

I N S T I T U T D E S T A T I S T I Q U E

B I O S T A T I S T I Q U E E T

S C I E N C E S A C T U A R I E L L E S

(I S B A)

UNIVERSITÉ CATHOLIQUE DE LOUVAIN

D I S C U S S I O N
P A P E R

2016/05

On the estimation of nested Archimedean copulas:
A theoretical and an experimental comparison

N. UYTTENDAELE

On the estimation of nested Archimedean copulas:

A theoretical and an experimental comparison

Nathan Uyttendaele∗

na.uytten@gmail.com

January 27, 2016

Abstract

A lot of progress regarding estimation of nested Archimedean cop-
ulas has been booked since their introduction by Joe (1997). The
currently published procedures can be seen as particular cases of two
different, more general, approaches. In the first approach, the tree
structure of the target nested Archimedean copulas is estimated us-
ing hierarchical clustering to get a binary tree and then parts of this
binary tree are collapsed according to some strategy. This two-step
estimation of the tree structure paves the way for an easy estimation
of the generators afterwards. In contrast to the first approach, the sec-
ond approach estimates the tree structure free of any concern for the
generators. While this is the main strength of this second approach, it
is also its main weakness: estimation of the generators afterwards still
lacks a solution. In this paper, both approaches are formally explored,
detailed explanations and examples are given, as well as results from a
performance study where a new way of comparing tree structure esti-
mators is offered. A nested Archimedean copula is also estimated based
on exams results from 482 students, and a naive attempt to check the
fit is made using principal component analysis.

Keywords: nested Archimedean copulas, hierarchical Archimedean copu-
las, estimation, hierarchical clustering, rooted tree, structure determination,
Kendall’s tau, phylogenetics.

∗Université catholique de Louvain, Institut de Statistique, Biostatistique et Sciences
Actuarielles, Voie du Roman Pays 20, B-1348 Louvain-la-Neuve, Belgium.

1

1 Introduction

Nested Archimedean copulas (NACs), also called hierarchical Archimedean
copulas (HACs), introduced by Joe (1997, pp. 87–89), are a natural gen-
eralization of Archimedean copulas. The key feature of an Archimedean
copula is its generator, which can be loosely defined as a one-parameter or
two-parameter function of a single argument (in the rest of this paper, we
will always assume this is a one-parameter function). Nested Archimedean
copulas are made up of two parts: a rooted phylogenetic tree and a set of
generators. They offer more flexibility for modelling dependencies in a high-
dimensional setting while still reducing to Archimedean copulas in simpler
cases.

Estimation of nested Archimedean copulas has been the main topic of
several papers, see Okhrin et al. (2013a), Segers and Uyttendaele (2014) or
Górecki et al. (2015). Segers and Uyttendaele (2014) developed a procedure
to estimate the target phylogenetic tree of a NAC. In contrast to what is
done by Okhrin et al. (2013a), the procedure does not assume anything
about the generators of the target NAC prior to the estimation of its tree
structure. However, while the end result of the procedure developed by
Okhrin et al. (2013a) is a full NAC, Segers and Uyttendaele (2014) only offer
partial estimation of the target NAC, as the end result of their procedure is
only a tree structure: what to do next is left to the reader.

Close to what is done by Okhrin et al. (2013a), Górecki et al. (2015) also
offer full estimation of the target NAC. Unlike Segers and Uyttendaele (2014)
and Okhrin et al. (2013a), however, their procedure can only output binary
tree structures, making their tree structure estimator biased for any target
NAC such that the related tree structure is not a binary one. Górecki et al.
(2015) nonetheless experimentally showed that Okhrin et al. (2013a), which
use the Kendall transformation of random variables in order to estimate the
parameter of each generator, often get poor estimates. The reason for this is
addressed in detail by Górecki et al. (2014), where a correction is proposed1.
Note that, on their side, Górecki et al. (2015) estimate the parameter of a
given generator by averaging the Kendall correlation coefficients related to
the pairs of random variables interacting through this generator.

Okhrin et al. (2013a), Segers and Uyttendaele (2014) and Górecki et al.
(2015) can all be seen as particular cases of two different, more general, ap-
proaches, introduced with detailed explanations and examples in Section 3
and in Section 4. Prior to Section 3 and Section 4, Section 2 gives a short
introduction to Archimedean copulas and nested Archimedean copulas as
an attempt to help the reader not used to Archimedean and nested Archi-
medean copulas go through this paper; that section also defines most of the

1This correction has already been implemented in Ohkrin’s R package HAC.

2

notation used throughout this paper.

Results of a performance study are then shown in Section 5, where special
focus is given on the ability of estimating the tree structure of various target
NACs, including a target structure spanned on fifteen random variables. A
new estimator given in Section 3 as an example turns out to be the most
performant one of those tested.

Finally, in Section 6, before a discussion section, full estimation of a
nested Archimedean copula based on exams results from 482 students using
a particular case from the first approach is made, as well as a naive attempt
to check the fit using principal component analysis.

2 Archimedean and Nested Archimedean copulas
in a nutshell

Let (X1, . . . , Xd) be a vector of continuous random variables. The copula of
this vector is defined as

C(u1, . . . , ud) = P (U1 ≤ u1, . . . , Ud ≤ ud),

where (U1, . . . , Ud) = (FX1(X1), . . . , FXd
(Xd)), and where FX1 , . . . , FXd

are
the marginal cumulative distribution functions (CDFs) of X1, . . . , Xd.

Archimedean copulas (ACs) can always be written in closed form as

C(u1, . . . , ud) = ψ(ψ−1(u1) + · · ·+ ψ−1(ud)),

where ψ is called the generator and ψ−1 is its generalized inverse, with
ψ : [0,∞) → [0, 1], a convex, non-increasing function such that ψ(0) = 1
and ψ(∞) = 0. In order for C to be a d-dimensional copula, the generator
is required to be d-monotone on [0,∞), see McNeil and Nešlehová (2009)
for more details.

