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Abstract The Yule–Simon distribution is usually employed in the analysis of fre-
quency data. As the Bayesian literature, so far, has ignored this distribution, here we
show the derivation of two objective priors for the parameter of the Yule–Simon dis-
tribution. In particular, we discuss the Jeffreys prior and a loss-based prior, which has
recently appeared in the literature. We illustrate the performance of the derived priors
through a simulation study and the analysis of real datasets.

Keywords Kullback–Leibler divergence · Loss-based prior ·Objective bayes · Social
network daily returns · Text analysis

1 Introduction

In this work we aim to fill a gap in the Bayesian literature by proposing two objective
priors for the parameter of the Yule–Simon distribution. The distribution was firstly
discussed in Yule (1925) and then re-proposed in Simon (1955), and can be used
in scenarios where the center of interest is some sort of frequency in the data. For
example, Yule (1925) used it to model abundance of biological genera, while Simon
(1955) exploited the distribution properties to model the addition of new words to a
text. It goes without saying that other areas of applications can be considered where,
for instance, frequencies represent the elementary unit of observation. For example,
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Gallardo et al. (2016) highlight that the heavy-tailed property of the Yule–Simon dis-
tribution allows for extreme values even for small sample sizes. In particular, they
claim that the above property is suitable to model short survival times which, due
to the nature of the problem, happen with relatively high frequency. In this paper we
show the employment of the Yule–Simon distribution inmodelling daily increments of
social network stock options, surnames and ’superstar’ success in the music industry.

Despite the wide range of applications, the literature on the Yule–Simon distribu-
tion appears to be limited. And, more surprisingly, to the best of our knowledge it
seems that no attention has been given to the problem by the Bayesian community.
Leisen et al. (2017) propose an explicit Gibbs sampling schemewhen aGamma prior is
chosen for the shape parameter and illustrate this approach with an application to text
analysis and count data regression. Given the challenges that classical inference faces
in estimating the parameter of the distribution (Garcia Garcia 2011), the possibility of
tackling the problem from a Bayesian perspective is, undoubtedly, appealing.

In addressing the estimation of the shape parameter of the Yule–Simon distribution
by means of the Bayesian framework, we opted for an objective approach.We propose
two priors: the first is the Jeffreys rule prior (Jeffreys 1961), while the second is
obtained by applying the loss-based approach discussed in Villa and Walker (2015).
We would like to highlight that the purpose of this work is to present a Bayesian
objective inferential procedure for the Yule–Simon distribution, without discussing
whether the model is the best choice to represent some given set of observation.
Although we formally introduce the Yule–Simon distribution and its derivation in the
next Section, it is important to give an anticipation of the general idea here, so to
fully appreciate the gain in adopting an objective approach. As nicely illustrated in
Chung and Cox (1994), the shape parameter of the distribution is linked via a one-to-
one transformation to the probability that the next observation will not take a value
previously observed. For example, if we have observed n words in a text, we wish
to make inference on the probability that the (n + 1) observation is a word not yet
encountered in the text, assuming this probability to be constant. It is then clear that
the Yule–Simon distribution models extremely large events. As such, the information
in the data about these events is limited and a “wrongly” elicited prior could end up
dominating the data. On the other hand, a prior with minimal information content
would allow the data “to speak”, resulting in a more robust inferential procedure. We
do not advocate that in every circumstance an objective approach is the only suitable.
In fact, if reliable prior information is available, an elicited prior would represent, in
general, the natural choice. Alas, in the presence of phenomena with extremely rare
events, the above information is often insufficient or incomplete, and an objective
choice would then represent the most sensible one.

The paper is organized as follows. In Sect. 2 we set the scene by introducing the
Yule–Simon distribution and the notation that will be used throughout the paper. The
proposed objective priors are derived and discussed in Sect. 3. Section 4 collects
the analysis of the frequentist performances of the posterior distributions yielded by
the proposed priors. Through a set of several simulation scenarios, we compare and
analyse the inferential capacity of the objective priors here discussed. In Sect. 5 we
illustrate the application of the priors to three real-data applications. Finally, Sect. 6
is reserved to concluding remarks and points of discussion.
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2 Preliminaries

The most known functional form of the Yule–Simon distribution, possibly, is the
following:

f (k; ρ) = ρ B(k, ρ + 1), k = 1, 2, . . . and ρ > 0, (1)

whereB(·, ·) is the beta function andρ is the shape parameter. Note that the expectation
of the Yule–Simon distribution exists for ρ > 1 and is equal to ρ/(ρ − 1). The
distribution in (1) was firstly proposed by Yule (1925) in the field of biology; in
particular, to represent the distribution of species among genera in some higher taxon
of biotic organisms. More recently, Simon (1955) noticed that the above distribution
can be observed in other phenomena, which appear to have no connection among each
others. These include, the distribution of word frequencies in texts, the distribution
of authors by number of scientific articles published, the distribution of cities by
population and the distribution of incomes by size. The derivation process followed
by Yule (1925) was based on word frequencies, and it consisted of two assumptions:

(i) The probability that the (n + 1)-th word is a word observed k times in the first n
words, is proportional to k; and

(ii) The probability that the (n +1)-th word is new (i.e. not being observed in the first
n words) is constant and equal to α ∈ (0, 1).

