
of the phylogenetic trees are included in the plausible group, as it is unknown which of
the remaining branches may also be significant in evolutionary history of the serotype.
Finally we classify any residues not included in these groups as implausible.

It is common that variables have correlation coefficients exactly equal to one. In this
case we only include one of the variables in the model and use Table 3 of the online
supplementary materials to guide the classification into the proven, plausible and
implausible groups, as explained in Section 7 of the online supplementary materials.

6.2.1 SAT1 data

The analysis of the original SAT1 dataset has resulted in the identification of 29
residues or branches of importance based on taking the top J π̂ variables with the
highest marginal posterior inclusion probabilities. 9 of the selected residues and 2 of
the branches are classified as proven, at the expense of only 1 implausible variable. A
full list of selected variables can be found in Section 8.2 of the online supplementary
materials. The proportion of the differently classified variables at different cut-off
points is shown in Fig. 7a. The proven residues include several that have been validated
using MAbs in the SAT1 serotype (Grazioli et al. 2006), as well as others from the
VP2 B-C loop, VP1 G-H loop and VP1 C-terminus (the end of the VP1 protein) and
we have focused on these proven residues in our analysis.

The residues that have been experimentally validated in the SAT1 serotype are VP3
71 and VP3 77 in the VP3 B-C loop and VP1 144 and VP1 149 in the VP1 G-H loop
(Grazioli et al. 2006). Additionally in the VP1 G-H loop, an antigenic loop in every
FMDVserotype (Bolwell et al. 1989; Crowther et al. 1993b;Grazioli et al. 2006, 2013;
Kitson et al. 1990; Lea et al. 1994) known to distract the host immune systems, the
conjugate SABRE method has also identified VP1 143 and VP1 150. These residues
are next to the experimentally validated residues in the protein alignment and confirm
that the VP1 G-H loop is a highly antigenic part of the SAT1 serotype.

In addition to the residues in theVP3B-CandVP1G-H loops, the conjugateSABRE
method has additionally selected VP2 74 in the VP2 B-C loop, as well as VP1 216 and
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Fig. 7 Proportion of categorised SAT1 variables included based on different cut-off values for posterior
inclusion probability. The graph shows the proportion of the experimentally proven (thick solid line),
plausible (solid line) and implausible (dashed line) variables based on a cut-off value for the posterior
inclusion probability. The variables were classified into groups based on the method outlined in the first 3
paragraphs of Sect. 6.2. Cut-offs are marked at 0.5 posterior inclusion probability (vertical dashed line) and
the posterior inclusion probability equivalent to the top J π̂ variables with the highest posterior inclusion
probabilities (vertical dotted line). a Original SAT1, b extended SAT1

VP1 219 in the VP1 C-terminus. The VP2 B-C loop is antigenic in all serotypes and
contains the highly antigenic VP2 72 residue, which has been experimentally validated
in all of the FMDV serotypes except SAT2 (Aktas and Samuel 2000; Crowther et al.
1993a; Grazioli et al. 2006, 2013; Kitson et al. 1990; Lea et al. 1994; Saiz et al. 1991).
The VP1 C-terminus has been proven to be antigenic in all but the Asia1 serotype,
although it is almost certainly antigenic there also (Aktas and Samuel 2000; Baxt et al.
1989; Grazioli et al. 2006; Mateu 1995).

Figure 8a shows the model predictions for the antigenically significant branches
based on using just the branch variables from the original SAT1 dataset. Here we have
identified all of the branches known to divide topotypes (Reeve et al. 2010), as well as
a number of other branches. Several of the branches, including two topotype defining
branches, have been specifically identified as reactivity, immunogenic or antigenic
changes, an improvement over previously used models.

6.2.2 Extended SAT1 data

The analysis of the extended SAT1 dataset resulted in selecting 76 variables, which
included 24 proven residues, 4 important branches in the evolutionary history and
only 2 implausible residues. A full list of the selected variables can again be found
in the online supplementary materials, Section 8.2, and the proportion of proven,
plausible and implausible residues selected at different cut-offs is shown in Fig. 7b
here. The improved results over Sect. 6.2.1 show the advantage of getting a larger
dataset through testing an increased number of strains under a variety of different
experimental conditions.