In the case of Archimedean copulas, C(u1, . . . , ud) is a symmetric func-
tion in its arguments and this is why Archimedean copulas are sometimes
called exchangeable. The result of this exchangeability property is easily seen
by plotting a cloud of points generated from a bivariate Archimedean co-
pula: the y = x axis is a clear axis of reflection symmetry for the underlying
distribution. For a cloud of points generated from a trivariate Archime-
dean copula, even more complex symmetries for the underlying trivariate
distribution can be observed.

Moreover, given a d-variate Archimedean copula and m ∈ {2, . . . , d−1},
any two m-variate margins from that Archimedean copula describe the same
m-variate distribution. For instance, with m = 3 and assuming the joint dis-
tribution of (U1, . . . , U10) is an Archimedean copula, the joint distribution of
(U6, U5, U3) is equal to the joint distribution of (U3, U10, U2) or (U1, U4, U8).

3

It is clear that, for modelling purposes, this exchangeability property
becomes an increasingly strong assumption as the dimension d grows.

This exchangeability property can be relaxed using nested Archimedean
copulas. NACs are obtained by plugging in Archimedean copulas into each
other (Joe, 1997, pp. 87–89). The following example shows how a bivariate
Archimedean copula C23 can be plugged into a bivariate Archimedean copula
C123:

C123(u1,C23(u2, u3)) =

ψ123

(
ψ−1

123(u1) + ψ−1
123(ψ23(ψ

−1
23 (u2) + ψ−1

23 (u3)))
)

(2.1)

The above trivariate copula, a nested Archimedean copula on (U1, U2, U3),
is still such that the y = x axis remains an axis of reflection symmetry for
all bivariate margins. However, while even more complex symmetries are
observed on the trivariate level of an AC, part of these symmetries are lost
on the trivariate level of the NAC described by (2.1). Moreover, while all
bivariate margins are the same in an AC, the distribution of (U2, U3) is not
the same as the distribution of (U1, U2) or (U1, U3) in the NAC described
by (2.1). All these remarks hold provided the generators ψ123 and ψ23 are
different, for otherwise (2.1) can be simplified back to a trivariate AC. In
general, the more the generators of successive nodes from a NAC are differ-
ent, the more that NAC will be said to be resolved, a word mainly used in
Section 5. Poorly resolved NACs are almost ACs, and their estimation is,
in general, harder.

In a NAC, the way Archimedean copulas are nested corresponds to a
rooted phylogenetic tree λ. This rooted phylogenetic tree is such that any
internal node, an internal node being any node different from a leaf, must
have at least two children and every node but the root must have one and
only one parent. Rooted trees where each internal node has two and only
two children are a subset of the set of rooted phylogenetic trees and are
called binary trees.

Nested Archimedean copulas, such as the one in (2.1) and for which the
tree can be seen on the left panel of Figure 1, are defined through a rooted
phylogenetic tree and through a collection of generators Ψ, one generator for
each internal node in the tree. Each generator fully describes the dependence
between the random variables interacting through the related internal node.
Archimedean copulas can be seen as a special case of NACs: they exhibit
a trivial structure such as the one on the right-hand panel of Figure 1 and
have only one generator, the one related to the only internal node, the root.
A trivial tree structure of dimension d is sometimes called a d-fan (Ng and
Wormald, 1996).

4

U1

U2 U3

123

23

U1 U2 U3

123

Figure 1: Left: the tree structure implied by (2.1). The dependence between U2 and U3 is
described by ψ23 while the dependence between U1 and U2 or U1 and U3 is described by
ψ123. Right: the structure of a trivariate AC. The dependence between any two random
variables is here described by ψ123. The arrows in both structures are called edges. Note
that the labels of the internal nodes in both structures (123 and 23 for the left structure,
23 for the right structure) are irrelevant.

In general, a set Ψ of arbitrary generators does not ensure that the
resulting NAC defined through (λ,Ψ) will be a proper copula. In case we are
working with fully nested Archimedean copula structures, that is, structures
where each branching node has either two leaves as children, or one leaf and
another branching node, a sufficient nesting condition ensuring this NAC is
a proper copula was however developed by Joe (1997) and McNeil (2008).
If all elements of Ψ belong to the same parametric family (if not, see Hofert,
2011), this sufficient nesting condition simply states that the parameters θI
and θJ related to ψI and ψJ must be such that θI < θJ for every pair of
internal nodes I and J in the NAC tree structure such that J is a child of
I. Roughly speaking, it means the strength of the dependence between two
random variables increases as these variables are able to interact through a
node farther away from the root node. It was later proved that this sufficient
nesting condition holds for all NACs, not only fully nested ones, see Holena
et al. Also note that a very recent paper by Rezapour (2015) gave weak
sufficient and necessary conditions concerning the generators, guaranteeing
that the constructed function is a copula.

In the first approach to estimate a NAC, in Section 3, the target tree
structure is estimated in such a way that, should the generators all belong
to the same parametric family, their parameters can be easily estimated so
that they meet the sufficient nesting condition. In the second approach to
estimate a NAC, in Section 4, the target tree structure is estimated free of
any concern for this sufficient nesting condition, but the problem of estima-
tion of the generators afterwards in order to get a proper copula, even when
all these generators belong to the same parametric family, remains an open
problem.