Yule (1925) shows that, under the condition of stationarity, the process defined by the
above two assumptions yields (1) by setting ρ = 1/(1 − α), obtaining:

f (k;α) = 1

1 − α
B

(
k,

1

1 − α
+ 1

)
. (2)

An important consequence of the above assumption (ii) is that the shape parameter
ρ of the distribution takes values in (1,+∞). In other words, should we use the
model as in Yule (1925), which includes the possibility that 0 < ρ ≤ 1, we would
loose the interpretation of the generating process described by the two assumptions
above. In fact, for ρ < 1, the probability of observing a new word, expressed by
α, would be negative; while for ρ = 1 the probability would be zero, rendering
the process trivial (i.e. all the observed words will be equal to the first one observed).
Furthermore, the expectation of the Yule–Simon distribution is defined only for values
of the shape parameter larger than one, and this property is something one would
expect in most applications. For all the above reasons, in this work we focus on
the parametrization of the Yule–Simon given in (2), that is we will discuss prior
distributions for α.

In addition to the parametrization of the Yule–Simon distribution as in (2), we will
also consider the possibility of having the parameter α discrete. This is a common
finding in literature, especially when implementations of the model are considered.
See, for example, Simon (1955) and Garcia Garcia (2011). The discretization of α

will be discussed in detail in Sect. 3.2.
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3 Objective priors for the Yule–Simon distribution

This section is devoted to the derivation of two objective priors for the Yule–Simon
distribution: the Jeffreys prior and loss-based prior. The former assumes that parameter
space ofα is continuous and it is based on thewell-known invariance property proposed
by Jeffreys (1961); the latter assumes the parameter space discrete and is based onVilla
andWalker (2015). Based on the previous description of the Yule–Simon distribution,
we consider the following Bayesian model,

k1, . . . , kn|α i.i.d∼ f (k;α)

α ∼ π(α)

where f (k;α) is the Yule–Simon distribution described in 2 and π(α) is the objective
prior distribution of the parameter of interest α, either the Jeffreys or the loss-based
prior.

The likelihood function of the above model, conditionally to the parameter α, is
the following:

L(k|α) =
n∏

i=1

f (ki , α) =
n∏

i=1

1

1 − α
B

(
ki ,

1

1 − α
+ 1

)
,

where k = (k1, . . . , kn) is the vector of observations. In order to compute the Bayesian
analysis of the model, we consider the posterior distribution for α:

π(α|k) ∝ L(k|α)π(α),

where π(α) is the objective prior as described in the following part of the section.

3.1 The Jeffreys prior

The Jeffreys prior is defined in the following way (Jeffreys 1961):

π(α) ∝ √
I(α)

where I(α) = Eα

[
− ∂2 log( f (k;α))

∂α2

]
is the Fisher Information. In the next Theorem

(which proof is in the Appendix) an explicit expression of the Jeffreys prior for the
Yule–Simon distribution is provided.

Theorem 3.1 Let f (k;α) be the Yule–Simon distribution defined in Eq. (2), with
0 < α < 1. The Jeffreys prior for α is

π(α) ∝ q(α), (3)
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where

q(α) = 1

1 − α

√
1 − 1

(2 − α)2
3F2

(
1,

1

1 − α
+ 1, 1; 1

1 − α
+ 2,

1

1 − α
+ 2; 1

)
.

with 3F2 being the hypergeometric distribution function.

The Jeffreys prior stated in Theorem 3.1 is a proper prior. In fact, let

π(α) = q(α)

K
,

where

K =
∫ 1

0

1

1 − α

√
1 − 1

(2 − α)2
3F2

(
1,

1

1 − α
+ 1, 1; 1

1 − α
+ 2,

1

1 − α
+ 2; 1

)
dα

is the normalizing constant of π(α).
It is not difficult to prove that

K < ∞.

Indeed,

K ≤
∫ 1

0

√
3 − α

1 − α

1

2 − α
dα = 1

3
π − ln(2 − √

3) < ∞.

The result above follows from the following inequality

3F2

(
1,

1

1 − α
+ 1, 1; 1

1 − α
+ 2,

1

1 − α
+ 2; 1

)
≥ 1.