The conjugate SABREmethod has identified 11 residues in the highly variable VP1
G-H loop (VP1 142, VP1 143, VP1 144, VP1 147, VP1 148, VP1 149, VP1 150, VP1
155, VP1 156, VP1 163 and VP1 164). Finding this many significant residues in this
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highly antigenic region while keeping the number of implausible residues low shows
that the model is working effectively.

Additionally, like with the original SAT1 dataset in Sect. 6.2.1, the conjugate
SABRE method has selected VP2 74 from the VP2 B-C loop. However in addi-
tion it has also selected VP2 72 which is antigenic in all FMDV serotypes and VP2
79 which has been experimentally validated in the A, O, Asia1 and SAT2 serotypes
(Grazioli et al. 2006, 2013; Mateu 1995). The conjugate SABRE model also again
selects several residues from the VP1 C-terminus; VP1 209, VP1 211 and VP1 218.

The final proven residues are from the VP3 B-B knob or have been experimentally
validated specifically in the SAT1 serotype (Grazioli et al. 2006). In the VP3 B-B knob
the conjugate SABRE method has identified VP3 58 (serotypes A, O, C and Asia1)
and VP3 61 (serotype A) (Grazioli et al. 2006; Lea et al. 1994; Mateu 1995). From
those residues which have specifically been validated in the SAT1 serotype, again VP3
71 and VP3 77 from the VP3 B-C loop have been selected. However for the extended
SAT1 dataset, the conjugate SABRE method has also selected VP3 138, which was
also found in Reeve et al. (2010), from VP3 E-F loop.

As well as finding some branches in our overall model (including 4 topotype defin-
ing branches identified as representing significant evolutionary changes a priori), we
have also compiled a model based only on branches to help us understand the evolu-
tionary history of the serotype. The results of this model are given in Fig. 8b, where the
seven branches known to define topotypes are indicated by the vertical line. In order
to produce more interpretable results, where larger groups of strains are not separated
by a significant evolutionary change (selected branch), we have used a cut-off of 0.5.
The full results using a J π̂ cut-off are given in Figure 5 of the online supplemen-
tary materials. The results given in Fig. 8b show that we have been able to identify
all but one of the topotype defining branches, while the other is found when the J π̂

cut-off is used. We have also been able to specify whether the evolutionary changes
have affected virus antigenicity, immunogenicity or reactivity, helping us to further
understand the underlying biological processes.

6.2.3 Comparison with previous work

To compare the results of the SABRE method against the mixed-effects models used
in Reeve et al. (2010, 2016) and Harvey et al. (2016), we examine which categories
(proven, plausible or implausible) the various residues selected fall into. Note that
to do this we ignore any branch terms that do not directly correspond to a residue
term. The full results for variables selected can be found in Tables 6, 8,10 and 13 of
Section 8 in the online supplementary materials. For comparison, the results of Reeve
et al. (2016) are given in Table 12 of the online supplementary materials, as the results
of the equivalent study are not given in the original paper. We also note that the results
of Harvey et al. (2016) are not completely comparable as they were obtained from a
larger dataset.