Regarding rooted phylogenetic trees, one of the key findings of Segers
and Uyttendaele (2014), which will be useful later, is the following: any
rooted phylogenetic tree λ can be broken down into a unique set, denoted
by 3(λ), consisting of

(
d
3

)
rooted trivariate tree structures, one trivariate

structure for each combination of the elements of the vector (U1, . . . , Ud)

5

on which λ spans, taken three at the time without repetition. Moreover, a
given set 3(λ) can in turn be used to retrieve the tree structure λ from which
3(λ) was calculated.

In order to estimate the tree structure λ of a target nested Archimedean
copula, Segers and Uyttendaele (2014) therefore suggest to estimate, one at

the time, each element of 3(λ), thus effectively getting 3̂(λ) which can then
be used to build λ̂.

The ability to estimate the tree structure of a nested Archimedean copula
spanned on three random variables (Ui, Uj , Uk) based on n observations from
(Xi, Xj , Xk) is a critical requirement for the estimation of 3(λ). As outlined
by Segers and Uyttendaele (2014), there are only four possible structures
in the trivariate case: a trivial structure, such as the one on the right-hand
side of Figure 1, or a structure where one variable is left apart and the two
others are put together, as seen on the left-hand side of Figure 1, where U2

and U3 are put together and U1 is located closer to the root.

If the trivariate target structure is assumed not to be the trivial structure,
then picking one of the three remaining structures as estimate of the trivari-
ate target structure is not a complicated problem: just estimate the Kendall
distribution for each of the tree pairs (Xi, Xj), (Xi, Xk) and (Xj , Xk), and
find out which are the two estimated Kendall distributions that are the
closest according to some distance. If, for instance, the estimated Kendall
distributions of (Xi, Xj) and (Xi, Xk) are the closest, then the trivariate
target tree structure must be a structure where Ui is left apart while Uj and
Uk are together.

Please note that if for some reason the target structure λ spanned on
(U1, . . . , Un) is known to be a binary structure, then so is each element of
3(λ). Therefore, in this particular case, each element of 3(λ) can be estimated
using only what is described in the previous paragraph.

Finding out if a trivariate target structure is actually the trivial structure
or not is a much more difficult problem, for which Segers and Uyttendaele
(2014) developed a hypothesis test where they try to see if the average of the
two closest estimated Kendall distributions is significantly different from the
third estimated Kendall distribution. If it is not the case, then one cannot
rule out that the three underlying Kendall distributions all coincide, and the
trivariate target structure is estimated by a 3-fan. The distribution of their
test statistic being unknown under the null, they rely on the bootstrap to
get a p-value for the test. As the estimation of all elements from 3(λ) will
require this test to be performed

(
d
3

)
times, getting λ̂ using their approach

can be computationally expensive, especially as the value of d increases.

Some suggested papers for the readers eager to learn more about NACs
are: McNeil (2008), Hofert and Pham (2013) or Okhrin et al. (2013b).

6

3 A first approach to estimate a NAC

In this section, a first approach to estimate a nested Archimedean copula
(λ,Ψ) is presented. With this approach, λ is first estimated in two steps:
a binary tree is built using hierarchical clustering and then is collapsed if
necessary, according to some strategy. Second, if the target generators are
assumed to belong to a same known parametric family F , estimation of the
set of parameters Θ so that the sufficient nesting condition (see Section 2)
is met can easily be performed. Okhrin et al. (2013a) and Górecki et al.
(2015) are both particular cases of this first approach.

Estimation of the target tree structure λ. It is first assumed that
the target structure spanned on (U1, . . . , Ud) is a binary tree, that is, a
structure where each internal node has two and only two children (this as-
sumption will be later relaxed). Example of a binary tree: the tree on the
left-hand side of Figure 1 or on the left-hand side of Figure 2.

Based on an iid sample of size n from (X1, ..., Xd) and knowing that
the tree structure spanned on (U1, . . . , Ud) is a binary tree, a distance for
each couple (Xi, Xj) with distinct i, j ∈ {1, . . . , d} is first estimated. The
random variables are then clustered, using hierarchical clustering, one at
the time, according to the estimated distances. Getting an estimated binary
tree structure this way however makes sense only if the estimated distance
d for each couple (Xi, Xj) is a function of a measure of association ./ such
that highly related random variables will be considered close and therefore
the distance d between the two will be small, if the tree is built from leaves
to the root using the smallest distances first and if the target NAC is such
that the dependence between any two random variables in the structure
increases as the variables are able to interact through nodes that are farther
away from the root, that is, if the target NAC (λ,Ψ) is assumed to meet the
sufficient nesting condition.

A measure of association ./ between two random variables can be ob-
tained, for instance, through

• Kendall’s τ ,
• a distance between the (theoretical) Kendall distribution of two inde-

pendent variables and the empirical Kendall distribution of the two
variables under study,
• Hoeffding’s D statistic (see Hoeffding, 1948),
• or Spearman’s rho.

Note that these measures of association are all such that ./ (Xi, Xj) =
./ (Ui, Uj), so that the binary tree estimated on (X1, ..., Xd) is actually the
binary tree estimated on (U1, . . . , Ud).

For the linkage criteria, single, complete or average linkage can be used
(and where experimentally tested by Górecki et al., 2015). In the rest of

7

this paper, only average linkage will be considered.

If somehow the target tree structure λ is known to be a rooted binary tree
structure, it is possible to directly move on to the problem of estimation of
the generators from here. However, a target NAC structure is not always a
rooted binary structure. To allow for a more general estimation, suggestion
is to collapse, if necessary, one or several parts of the estimated binary
structure λ̂b produced by the hierarchical clustering.

Let N = {n1, ..., ng} be the set of internal nodes in λ̂b. For any two nodes
{nl, nm} with l,m ∈ {1, ..., g} such that nl is a parent of nm, collapse the
two nodes if you suspect the generator ψl to be too similar to the generator
ψm. The right-hand side of Figure 2 shows the collapsing of nodes 234 and
34 into a new node. Notice the resulting tree is not a binary tree anymore.