The properness of the prior in (3) ensures the properness of the yielded posterior
distribution for α, as such suitable for inference.

3.2 The loss-based prior

Villa and Walker (2015) introduced a method for specifying and objective prior for
discrete parameters. The idea is to assign aworth to eachparameter value byobjectively
measuring what is lost if the value is removed, and it is the true one. The loss is
evaluated by applying the well known result in Berk (1966) stating that, if a model
is misspecified, the posterior distribution asymptotically accumulates on the model
which is the nearest to the true one, in terms of the Kullback–Leibler divergence.

Given that the parameter α ∈ (0, 1) of the Yule–Simon is in principle continuous,
the above method can not be applied. However, the boundedness of the interval allows
for an easy discretization, directly we can consider the set
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DM =
{
α = i

M
: i = 1, . . . , M − 1

}
.

Therefore, the worth of the parameter value α is represented by the Kullback–
Leibler divergence DK L( f (k|α)‖ f (k|α′)), where α′ �= α is the parameter value that
minimizes the divergence. To link the worth of a parameter value to the prior mass,
Villa and Walker (2015) use the self-information loss function. This particular type
of loss function measures the loss in information contained in a probability statement
(Merhav and Feder 1998). As we now have, for each value of α, the loss in information
measured in two different ways, we simply equate them obtaining the loss-based prior
of Villa and Walker (2015):

π(α) ∝ exp

{
min
α′ �=α

DK L( f (k|α)‖ f (k|α′))
}

− 1 α, α′ ∈ DM , (4)

where

DK L( f (k|α)‖ f (k|α′)) = log

(
1 − α′

1 − α

)
+ Eα

{
log

[
B

(
k; 1

1 − α
+ 1

)]}

− Eα

{
log

[
B

(
k; 1

1 − α′ + 1

)]}
.

As the discretized parameter space is finite, nomatter what value of M one chooses,
the prior (4) is proper, hence, the yielded posterior will be proper as well.

An important aspect is that the value α′ minimizing the Kullback–Leibler diver-
gence can not be analytically determined, and the prior has to be computationally
derived. However, even for large values of M , the computational cost is trifling com-
pared to the whole Monte Carlo procedure necessary to simulate from the posterior
distribution.

To have a feeling of the prior distributions derived above, we have plotted them in
Fig. 1. The behaviour of the priors is similar, in the sense that they tend to increase as
α increases.

4 Simulation study

The objective priors defined in Sect. 3 are automatically derived by taking into con-
sideration properties intrinsic to the Yule–Simon distribution. In other words, they do
not depend on experts knowledge or previous observations. It is therefore necessary,
in order to validate them, to assess the goodness of the priors by making inference
on simulated data. This section is dedicated in performing a simulation study on the
parameter α using observations obtained from fully known distributions.

We have considered different sample sizes, n = 30, n = 100 and n = 500, to
analyse the behaviour of the prior distributions under different level of information
coming from thedata.Herewe show the results forn = 100only, as the sole differences
in using n = 30 and n = 500 sample sizes are limited to the precision of the inferential
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Fig. 1 Prior distribution for α in panel obtained by applying, in panel (a), Jeffreys rule, while, in panel (b),
the loss-based method with M = 10 (blue dots), with M = 20 (black dots) and with M = 100 (red dots)
(color figure online)

results: relatively low for n = 30 and relatively high for n = 500, as one would expect.
Besides that, the differences in the performance of the two priors noted for n = 100
remain for the other sample sizes. As the loss-based prior depends on the discretization
of the parameter space, for illustration purposes, we have considered M = 10 and
M = 20, that is α ∈ {0.1, 0.2, . . . , 0.9} and α ∈ {0.05, 0.10, . . . , 0.95}, respectively.

Both the Jeffreys prior and the loss-based prior yield posterior distributions for α

which are not analytically tractable, hence, it is recommendable to use Monte Carlo
methods. The reasons behind this choice are discussed in the following two remarks.

Remark 1 In the case of the Jeffreys’ prior, one may use univariate numerical integra-
tion to compute quantities of interest, such as mean and credible intervals. However, in
our experience, numerical integration may fail when the complexity on the integrand
increases.

Remark 2 For the Loss based prior, one may be tempted to compute the posterior
probabilities as

π(α j |k) = L(k|α j )π(α j )∑
αi ∈DM

L(k|αi )π(αi )
.