For the original SAT1 dataset, Reeve et al. (2010) selected 0 proven, 0 plausible
and 0 implausible residues using the method described in Sect. 2 (i.e. when the Holm–
Bonferroni correction was used). These results compare to 1 proven, 1 plausible and
0 implausible residues when the conjugate SABRE method was used and selecting
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Fig. 8 Phylogenetic trees indicating significant branches in the evolutionary history of the SAT1 serotype.
Phylogenetic trees were created using BEAST v1.7.2 and FigTree v1.4.2 from aligned nucleotide sequence
datawith date of isolation.Marked on the tree are protective strains (asterisk) and topotype defining branches
(dashed vertical line). Branches inferred by the SABRE method are highlighted (black). Symbols indicate
whether this was inferred to be a change in virus antigenicity (dagger), virus reactivity (double dagger) or
virus immunogenicity (section mark). Where a highlighted branch has no symbol, an associated change in
antigenicity or reactivity could not be discriminated between. The cut-off for significance is discussed in
Sects. 6.2.1 and 6.2.2. a Original SAT1, b extended SAT1
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any residue variables with a marginal posterior inclusion probability of greater than
or equal to 0.5.3 We have also looked at how well the methods do before selecting
an implausible variable or before a p value of greater than 0.05 (before the Holm–
Bonferroni correction was used) was reached (in Reeve et al. (2010) the variable
selection process was stopped as soon as a 0.05 p value was reached). In this situation
again the conjugate SABRE method offers an improvement, selecting 5 proven, 5
plausible and 0 implausible residues compared to 1, 1 and 0 respectively for the
classical mixed-effects models. The difference in these results shows an advantage for
the conjugate SABRE method over the classical mixed-effects models.

In the extended SAT1 dataset, Reeve et al. (2016) used the method in Sect. 2 to
select 5 proven, 0 plausible and 0 implausible residues, or 8, 1 and 0, respectively, if the
method continued until selecting the first implausible residue. The conjugate SABRE
method selected 11 proven, 3 plausible and 0 implausible residues when taking any
variables with marginal posterior inclusion probabilities of greater than or equal to
0.5, or 15, 4 and 0, respectively, before selecting the first implausible residue.4 It can
again be seen that the power of the proposed SABRE method has improved over the
method of Reeve et al. (2010).

6.2.4 Sampling of latent indicators

Figure 9 compares component-wise Gibbs sampling (Sect. 3.6.1) against block
Metropolis–Hastings sampling (Sect. 3.6.2) in terms of speed of convergence. To
do this we ran 4 chains for the component-wise Gibbs sampler and each of the 5 vari-
ations of the Metropolis–Hastings sampler, monitoring the PSRFs for each parameter
in the different methods. Figure 9 shows the proportion of parameters with PSRFs
< 1.05 in each case compared with the CPU time taken to get that number of samples.
The higher the proportion of parameters with PSRFs < 1.05, the better the method is
said to have performed.

The results from Fig. 9 support the advantage of a block Metropolis–Hastings
sampler over a component-wise Gibbs sampler. In all of the datasets the block
Metropolis–Hastings samplers have outperformed the component-wise Gibbs sam-
pler, with the exception of when more than 40 or 50 variables were sampled at a time
(not shown in the diagrams for clarity). This shows that even sampling a reasonably
large number of variables simultaneously, where the acceptance rate is likely to be
low, can still yield a notable improvement. The results5 in Fig. 9 suggest that as a rule
of thumb, sampling about 10 or 15 (or around 7%) of the variables at a time will lead
to effective sampling with the quickest convergence.

3 Thepower canbe further improved (12proven and9plausible residues) by inferring the selection threshold
and selecting the top J π̂ variables, at the expense of the selection of 1 implausible residue.
4 The power can be further improved (24 proven and 15 plausible residues) by inferring the selection
threshold and selecting the top J π̂ variables, at the expense of the selection of 2 implausible residues.
5 The best performing samplers in Fig. 9 are as follows: Metropolis–Hastings samplers with 10 (7.2%) or
15 (10.9%) variables at a time for the original SAT1 dataset and with 10 (4.5%) or 15 (6.8%) variables at
a time for the extended SAT1 dataset.
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Fig. 9 Convergence diagnostics for the original SAT1 and extended SAT1 datasets. The lines show the
proportion of parameters that have converged (PSRF < 1.05) versus the average CPU time (second) when
using component-wise Gibbs sampling (crosses) andMetropolis–Hastings sampling proposing 5 (solid), 10
(dashed), 15 (dotted), 20 (thick solid) and 30 (thick dotted) inclusion parameters simultaneously. aOriginal
SAT1, b extended SAT1

6.3 Real data for novel predictions

Little knowledge is available on how mutational changes affect antigenic variability
for the SAT2FMDVserotype and theH1N1 Influenza virus.We have therefore applied
our conjugate SABRE method as a tool for new hypothesis generation.