U1

U2

U3 U4

1234

234

34
U1

U2 U3 U4

1234

234 + 34

Figure 2: Left: a binary structure spanned on four random variables. Right: nodes 234
and 34 have been collapsed into one node.

To compare two successive generators ψl and ψm, one needs first to
estimate these generators, as they are unknown. If they are known to belong
to a same given parametric family F , the problem is then to estimate θl and

θm and to collapse if
∣∣∣θ̂l − θ̂m∣∣∣ < θc. Note that at this point, we are not

concerned by the sufficient nesting condition: the goal here is only to decide
if two successive nodes in the binary tree should be collapsed, based on a
rough estimation of the related generators ψl and ψm. Formal estimation
of the generators is done later. To make the problem of whether or not
two successive nodes should be collapsed easier, each of the two related
generators is summarized as a scalar measure s reflecting the dependence
between the random variables interacting through the related node, and the
two nodes are collapsed if the absolute difference between their respective
estimated scalar measure is lower than a chosen threshold, that is, if

|ŝl − ŝm| < sc.

For instance, looking back at Figure 2, one can estimate a summary
of the dependence between the random variables interacting through node
234 by averaging the estimated Kendall correlation coefficients, calculated

8

within the random pairs (U2, U3) and (U2, U4). The estimated summary
of the generator related to node 34 is equal to the estimated Kendall’s τ
between the random variables (U3, U4). The two nodes are collapsed if the
inequality ∣∣∣∣(τ̂23 + τ̂24

2

)
− τ̂34

∣∣∣∣ < τc (3.1)

holds, where τc is the critical threshold for collapsing.

Instead of using Kendall’s τ in (3.1), other measures of association can
be used, for instance Spearman’s ρ, Hoeffding’s D statistic, etc.

Another strategy to decide if two successive nodes should be collapsed
or not is to break down both structures before and after collapsing of two
given nodes into their respective set of trivariate pieces (refer to Section 2
or to Segers and Uyttendaele, 2014). Since the structures before and after
collapsing are different, some of the trivariate pieces will be different as well.
Let P be the set of trivariate pieces before collapsing and P+ the set of
pieces after collapsing. Let P∆ be the set of vectors of the form (Ui, Uj , Uk)
such that the tree structure spanned on (Ui, Uj , Uk) is not the same in P
and P+. In P+, the tree structure spanned on (Ui, Uj , Uk) is a 3-fan, while in
P , it is not the case. The decision to collapse or not is made by performing
the hypothesis test developed by Segers and Uyttendaele (2014), since this
test precisely aims at deciding whether or not the tree structure spanned on
three random variables (Ui, Uj , Uk) is a trivial tree structure.

Looking back at Figure 2, one can observe that, in the left structure, the
tree spanned on (U2, U3, U4) is not a 3-fan, while in the right structure it is.
If the p-value of the test is lower than or equal to a threshold α, the nodes
234 and 34 should not be collapsed into one.

When there is more than one vector of the form (Ui, Uj , Uk) in P∆, the
hypothesis test developed by Segers and Uyttendaele (2014) must be applied
several times, and the end result is a set of p-values. For such cases, a rule of
thumb such as the one hereafter can be used (do not collapse if the inequality
holds):

average p-value ≤ α (3.2)

Estimation of the set of generators Ψ. Once the target tree structure
λ has been estimated, one needs to estimate the generators. Usually, as done
in Okhrin et al. (2013a) and Górecki et al. (2015), it is assumed that all these
generators belong to a same known parametric family F . In such case, the
only thing left to estimate is a set of parameters Θ.

An interesting by-product of the hierarchical clustering used to build λ̂b
is a set of non-increasing measures of association from leaves to the root of
λ̂b. Since the sufficient nesting condition requires the θs in Θ to decrease

9

from leaves to the root of the phylogenetic tree, any monotonically increasing
map δ:

space of the chosen measure of association used to build λ̂b

→ parameter’s space for the parametric family F chosen for the generators,

applied to these non-increasing measures of association, will lead to a set
Θ̂ allowing to get an estimated NAC (λ̂, Ψ̂) meeting the sufficient nesting
condition.

In Okhrin et al. (2013a), the parametric family for the generators is
specified prior to the hierarchical clustering, allowing them to directly use, as
if it was a measure of association, the θ parameter related to that parametric
family (the fact the θ parameter is not an actual measure of association
is irrelevant in this case). The by-product of the hierarchical clustering
allows therefore to directly get (λ̂, Ψ̂) meeting the sufficient nesting condition
without any extra effort. In other words, δ(•) = •.

In Górecki et al. (2015), the measure of association used for the hierar-
chical clustering is Kendall’s τ . The main advantage of using Kendall’s τ is
that there is a direct, well known, relationship between Kendall’s τ and θ for
most parametric family of generators. That is, a possible map δ(•) is easy
to find. For instance, if the parametric family for the generators is assumed
to be the Clayton family, a possible map between Kendall’s τ and θ is

δ(τ) =
2τ

1− τ
= θ (3.3)

See Hofert and Maechler (2011) for the map using other families.

Using other measures of association, such as Hoeffding’s D statistic for
instance, a suitable map δ is not known. However, as long as δ is a monoton-
ically increasing function, (λ̂, Ψ̂) will be a proper copula, but the resulting
estimator could be biased or with a very high mean square error.

To conclude this section, the first approach to estimate a target NAC
using hierarchical clustering is summarized in Algorithm 1 hereafter. Note
that the major difference between Algorithm 1 and Algorithm 3 in Górecki
et al. (2015) is the collapsing step, starting at line 6 and ending at line 22
of Algorithm 1, while missing in Górecki et al. (2015).