However, the Kullback-divergence in Eq. (4) may take values close to zero, lead-
ing to probabilities which can be interpreted as zero by the computational software
employed. This is particularly true for moderately large values of M . Therefore, a
Metropolis–Hastings in the logarithmic scale allows to overcome the above problem,
where we choose a proposal transition kernel for the parameter α for both the priors.
The proposal kernel is a Beta distribution, Be(a, b), with a = b = 0.5 for the Jef-
freys’ prior, while it is a discrete uniform distribution DU(1/M, M − 1/M) for the
loss-based prior.

We have generated 100 samples from aYule–Simon distribution with the parameter
α set to every value in the parameter space, 9 for M = 10 and 19 for M = 20. For
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Fig. 2 Frequentist properties of the Jeffreys prior (dashed line) and the loss-based prior (continuous line)
for n = 100. The loss-prior is considered on the discretized parameter space with M = 10. The left plot
shows the posterior frequentist coverage of the 95% credible interval, and the right plot represents the square
root of the MSE from the mean of the posterior, relative to α

each sample we have simulated from the posterior distribution of α, under both priors,
by running 10,000 iterations, with a burn-in period of 2000 iterations.

To evaluate the priors we have considered two frequentist measures. The first is
the frequentist coverage of the 95% credible interval. That is, for each posterior,
we compute the interval between the 0.025 and 0.975 quantiles and see if the true
value of α is included in it. Over repeated samples, one would expect a proportion of
about 95% of the posterior intervals to contain the true parameter value. The second
frequentist measure gives an idea of the precision of the inferential process, and it
is represented by the square root of the mean squared error (MSE) from the mean,
relative to the parameter value:

√
MSE(α)/α. We have considered the MSE from the

median as well but, due to the approximate symmetry of the posterior, the results are
very similar to the MSE from the mean. Figure 2 details the results for the simulations
with n = 100 and a parameter space for α discretized with increments of 0.1, that is
α ∈ {0.1, 0.2, . . . , 0.9}. If we compare the coverage, we note that the loss-based prior
tends to over-cover the credible interval, while the Jeffreys prior, although shows a
better coverage for values of α < 0.5, deteriorates in performance as the parameter
tends to the upper bound of its space. Looking at the MSE, both priors appear to have
very similar performance, and the (relative) error tends to decrease and α increases.
In Fig. 3 we have compared the frequentist performance of the Jeffreys prior with
the loss-based prior defined over a more densely discretized parameter space, i.e.
α = {0.05, 0.10, . . . , 0.95}. We note a smoother behaviour of the priors compared to
Fig. 2, which is obviously due to the denser characterization considered. The coverage
still reveals a tendency of the loss-based prior to over-cover, although less pronounced
than the previous case. Jeffreys prior does not present any significant difference from
the previous case, as one would expect. For what it concerns the MSE, the differences
between the two priors are negligible, and the only aspect we note, asmentioned above,
is a smoother decrease of the error as the parameter increases.
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Fig. 3 Frequentist properties of the Jeffreys prior (dashed line) and the loss-based prior (continuous line)
for n = 100. The loss-prior is considered on the discretized parameter space with M = 20. The left plot
shows the posterior frequentist coverage of the 95% credible interval, and the right plot represents the square
root of the MSE from the mean of the posterior, relative to α

We look more into the details of the objective approach by analysing two i.i.d.
samples. In particular, we consider a random sample of size n = 100 from a Yule–
Simon distribution with α = 0.40 and a sample, of the same size, from a Yule–Simon
with α = 0.68.

In both cases, we have sampled from the posterior distribution via Monte Carlo
methods with 10,000 iterations and a burn-in period of 2000 iterations. Figure 4 shows
the posterior samples and posterior histograms derived by applying the Jeffreys prior
and the loss-based priorwith two different discretizations, that is M = 10 and M = 20.
The summary statistics of the three posteriors are reported in Table 1, where we have
the mean, the median, and the 95% credible interval. By comparing the mean of the
posterior distributions, we see that they are all centered around the true parameter
value. The credible interval yielded by the loss-based priors with the most dense
discretization (M = 20) is larger than the other two intervals. However, the difference
is very small and we can conclude that the three prior distributions result in posteriors
which carry the same uncertainty. In other words, the three objective priors perform
in the same way.

Similar considerations can be made for the case where we have sampled n = 100
observations from a Yule–Simon distribution with α = 0.68. By inspecting Fig. 5
and Table 2, we note a very similar behaviour of the three priors, in the sense that
the posterior distributions are still centered around the true value of α and that the
credible intervals do not present important differences. Note that the choice of a
true parameter value which would have not been included in any of the two dis-
cretized sample spaces, upon which the loss-prior is based, allows to show that the
inferential process appears to be not affected by the discretization, hence motivating
it.