6.3.1 SAT2 data

Although knowledge of the SAT2 FMDV serotype is minimal, for validation purposes
we can exploit knowledge gained from other serotypes of FMDV and previous work
on the SAT2 serotype. Grazioli et al. (2006) and Crowther et al. (1993b) has found
evidence for antigenicity of the following three areas of the SAT2 capsid: VP1 140–
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169 (part of the VP1G-H loop), VP1 200–224 (VP1 C terminus) and VP2 70–82 (VP2
B-C loop). A full list of the variables selected by the conjugate SABRE method can
be found in the online supplementary materials, Section 8.2.

Firstly in the VP2 B-C loop, the conjugate SABREmethod has identified 5 residues
that are antigenic; VP2 71, VP2 72, VP2 78, VP2 79 and VP2 80 (Grazioli et al. 2006,
2013; Kitson et al. 1990; Lea et al. 1994; Saiz et al. 1991). Of these VP2 78 has been
experimentally identified using MAbs (Grazioli et al. 2006). Additionally VP2 72 is
known to be antigenic in all other serotypes and these results suggest it is also antigenic
in the SAT2 serotype (Grazioli et al. 2006, 2013; Mateu 1995).

The second region in which antigenically significant residues have been found is in
the VP1 G-H loop. The VP1 G-H loop is known to be a highly variable distracter site
designed to confuse the host immune system (Crowther et al. 1993b) and is antigenic in
all of the FMDV serotypes. In this loop, the conjugate SABREmethod has specifically
identified VP1 144 andVP1 166, where it is notable that VP1 166 lies directly between
several residues that have been experimentally validated in the SAT2 serotype using
MAbs (Crowther et al. 1993b).

The final known antigenic region that has been identified by the conjugate SABRE
method is part of the VP1 C-terminus, the end of the VP1 protein. In the VP1 C-
terminus we have identified VP1 207, VP1 208, VP1 209, VP1 210 and VP1 211
which are part of a region known to be antigenic in all FMDV serotypes except Asia1
(Aktas and Samuel 2000; Grazioli et al. 2006; Lea et al. 1994; Saiz et al. 1991). With
the conjugate SABRE method identifying all these neighbouring residues, it suggests
that this section of the protein is a highly antigenic part of the SAT2 serotype.

Figure 10 gives the phylogenetic tree for the SAT2 serotype with the predicted sig-
nificant evolutionary changes. Unlike the SAT1 serotype, there is no prior knowledge
of which residues and branches are antigenically relevant and we therefore apply our
method to generate genuinely new hypotheses. The results presented give our best
prediction for the significant branches and show a couple of potentially interesting
groupings which could represent functional groups for the SAT2 serotype.

6.3.2 Influenza A (H1N1) data

Knowledge of the H1N1 Infuenza serotype is restricted to a few experimental results
and some knowledge about where antigenic sites are likely to occur. In general the
virus can be divided into the head and stalk domains, with the head domain most likely
to contain antigenic residues within four major antigenic sites (Sa, Sb, Ca and Cb)
(Caton et al. 1982). But knowledge is incomplete as to which areas of the head domain
contain antigenic residues beyond that.We have applied the conjugate SABREmethod
to the H1N1 dataset and a full list of the variables selected can be found in the online
supplementary materials, Section 8.3.

Of those variables selected by the conjugate SABRE method, one residue was
identified on the Receptor Binding Site (position 187 on the H1 common alignment),
the main binding site for the H1N1 virus (Skehel and Wiley 2000). Additionally we
have identified 4 other residues that are nearby (positions 130, 153, 189 and 190),
including one on the Sa antigenic site, two on the Sb and one that is known to be a
location of a major antigenic change (130) (Harvey et al. 2016). 6 other residues are
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RHO/1/48