Input. An iid sample from (X1, ..., Xd) such that the related copula is
assumed to be a NAC, a measure of association ./ and a distance d based
on ./ (a large value for ./ leading to a small distance), a linkage criteria L, a
strategy S for how to collapse successive nodes in the binary tree resulting
from the hierarchical clustering, a generator’s family F and a map δ.

Output. An estimated NAC (λ̂, Ψ̂) meeting the sufficient nesting con-
dition.

10

Algorithm 1 Estimating a NAC using hierarchical clustering.

1: for all pairs (Xi, Xj) such that i, j ∈ {1, ..., d} do
2: get d(Xi, Xj) and store it in a distance matrix.
3: end for
4: using hierarchical clustering with L and the distance matrix just built,

get a binary tree λ̂b.
5: Also store the set of ordered measures of association for later use as A,

this set being a by-product of the hierarchical clustering. Note that the
cardinality of A is d− 1.

6: set λ̂t = λ̂b.
7: repeat
8: set λ̂ = λ̂t.
9: let N = {n1, ..., ng} be the set of internal nodes in λ̂t.

10: for all pairs (nl, nm) in N such that nl is the parent of nm do
11: try to collapse nl and nm using strategy S.
12: store the decision, do not apply it yet.
13: end for
14: update λ̂t by collapsing what needs to be collapsed.
15: do this based on the set of decisions one gets from the loop just

above.
16: until λ̂ == λ̂t.
17: the repeat until loop automatically stops as soon as no further collapsing

of λ̂t is possible.
18: next, update the set of ordered measures of association A by comparing

λ̂b to λ̂ as described hereafter.
19: for all sets of nodes in λ̂b that have been collapsed into one node in λ̂

do
20: get the minimum of the related ordered measures of association in

A.
21: replace the related ordered measures of association in A by this min-

imum.
22: end for
23: apply the map δ on each element of A to get a set of estimated param-

eters Θ̂, which can then be used with F to get Ψ̂.
24: return (λ̂, Ψ̂)

Although this algorithm might seem long, its implementation is rather
straightforward.

4 A second approach to estimate a NAC

Segers and Uyttendaele (2014) paved the way for an alternative approach to

11

that of Section 3. In Section 3, hierarchical clustering is mandatory, and λ̂
always results from it. In Segers and Uyttendaele (2014), the tree structure
λ is estimated free of any concern for the generators: the user can get a tree λ̂
without knowing anything about the target NAC. Moreover, the simulation
study in Segers and Uyttendaele (2014) showed that they were, in general,
able to retrieve the target tree λ more often than Okhrin et al. (2013a),
where hierarchical clustering is used.

What to do next, once λ has been estimated, remains an open problem
left for future research by Segers and Uyttendaele (2014). If the generators
across λ are assumed to belong to a same parametric family F , estimation
of the related set of parameters Θ can be performed by simple inversion
of the estimated Kendall correlation coefficients, the same way it was done
using equation (3.3) in Section 3. In most cases, this is expected to lead
to a proper NAC (λ̂, Ψ̂). But in some cases, it will unfortunately not be
true. This is because estimated Kendall correlation coefficients along trees
built by Segers and Uyttendaele (2014) are not always ordered, making
the sufficient nesting condition hard to satisfy. A stage-wise estimation of
the parameters based on a quasi-maximum likelihood approach (from the
lowest to the highest nesting level), as done by Okhrin and Ristig (2014),
with subsequent shortening of the feasible parameter space, could however
help ensure that the final object is a well defined NAC.

While this section does not solve the problem of estimation of the gen-
erators for this second approach, a new way to estimate λ free of any con-
cern for the generators, using a supertree method, is presented hereafter, as
an alternative to the tree structure estimator from Segers and Uyttendaele
(2014).

Supertree methods have been extensively studied in the field of phyloge-
netics. They are designed to output a phylogenetic tree such that this phylo-
genetic tree will be the best match of an input set of smaller trees, this input
set including trees of various sizes, conflicting trees and also missing trees
(that is, some information to build the supertree is actually lacking). Some
interesting references to get started are Bininda-Emonds (2004), Wilkinson
et al. (2005) or Swenson et al. (2012).

Two supertree methods implemented in the R package phytools (Revell,
2012) have been tested. They both take as input a set of unrooted trees and
output an unrooted tree. In a rooted tree, there is always a special node
called the root and all edges are directed away from that root. Any node in
a rooted tree but the root has always one and only one parent and the root
is the common ancestor to all other nodes. In an unrooted tree, it is not
possible to identify the parent of an arbitrary node, as a neighbouring node
could be about anything (child or parent), since the edges are undirected,
thanks to the absence of root in the graph. The process of rooting an
unrooted tree is straightforward: pick an internal node and define it as the

12

root. The process of unrooting a rooted tree is a little more complex: if the
root has two and only two children, the root is removed and the two children
become directly connected. Otherwise, the root remains in the graph. In
both cases, the edges become undirected.

To start, and assuming all input trees are unrooted (if they are not, they
are first unrooted), all the topological information available across the input
trees is gathered as a matrix, called the character matrix. Let Λ be the set
of all unrooted input trees. Let E = {e1, ..., eg} be the set of internal edges
(an internal edge is an edge between two internal nodes) across all trees in
Λ. Let U = {U1, ..., Ud} be the set of leaves such that each of these leaves
exists in at least one of the input trees. Elements of U that are on one side
of edge ei, i = {1, ..., g}, will receive the state 0, elements that are on the
other side will receive the state 1. Elements of U that are on neither of the
two sides of ei receive the unknown state for that edge. The d× g character
matrix contains all of the states. A supertree is by definition a tree that
spans on all of the elements of U and the goal of a supertree method is to
find a supertree such that some loss function, this loss function comparing
the topological information of the supertree to the d × g character matrix,
is optimized.