To conclude, the simulation study shows no tangible differences in the performance
of the prior distributions, in the spirit of objective Bayesian analysis.
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Fig. 4 Posterior samples (left) and histograms (right) of the analysis of an i.i.d. sample of size n = 100
from a Yule–Simon distribution with α = 0.40. From top to bottom, we have Jeffreys prior, loss-based prior
with M = 10 and loss-based prior with M = 20

5 Real data application

To illustrate the proposed priors, both the Jeffreys and the loss-based prior for the
Yule–Simon distribution, we analyze three datasets. The first dataset concerns daily
increments of four popular social networks stock indexes in the US market, the sec-
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Table 1 Summary statistics of
the posterior distributions for the
parameter α of the simulated
data from a Yule–Simon
distribution with α = 0.40

Prior Mean Median 95% CI

Jeffreys 0.40 0.41 (0.23,0.53)

Loss-based (M = 10) 0.40 0.4 (0.2,0.5)

Loss-based (M = 20) 0.40 0.41 (0.22,0.56)
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Fig. 5 Posterior samples (left) and histograms (right) of the analysis of an i.i.d. sample of size n = 100
from a Yule–Simon distribution with α = 0.68. From top to bottom, we have Jeffreys prior, loss-based prior
with M = 10 and loss-based prior with M = 20

123



110 F. Leisen et al.

Table 2 Summary statistics of
the posterior distributions for the
parameter α of the simulated
data from a Yule–Simon
distribution with α = 0.68

Prior Mean Median 95% CI

Jeffreys 0.68 0.68 (0.57,0.77)

Loss-based (M = 10) 0.68 0.7 (0.6,0.8)

Loss-based (M = 20) 0.68 0.68 (0.55,0.79)
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Fig. 6 Daily increments for Facebook, Google, Linkedin and Twitter from the 1st of October 2014 to the
11th of March 2016. a Facebook, b Google, c Linkedin, d Twitter

ond contains the frequencies of surnames observed in the 1990 US Census, and the
last dataset consists of ’number one’ hits in the US music industry. Note that the
convergence diagnostics for the last two datasets are illustrated in Appendix.

5.1 Social network stock indexes

We analyze different data in the social media marketing, in particular we focus on
Facebook, Twitter, Linkedin and Google. These four major companies are the most
powerful social networks in the world and are listed in the Wall Street exchange
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Fig. 7 Histograms of the discretized daily returns for Facebook, Google, Linkedin and Twitter

market (http://finance.yahoo.com). We analyze the daily increments for the stocks
and, in particular, we consider the adjusted closing price from the 1st of October 2014
to the 11th of March 2016, for a total of n = 365 observations. The daily increments
are obtained by applying zt = |rt/rt−1 − 1| · 100, for t = 2, . . . , 365, where rt is the
adjusted closing price for the index at day t , and we built our frequency on it. These are
shown in Fig. 6, while Fig. 7 shows the histogram of the frequencies of the discretized
data. The discretization has been done by counting the number of times a daily return
took a value truncated at the second decimal digit. For example, if two observed daily
returns are 1.2494 and 1.2573, they were both considered as two occurrences of the
same value. By inspecting the histograms in Fig. 7 it seems that the (transformed)
Yule–Simon distribution might be a suitable statistical model to represent the data.
Although the daily increments are time dependent, the autocorrelation function and
partial autocorrelation function plots (Fig. 8) show that the data can be treated as if
it were an i.i.d. sample. In fact, the plots highlight the absence of significant serial
correlation with the lag series. We apply the Bayesian framework and obtain the
posterior distribution for the parameter of interest as
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Fig. 8 Sample autocorrelation function (left panel) and sample partial autocorrelation function (right panel)
for Facebook and Google

π(α|k) ∝ L(k|α)π(α),

where k = (k1, . . . , kn) represents the set of observations, i.e. the frequencies of the
discretized daily returns, L(k|α) the likelihood function and π(α) the prior distribu-
tion which, in turn, has the form of the Jeffreys prior in (3) or the loss-based prior
(4). We have obtained the posterior distributions for the parameter α of the trans-
formed Yule–Simon distribution by Monte Carlo methods. We run 25,000 iterations
with a burn-in period of 5000 iterations. We have reported the chain and the his-
togram of the posterior distributions in Fig. 9 and in Fig. 10, with the corresponding
summary statistics in Table 3. Note that, with the purpose of limiting the amount of
space used, we have included the plots of the Facebook and Google daily returns
only.