KEN/8/99
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ZIM/34/90
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Fig. 10 Phylogenetic trees indicating significant branches in the evolutionary history of the SAT2 serotype.
The phylogenetic treewas created usingBEASTv1.7.2 andFigTree v1.4.2 fromaligned nucleotide sequence
data with date of isolation. Marked on the tree are protective strains (asterisk). Branches associated with
a change in virus phenotype are highlighted (black). Symbols indicate whether this was inferred to be a
change in virus antigenicity (dagger), virus reactivity (none-identified) or virus immunogenicity (section
mark). Where a highlighted branch has no symbol, an associated change in antigenicity or reactivity could
not be discriminated between. The cut-off for significance was taken to be the J π̂ variables with the highest
marginal inclusion probability

identified on the Ca and Cb antigenic site (positions 69, 72 and 74 on the Cb; positions
139, 141 and 142 on the Ca). Other residues were also found near to the Ca and Cb
antigenic sites, but with a lack of experimental knowledge about the H1N1 virus it is
impossible to tell whether they are antigenic sites without experimental validation.

7 Conclusion

We have addressed the problem of identifying the residues within the SAT1 and SAT2
serotypes of FMDV and Influenza A (H1N1) that are responsible for changes in anti-
genic variability. This allows us to identify which residues must remain the same in
order for two strains to cross react and for one strain to potentially be used as an effec-
tive vaccine against another. Identifying such residues can reduce the number of strains
that must be tested as a vaccine, potentially reducing the time and cost associated with
the selection procedure.
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We have proposed a sparse hierarchical Bayesian model for detecting relevant anti-
genic sites in virus evolution (SABRE) and shown how it offers improvement over
the classical mixed-effects model, the mixed-effects LASSO and the mixed-effects
elastic net. There are four reasons for this improvement. The proposed hierarchical
modelling framework with slab-and-spike prior (1) avoids the bias inherent in Lasso-
type methods, (2) genuinely and consistently achieve sparsity, (3) properly accounts
for uncertainty at all levels of inference, and (4) borrows strength from information
coupling, whereby all parameters are systematically and iteratively inferred in the
context of all other parameters. In some more detail: (1) The shrinkage effect inherent
in the �1 penalty term introduces a bias by which the regression parameters are sys-
tematically underestimated. This bias is avoided with the slab and spike prior that we
use. (2) The LASSO is known to only give sparse solutions at the MAP (maximum
a posteriori) configuration, but not when sampling parameters from the posterior dis-
tribution. From a Bayesian perspective, the MAP is methodologically inconsistent,
as it is not guaranteed to represent the region in parameter space with the highest
probability mass. The spike-and-slab prior, which we use, avoids this methodologi-
cal inconsistency and achieves sparsity in a sound Bayesian inference context. (3) In
our hierarchical Bayesian models, all sources of uncertainty are properly accounted
for. The higher-level hyperparameters have their own distributions, which are sys-
tematically inferred from the data. In contrast, the regularisation parameters of the
established methods are typically fixed, set e.g. by cross-validation, but without tak-
ing their uncertainty into account (see also Chapter 5 inGelman et al. (2013) for amore
detailed discussion). (4) In our approach, we explicitly model all dependencies among
the variables, and inference is carried out within the context of the whole system. This
systematically borrows strength from information coupling and avoids the piecemeal
approach of established methods.

There are two fundamentally different approaches to variable selection in Bayesian
hierarchical models: the slab-and-spike prior, whereby the influence of an input vari-
able is controlled via the prior distribution of its associated regression parameters,
and the binary mask model, where variables are put through a binary multiplicative
filter. The difference is depicted in Fig. 1 here and Figure 3 in the online supple-
mentary materials. Which method is better? Standard textbooks, like Murphy (2012),
describe both methods (see Chapter 13), but do not offer a comparative evaluation,
and in the literature, authors rather arbitrarily tend to opt for one method or another
(see e.g. Heydari et al. (2016)). We have carried out a systematic comparison to prop-
erly quantify the difference in terms of accuracy and computational efficiency, and
found it to be negligible. We have also systematically evaluated the influence of the
prior, comparing a conjugate with a non-conjugate prior, as depicted by Fig. 1 here
and Figure 1 in the online supplementary materials, and we have assessed its influ-
ence systematically in terms of accuracy, computational efficiency, and formal model
selection preference in Table 1. The differences in accuracy are negligible (see e.g.
Fig. 5). The conjugate model has slightly better computational efficiency (Fig. 6), but
this difference is not significant; this finding indicates that the bottleneck in the com-
putational procedure is the sampling of the latent variables rather than the regression
parameters. The conjugate model shows a slight but significant improvement over the
non-conjugate model in a number of the model selection scores based on WAIC, as
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seen from Table 1 here and Table 7 of the online supplementary materials, but this has
little immediate impact on the variable selection. Overall, our findings demonstrate a
remarkable robustness of the proposed hierarchical modelling framework with respect
to minor model modifications, which boosts our confidence in the predictions and in
the variable ranking.