U1 U3 U2 U4

13

1234

24 U1 U3

U4 U5

1345

45

U1 0 0
U2 1 ?
U3 0 0
U4 1 1
U5 ? 1

U1 0 1 0
U2 1 0 ?
U3 0 1 0
U4 1 0 1
U5 ? ? 1
O 0 0 0

Figure 3: Two rooted input trees and the related character matrix built on the unrooted
version of these two trees first without and second with an outgroup added.

As an example, consider the two tree structures in Figure 3. Suppose
one wants to build a tree spanned on U = {U1, . . . , U5} based on these two
trees. Both input trees are first unrooted. The first rooted tree in Figure
3 loses one internal edge in the process and becomes a tree with structure
of the form >−<, as shown on the top left side of Figure 4, where the only
remaining internal edge (the − in >−<) has nodes 13 and 24 at its tips.

13

Figure 4: Top left: the unrooted version of the first rooted tree displayed in Figure
3. Bottom left: an outgroup O has been attached to the root of the first rooted tree
displayed in Figure 3 before the tree is unrooted. Thanks to this outgroup, we are able
to keep track of the root, even though the tree has been unrooted. Right: an example of
nearest neighbour interchange (NNI) from Wikipedia.

The second rooted tree in Figure 3, when unrooted, also becomes a tree
with structure of the form >−<, where the internal edge has nodes 1345
and 45 at its tips. The character matrix that gathers all the topological
information available based on these two unrooted trees is the 5× 2 matrix
displayed in Figure 3. Looking at the internal edge in the first unrooted tree
(top left of Figure 4), we see that U1 and U3 are on one side of that edge and
U2 and U4 are on the other side. We assign the label (or state) 0 to U1 and
U3, and the label 1 to U4 and U2. The leaf U5 does not appear in this input
unrooted tree and it is therefore not known to which side this leaf belongs.
We therefore assign an unknown state to U5, thus ending the first column
of the 5× 2 character matrix. For the second unrooted tree, U1 and U3 are
on one side of the internal edge and U4 and U5 are on the other side. We
do not know to which side U2 belongs. This makes up the second column of
the 5× 2 character matrix.

Once the character matrix has been built, the next step is to find an
unrooted supertree that will agree as much as possible with the topological
information available in the matrix. As loss function, phylogeneticians use
what is called the parsimony score, which can be easily calculated for a given
supertree using the algorithm developed by Fitch (1971).

To find the supertree with the minimum parsimony score, the strategy is
to pick a starting supertree and then to apply topological rearrangements to
that supertree in a recursive fashion. Rearrangements leading to a supertree
with a lower parsimony score are kept, changes such that the resulting su-
pertree has a higher parsimony score are not kept. The final supertree is
one such that no further rearrangements of the supertree allows to lower the
parsimony score.

The two supertree methods tested in this paper differ only in the way the
starting supertree is defined and in the way the starting supertree is recur-

14

sively modified. The first of these methods, later denoted by NJNNI, uses as
starting supertree a tree built based on the neighbor joining (NJ) clustering
method from Saitou and Nei (1987). The changes applied recursively on the
tree are NNI rearrangements, see Felsenstein (2004, pp. 39) for a detailed
description and the right side of Figure 4 for an example.

For the second method, later denoted by RNix, the starting supertree is
chosen at random and is then modified according to Nixon (1999).

Both these methods output an unrooted supertree and, by unrooting
input rooted trees, destroy the topological information that could be used
to root the outputted supertree.

There is one way to avoid this, though. The idea is to make use of an
extra leaf, called the outgroup. The outgroup is attached to the root of each
input rooted tree prior to the process of unrooting them. The set U defined
earlier becomes {U1, ..., Ud, O}. As an example, the character matrix with
such outgroup for the two input trees in Figure 3 is displayed on the most
right part of the same figure. The unrooted version of the first tree in Figure
3 with this outgroup attached is displayed at the bottom left of Figure 4.
Note that the character matrix, with outgroup, has now as many columns
as there are edges in the original, rooted, input trees. A supertree based on
this 6 × 3 character matrix will span on {U1, . . . , U5} and the outgroup O.
Once a satisfying supertree is found, the final step is to use the outgroup to
root the supertree before removing that outgroup.

In order to estimate a target binary NAC tree structure using one of the
two supertree methods described above, the suggestion is to use, as input
set of trees, the set of binary trivariate trees one gets by estimating the
binary tree spanned on each vector of three random variables (Ui, Uj , Uk)
with distinct i, j, k ∈ {1, . . . , d}, refer to Section 2 for more details.

As it was done in Section 3, the estimated binary tree λ̂b can then be
collapsed according to some strategy S in order to get λ̂. Comparison be-
tween this new approach to get λ̂ and the one from Segers and Uyttendaele
(2014) is performed in Section 5.

5 Performance study

In this section, we are concerned with the ability of estimating λ based on
a sample from (λ,Ψ). When the sample size is n, the methodology used in
this section to estimate the performance of a NAC tree structure estimator
is described through the following steps:

• generate N = 100 samples of size n from (λ, Ψ);
• apply the NAC tree structure estimator on each of these N samples

while considering the univariate margins unknown (that is, work on
ranks) and get N estimates of λ;

15

• calculate a distance between each estimate of λ and λ itself;
• get the average of the N resulting distances or some other descriptive

measure of these distances, such as:

(average of the distances)2 + variance of the distances; (5.1)

• the lower the average of the distances or (5.1) is, the better the perfor-
mance of the estimator for the NAC defined through (λ, Ψ) is, given
a fixed sample size n.