For all the four assets we notice that the results for α are very similar, as can
be inferred by the minimal (or absence of) difference between the means and the
medians. The credible intervals, as well, are very similar, with a slight larger size for
the case where the loss-based prior with (M = 20) is applied. One way of interpreting
the results is as follows. The parameter α can be seen as the probability that the
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Fig. 9 Posterior samples (left) and posterior histograms (right) for the Facebook daily returns obtained by
applying the Jeffreys prior (top), the loss-based prior with M = 10 (middle) and the loss-based prior with
M = 20 (bottom)

next observation is different from the ones observed so far, and therefore we note
that Twitter has the highest chance to take a daily increment not yet observed, while
Google has the smallest.
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Fig. 10 Posterior samples (left) and posterior histograms (right) for the Google daily returns obtained by
applying the Jeffreys prior (top), the loss-based prior with M = 10 (middle) and the loss-based prior with
M = 20 (bottom)

5.2 Census data: surname analysis

The second example we examine concerns with the frequency of surnames in the US
(http://www.census.gov/en.html). From the population censuses (Maruka et al. 2010),
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Table 3 Summary statistics of the posterior distribution for the parameter α of the social network stock
index data

Company Prior Mean Median 95% CI

Facebook Jeffreys 0.53 0.53 (0.43, 0.61)

Facebook Loss-based (M = 10) 0.53 0.5 (0.4, 0.6)

Facebook Loss-based (M = 20) 0.52 0.55 (0.40, 0.60)

Google Jeffreys 0.47 0.47 (0.37, 0.55)

Google Loss-based (M = 10) 0.47 0.5 (0.4, 0.6)

Google Loss-based (M = 20) 0.47 0.46 (0.35, 0.55)

Linkedin Jeffreys 0.56 0.57 (0.47, 0.64)

Linkedin Loss-based (M = 10) 0.57 0.6 (0.5, 0.6)

Linkedin Loss-based (M = 20) 0.56 0.55 (0.45, 0.65)

Twitter Jeffreys 0.68 0.68 (0.62, 0.73)

Twitter Loss-based (M = 10) 0.69 0.7 (0.6, 0.7)

Twitter Loss-based (M = 20) 0.68 0.70 (0.60, 0.75)

Table 4 Ten most common
surname in United States from
the Census 1990 analysis

# Surname Frequency # Surname Frequency

1 Smith 2,502,021 6 Davis 1,193,807

2 Johnson 2,014,550 7 Miller 1,054,530

3 Williams 1,738,482 8 Wilson 843,126

4 Jones 1,544,488 9 Moore 775,975

5 Brown 1,544,488 10 Taylor 773,488

we focus on the USCensus completed in 1990 and consider the first 500most common
surnames. Refer to Table 4 for a list of the first 10 most frequent surnames. Briefly,
the process followed by Maruka et al. (2010) to obtain the data converts the surname
with Senior (SR), Junior (JR) or a number in the last name field (f.e. Moore Sr or
Moore Jr or Moore III are converted to Moore) and, in addition, the authors examined
each name entry for the possibility of an inversion (e.g. a first name appearing in the
last name fields or vice-versa). However, as there is the possibility of having many
surnames that also inverted can sound absolutely right, the authors considered also
the surname of the spouse, obtaining additional information to invert the name field
of the entire family.

The analysis has been performed by running both the Markov Chain Monte Carlo
for 25,000 iterations, with a burn-in of 5000 iterations.

The posterior samples and the posterior histograms are shown in Fig. 11, with the
corresponding summary statistics of the posterior distributions reported in Table 5.We
again notice similarities to the simulation study and the analysis of daily increments,
in the sense that means and medians are very similar for each prior, and the 95%
credible interval obtained by applying the loss-based prior with M = 20 is slightly
larger than the one obtained by using either the Jeffreys prior or the loss-based prior
with M = 10.
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Fig. 11 Posterior sample (left) and posterior histogram (right) for the surname data set obtained by applying
the Jeffreys prior (top), the loss-based prior with M = 10 (middle) and the loss-based prior with M = 20
(bottom)

The estimated value of α, on the basis of the 500 most common surnames in the
US (and if we consider the mean) is, roughly, 1/2. In other words, there are about
50% chances that the next observed surname is not in the list of the 500. Obviously, a
larger sample size would yield a smaller posterior mean, as the number of surnames
is finite and the more we observe, the harder is to find a “new” one.
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Table 5 Summary statistics of
the posterior distributions for the
parameter α of the Census
surname analysis

Prior Mean Median 95% CI

Jeffreys 0.53 0.54 (0.47, 0.58)

Loss-based (M = 10) 0.52 0.5 (0.5, 0.6)

Loss-based (M = 20) 0.53 0.55 (0.45, 0.60)

Table 6 Number of ‘number
one’ hits per artist from 1955 to
2003

Hits Observations Hits Observations

1 119 9 4

2 57 10 2

3 30 11 1

4 13 12 2

5 10 13 1

6 4 14 1

7 1 15 1

8 1 16 1

5.3 ‘Superstardom’ analysis

The last example consists in modelling the number of ‘number one’ hits a music
artist had in the period 1955–2003 on the Billboard Hot 100 chart. The data, which
is displayed in Table 6, has been used by Chung and Cox (1994) and Spierdijk and
Voorneveld (2009) to show an apparent absence of correlation between talent and
success in the music industry.