Further to this we have investigated the sampling of latent inclusion variables. We
have shown that by proposing multiple variables simultaneously through Metropolis–
Hastings sampling it is possible to give a significant computational improvement
over the conventional component-wise Gibbs sampler (Fig. 9). We have shown this
improvement in a number of different datasets and have offered a general rule of thumb
that proposing 10 or 15 (or around 7%) of the variables at a time will lead to good
mixing within MCMC chains for a variety of different datasets.

Through the use of this new model with the improved sampling techniques we
have been able to identify an increased number of known antigenic sites in the SAT1
serotype of FMDV (Grazioli et al. 2006) compared to Reeve et al. (2010) and Reeve
et al. (2016), while incurring no (for the default selection threshold 0.5) or only a
very small number (for the inferred selection threshold J π̂ ) implausible residues.
Very little biological knowledge exists about the SAT2 serotype, and a previous in
silico application has failed to make any predictions at all (Reeve et al. 2010). To
our knowledge, our study is the first time that specific new hypotheses about genetic-
antigenic associations have been made with an in silico model based on the currently
available data. Additionally we have provided an insight into the evolutionary history
of the SAT serotypes (Figs. 8 and 10 ) and have provided a novel way of interpreting
the biological effects of these virus mutations. Finally we have identified a number of
significant antigenic sites in the H1N1 Influenza virus and provided new hypotheses
for this virus.

7.1 Future work

Further work to follow on from this paper comes in several forms. Firstly we would
like to find away of effectively using the proposedmodel on the full H1N1 dataset used
in Harvey et al. (2016), without having to summarise and reduce the data as we have
done here. With 15,693 measurements, currently the model is too computationally
expensive to get a reasonable number of posterior samples. More computationally
efficient methods, such as variational inference or expectation propagation (Minka
2001), can offer a solution to this problem at the expense of an approximation.Methods
for using spike and slab priors have been proposed for both of these techniques, e.g.
Titsias and Lázaro-Gredilla (2011) and Hernández-Lobato et al. (2013), and these can
be extended to create alternative, faster versions of the SABRE methods.

Secondly we would like to investigate how different types of mutations affect
antigenic variability. At present the data simply consists of indicators of mutational
changes that occur without any regard to the type of mutation, something which is
addressed inReeve et al. (2016).Adding this informationwill dramatically increase the
number of variables on which selection must be made and is likely to make inferring γ

more difficult. To address this we will likely require improved proposal distributions
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for γ , as has been used for continuous variables in Haario et al. (2006), which account
for the estimated posterior correlations between these latent inclusion parameters. A
method to generate correlated binary variables has been proposed in Leisch et al.
(1988). However we would require a density function to put into the Metropolis–
Hastings ratio in order to use this within MCMC sampling.

With more information, and therefore more variables, relating to the mutations
being included in themodels, itmay be necessary to add additional information sharing
between the latent indicator variables, γ . Latent Gaussian processes can be used to
model this, where inference can be achieved in a variety of ways, e.g. Filippone et al.
(2013) andAndersen et al. (2014). The use of latent Gaussian processeswould allow us
to introduce correlations between mutations of the same type or mutations occurring
in similar location on the surface of the virus shell. This can potentially allow us
to identify which types of mutations are important, as well as identifying complete
antigenic regions rather than just individual residues.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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