Two distances between a given estimate of λ and λ itself are considered.
The first one is a 01-distance: if the estimate of λ is actually equal to λ,
then the distance is 0. Otherwise, the distance is 1. The second distance,
called the tri-distance, is based on the comparison of the trivariate pieces
of the estimate of λ and the trivariate pieces of λ itself. If both trees are
equal, all the trivariate pieces will be equal as well, and the distance is
0. If among the

(
d
3

)
trivariate pieces from the estimate of λ and the

(
d
3

)
trivariate pieces from λ a total of k pieces differ, then the distance is k. The
maximum possible tri-distance is therefore

(
d
3

)
. Unlike the 01-distance, this

last distance allows to assess how far from the target structure a misspecified
structure produced by a given estimator is, something never studied before.

Since the estimator from Segers and Uyttendaele (2014) is based on a
hypothesis test, it is required to choose a threshold α prior to the estimation
of a target tree structure.

Regarding estimators based on hierarchical clustering (Section 3), the
choice of a threshold to decide if any two successive nodes in the estimated
binary tree structure should be collapsed is also required prior to the esti-
mation of a target tree structure, as seen in (3.2) or (3.1).

Comparison of the performance of different tree structure estimators is
therefore a challenge, as the performance of a given estimator depends on the
chosen threshold for that estimator. Given a sample size n, a target NAC
(λ, Ψ) and a tree structure estimator, the suggestion is to use a threshold
ensuring that P (λ̂n = λ) is maximized. This particular threshold will be
called the optimal threshold. By making use of the related optimal threshold
for each estimator, one only takes into account the best performance of each
estimator, which should allow for “fair” comparisons between estimators.

In the particular case where λ is a binary structure,

• the estimator from Segers and Uyttendaele (2014), which is based on(
d
3

)
hypothesis tests, should always reject the nulls. If one null is not

rejected, it means the final estimated structure contains at least a 3-
fan, and therefore the estimate of λ cannot be equal to λ itself. Thus
the threshold α should be set to 100% or more so that all nulls are
always rejected.
• Regarding estimators based on hierarchical clustering, in case λ is a

binary structure, P (λ̂n = λ) is maximized if the collapsing step is

16

skipped. This can be achieved by setting α to 100% or more in (3.2),
and τc to 0 or less in (3.1).

Although unknown when λ is not a binary structure, the optimal thresh-
old for an estimator can be estimated. Indeed, given N = 100 samples of
size n, a target NAC (λ, Ψ) and a tree structure estimator, the estimated
optimal threshold is the value such that the average of the N = 100 01-
distances between each estimate of λ and λ itself, is minimal. Note that on
real data, since the target structure is by definition unknown, the optimal
threshold cannot be estimated as it is done here.

In this section, all tree structure estimators but the one from Segers and
Uyttendaele (2014) rely on two steps: a binary tree is first built, and then
parts of it are collapsed. For the first step, RNix and NJNNI refer to the
two supertree methods described in Section 4 while kind, hD and kt refer
to distance matrices related to measures of deviation from the independent
bivariate Kendall distribution, Hoeffding’s D statistics or Kendall correlation
coefficients, respectively (a large measure of deviation, a large D or a large
Kendall’s τ leading to a small distance). For the second step, kb and kagg
refer to (3.2) and (3.1), respectively. The tree structure estimator developed
by Segers and Uyttendaele (2014) will be referred to as S&U.

Target structures are given in Figures 5 and 6.

U1 U2 U3 U4

12

1234

34 U1 U2

U3 U4

1234

34
U1 U2

U3

U4 U5

1 : 5

345

45
U1

U2 U3

U4

U5

U6 U7

123

1 : 7

23

4567

567

67

Figure 5: two four-variate structures, a five-variate structure and a seven-variate structure.

17

U1

U2

U3 U4 U5U6

U7 U8

U14 U15

B2

1 : 15

A1

A2 C1

B1

C2

Figure 6: A fifteen-variate structure, where B2 refer to an Archimedean copula spanned
on U9 through U13.

Figure 7 through 11 give the simulation results for these target struc-
tures. The generators used across each structure and the related parameters,
expressed as Kendall correlation coefficients for convenience, are specified
below the figures.

Notice the average of the 01-distances is actually equal to the percentage
of estimates that are unequal to the target structure, so that a value of 1
means not a single estimate of λ among the N = 100 available was equal to
the target λ, while a value of 0 means all estimates of λ were equal to λ.

●
●

●
●

●

●
●

●
●

●
●

●

●●
●

●

●
●

●
●

●

●
●

●

●●

5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

av
er

ag
e

of
 th

e
01

−
di

st
an

ce
s

●

●

●

●

●
●

●
●

●
●●

●●●●●●●●●
●●

●●●●

5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

av
er

ag
e

of
 th

e
01

−
di

st
an

ce
s

●

●

●

●
●

●

●
●

●●
●●●●●●●●●●●●●●●●

5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

av
er

ag
e

of
 th

e
01

−
di

st
an

ce
s

● S&U
kt_kagg
hD_kagg
NJNNI_kb

●

●

●●
●●●●

●

●

●

●

●●●

●

●

●

●
●

●

●
●

●
●●

5 10 15 20 25 30

0
2

4
6

8
10

n

(5
.1

)
us

in
g

th
e

tr
i−

di
st

an
ce

s

●

●
●

●

●
●

●
●

●
●●

●
●●

●
●●●●

●
●

●
●●●●

5 10 15 20 25 30

0
2

4
6

8
10

n

(5
.1

)
us

in
g

th
e

tr
i−

di
st

an
ce

s

●

●

●

●
●

●
●●●●●●●●●●●●●●●●●●●●

5 10 15 20 25 30

0
2

4
6

8
10

n

(5
.1

)
us

in
g

th
e

tr
i−

di
st

an
ce

s

Figure 7: results for the four-variate binary structure. The generators used across the
structure are all Clayton generators. The related sets of parameters are (τ1234 = 0.4, τ12 =
0.6, τ34 = 0.6) for the left-hand side of the figure, (τ1234 = 0.3, τ12 = 0.7, τ34 = 0.7) in the
middle, and (τ1234 = 0.2, τ12 = 0.8, τ34 = 0.8) for the right-hand side of the figure.