We have run theMonte Carlo simulation for 25,000 iterations, with a burn in period
of 5000, for each of the considered priors. The posterior samples and histograms are
shown in Fig. 12, with the correspondinf statistic summaries in Table 7.

This example of the music hits allows for some interesting points of discussion.
First, we note that the posterior distributions of for α are skewed; therefore, the pos-
terior median represents a better centrality index than the posterior mean. Second, it
is clear that the “true” value of α may be close to zero. As such, in order to explore
better the parameter space when the loss-based prior is used, a denser discretization is
more appropriate.We have then considered M = 100, resulting the posterior summary
statistics inTable 7.Wenote now that the posteriormedian is similar to the one obtained
using the Jeffreys prior. It is therefore recommendable that, when the inference on α

indicates values near the parameter space boundaries, the level of discretization to be
considered should be relatively dense.

6 Discussions

It is surprising how, from time to time, the Bayesian literature presents gaps even
for problems which appear to be straightforward. The Yule–Simon distribution has
undoubtedly many possibilities of application, as the discussed examples and the
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Fig. 12 Posterior sample (left) and posterior histogram (right) for the music ‘number one’ hits data set
obtained by applying the Jeffreys prior (top), the loss-based prior with M = 10 (middle) and the loss-based
prior with M = 20 (bottom)

refereed papers show, and therefore demanded for a satisfactory discussion within the
Bayesian framework.

Given the importance that objective Bayesian analysis can have in applications, and
not only (Berger 2006), we have presented two priors which are suitable in scenarios
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Table 7 Summary statistics of
the posterior distribution for the
parameter α of the analysis of
the music ‘number one’ hits

Prior Mean Median 95% CI

Jeffreys 0.08 0.07 (0.004, 0.24)

Loss-based (M = 10) 0.13 0.1 (0.1, 0.3)

Loss-based (M = 20) 0.11 0.10 (0.05, 0.25)

Loss-based (M = 100) 0.10 0.08 (0.01, 0.29)

with minimal prior information. The first prior is the Jeffreys prior which, as it is well
known, has the appealing property of being invariant under monotone differentiable
transformations of the parameter of interest. The second prior is derived considering
the loss in information one would incur if the ‘wrong’ model was selected. Although
the latter requires a discretization of the parameter space, we have shown through
simulation studies that the performance of the yielded posterior are very similar, both
between the Jeffreys and the loss-based prior, and between different structures of the
discretized parameter space. This is not surprising as both priors, i.e. the Jeffreys and
the loss-based, have a similar behaviour, in the sense that they increase as the parameter
α increases. Given that the performance of the prior is virtually the same, one may
choose a preferred one on other grounds. For example, the Jeffreys’ prior presents
the property of being invariant under reparametrisation, while the loss-based prior is
computationally more efficient.

We have limited our analysis to the case where the shape parameter of the Yule–
Simon distribution, ρ, is strictly larger than one. Doing so, we allow for a more
convenient parametrization of the distributionwhere the new parameter α = (ρ−1)/ρ
has the interpretation of being the probability that the next observation takes a value
not observed before.

Besides through a simulation study, we have compared the objective priors by
applying them on three data sets: the first related to financial data, the second to
surnames in the US and the third one on the number of hits in the music industry. All
comparisons allowed to show that the two proposed objective priors lead to similar
results, in terms of posterior distributions. For obvious reasons, we have not considered
if the choice of the Yule–Simon is the best model to represent the data, but limited our
analysis to make inference for the unknown parameter α.
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A Appendix

Proof of Theorem 3.1 First of all, we note that
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Therefore, we have that the Fisher information is:

I(α) = − 1

(1 − α)2
+ 2

(1 − α)3
Eα

[ k∑
j=1

1
1

1−α
+ j

]

− 1

(1 − α)4
Eα

[k−1∑
j=0

1

( 1
1−α

+ 1 + j)2

]
(A.1)

In order to compute the Jeffreys prior, we need compute the two expected value of
equation A.1 separately.
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The second summation with respect to k in Eq. A.2 can be rewritten as:
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Finally, we have that:
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where the summation
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+ 1) = 1, since we are summing over all

the possible values of the probability function of the Yule–Simon distribution.
As we have done with the first expected value of A.1, now we compute the second

expected value of Eq. A.1:
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Table 8 Geweke’s test statistics
for the posterior chain of the
parameter α for the Census
surname dataset

Prior Test

Jeffreys 0.3823

Loss-based (M = 10) −0.6470

Loss-based (M = 20) 0.7761

Table 9 Geweke’s test statistics
for the posterior chain of the
parameter α for the
‘Superstardom’ hits dataset

Prior Test

Jeffreys 0.5647

Loss-based (M = 10) −0.9505

Loss-based (M = 20) 0.5647
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Fig. 13 Gelman–Rubin plot for the Census surname dataset. (a) Jeffreys. (b) loss-prior with M = 10. (c)
loss-prior with M = 20

where the last equality follows from (A.3). Finally we obtain the following form:
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The Eq. A.6 can bewritten in amore simpleway as a function of anHypergeometric
function.

∞∑
j=1

B( j, 1
1−α

+ 1)
1

1−α
+ j

=
∞∑
j=1

1
1

1−α
+ j

∫ 1

0
x j−1(1 − x)

1
1−α dx
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Fig. 14 Autocorrelation and partial autocorrelation functions of the chains for the Census surname dataset
analysis under each objective prior. a Jeffreys. b Jeffreys. c loss-prior with M = 10. d loss-prior with
M = 10. e loss-prior with M = 20. f loss-prior with M = 20

=
∫ 1

0
(1 − x)

1
1−α

∞∑
j=1

1
1

1−α
+ j

x j−1dx (A.7)

Looking at the summation we have:

∞∑
j=1

1
1

1−α
+ j

x j−1dx =
∞∑

l=0

xl

1
1−α

+ l + 1
(A.8)
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Fig. 15 Gelman–Rubin plot for the‘Superstardom’ hits dataset. a Jeffreys. b loss-prior with M = 10. c
loss-prior with M = 20

But the denominator can be written as a ratio of Pochhammer representations:

1
1

1−α
+ l + 1

=
( 1
1−α

+ 1
)

l( 1
1−α

+ 2
)

l

1
1

1−α
+ 1

Hence the equation A.8 is written as:

∞∑
l=0

xl

1
1−α

+ l + 1
= 1

1
1−α

+ 1

∞∑
l=0

( 1
1−α

+ 1
)

l( 1
1−α

+ 2
)

l

xl (1)l

l!

= 1
1

1−α
+ 1

2F1

(
1,

1

1 − α
+ 1,

1

1 − α
+ 2, x

)

where 2F1(α, β, γ, x) is the hypergeometric function. So we have that equation A.7
can be rewritten as:

∫ 1

0

(1 − x)
1

1−α

1
1−α

+ 1
2F1

(
1,

1

1 − α
+ 1,

1

1 − α
+ 2, x

)

= (1 − α)2

(2 − α)2
3F2

(
1,

1

1 − α
+ 1, 1; 1

1 − α
+ 2,

1

1 − α
+ 2; 1

)
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Fig. 16 Autocorrelation and partial autocorrelation functions of the chains for the ‘Superstardom’ hits
dataset analysis under each objective prior. a Jeffreys. b Jeffreys. c loss-prior with M = 10. d loss-prior
with M = 10. e loss-prior with M = 20. f loss-prior with M = 20

where the last equality follows from 7.512.5 of Gradshteyn and Ryzhik (2007). Sum-
ming up,

I(α) = − 1

(1 − α)2
+ 2

(1 − α)3
(1 − α)+

− 1

(1 − α)4

(1 − α)2

(2 − α)2
3F2

(
1,

1

1 − α
+ 1, 1; 1

1 − α
+ 2,

1

1 − α
+ 2; 1

)

and this concludes the proof. �
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B Convergence analysis

In this section of the appendix, we describe the converge analysis we have performed
for the Census surname dataset and the ‘Superstardom’ hits data set.

The convergence analysis for the Census and ‘Superstardom’ datasets has been
done using the R Coda Package (Plummer et al. 2006). In particular, we have com-
puted the Geweke convergence test, the Gelman–Rubin’s plot and test statistics, the
autocorrelation and partial autocorrelation function. Tables 8 and 9 report the results of
the Geweke’s convergence test (Geweke 1992) for the two datasets. The test statistics
show no convergence issues. To perform the Gelman–Rubin test of convergence, we
have runmultiple chains with sparse starting points. Figure 13 plots the srinking factor
for the Census data set, while Fig. 15 shows the factor for the ‘Superstardom’ data set.
In both cases we do not see any indication of failed convergence under each objective
prior. As a final check, we have plotted the autocorrelation function and the partial
autocorrelation function for both datasets under each prior. These plots are shown in
Figs. 14 and 16. We again see no indication of convergence problems.
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