18

●●●●
●●

●●●
●

●●
●●

●
●

●

●
●

●
●

●●

●

●●

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

av
er

ag
e

of
 th

e
01

−
di

st
an

ce
s

●

●●●

●
●●●

●

●●

●●
●

●●
●

●

●
●

●●●
●

●●

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

av
er

ag
e

of
 th

e
01

−
di

st
an

ce
s

●

●

●
●●●●

●
●

●
●●

●●●
●●●●●●●●●●●

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

av
er

ag
e

of
 th

e
01

−
di

st
an

ce
s

● S&U
hD_kagg
RNix_kagg
NJNNI_kagg

●

●
●

●
●

●●●
●●

●
●●●●

●
●

●
●●●●●

●
●●

10 15 20 25 30 35

0
1

2
3

4
5

6

n

(5
.1

)
us

in
g

th
e

tr
i−

di
st

an
ce

s

●

●●
●

●
●

●
●●

●
●●●●●●●●

●●
●●●●●●

10 15 20 25 30 35

0
1

2
3

4
5

6

n

(5
.1

)
us

in
g

th
e

tr
i−

di
st

an
ce

s

●●
●●●●

●
●

●
●

●●●●●●●●●●●●●●●●

10 15 20 25 30 35

0
1

2
3

4
5

6

n

(5
.1

)
us

in
g

th
e

tr
i−

di
st

an
ce

s
Figure 8: results for the second four-variate structure. The generators used across the
structure are, again, all Clayton generators. The related sets of parameters are (τ1234 =
0.4, τ34 = 0.6) for the hand-left side of the figure, (τ1234 = 0.3, τ34 = 0.7) in the middle,
and (τ1234 = 0.2, τ34 = 0.8) for the hand-right side of the figure.

●●●●●●
●

●
●●●●

●
●●

●●●
●

●●●
●●●

40 60 80 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

av
er

ag
e

of
 th

e
01

−
di

st
an

ce
s

●
●●

●
●

●●
●

●
●●

●●
●●

●
●

●●
●

●
●

●●
●

40 60 80 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

av
er

ag
e

of
 th

e
01

−
di

st
an

ce
s

●

●

●
●

●
●

●

●
●

●

●

●
●●

●●●
●

●●●●●●●

40 60 80 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

av
er

ag
e

of
 th

e
01

−
di

st
an

ce
s

●

●

●

●
●●

●

●
●

●

●

●
●

●●

●
●

●
●

●●
●

●

●●

40 60 80 120

0
10

20
30

40

n

(5
.1

)
us

in
g

th
e

tr
i−

di
st

an
ce

s

●

●
●●●

●●●●

●
●

●

●
●

●●
●

●
●

●

●

●
●●

●

40 60 80 120

0
10

20
30

40

n

(5
.1

)
us

in
g

th
e

tr
i−

di
st

an
ce

s

●
●

●
●

●●
●

●
●

●

●

●
●●

●●●
●

●●●●●●●

40 60 80 120

0
10

20
30

40

n

(5
.1

)
us

in
g

th
e

tr
i−

di
st

an
ce

s

● S&U
kt_kagg
RNix_kagg
NJNNI_kb

Figure 9: results for the five-variate structure. The generators used across the structure are
all Gumbel generators. The related sets of parameters are (τ1:5 = 0.4, τ345 = 0.5, τ34 = 0.6)
for the left-hand side of the figure, (τ1:5 = 0.3, τ345 = 0.5, τ34 = 0.7) in the middle, and
(τ1:5 = 0.2, τ345 = 0.5, τ34 = 0.8) for the right-hand side of the figure.

19

●●●●●●●●●●●●●●●●●●●●●●●●●●

5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

av
er

ag
e

of
 th

e
01

−
di

st
an

ce
s

● S&U
kt_kagg
hD_kagg
RNix_kagg

●●●●●●●●●●●●●●●
●●●●

●●
●

●●
●

●

5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

av
er

ag
e

of
 th

e
01

−
di

st
an

ce
s

●●●●●●●
●

●●●●●●●●●●
●●

●●●●
●

●

5 10 15 20 25 30

0
40

0
80

0
12

00

n

(5
.1

)
us

in
g

th
e

tr
i−

di
st

an
ce

s ●●●●
●

●●●
●

●

●

●
●

●
●

●●

●●

●
●●●●

●

●

5 10 15 20 25 30

0
40

0
80

0
12

00

n

(5
.1

)
us

in
g

th
e

tr
i−

di
st

an
ce

s

Figure 10: results for the seven-variate structure. The generators used across the structure
are all Frank generators. The related sets of parameters are (τ1:7 = 0.35, τ123 = 0.5, τ23 =
0.65, τ4:7 = 0.45, τ567 = 0.55, τ67 = 0.65) for the left-hand side of the figure and (τ1:7 =
0.2, τ123 = 0.5, τ23 = 0.8, τ4:7 = 0.4, τ567 = 0.6, τ67 = 0.8) for the right-hand side of the
figure.

150 250 350

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

av
er

ag
e

of
 th

e
01

−
di

st
an

ce
s

150 250 350

0
50

0
15

00
25

00

n

(5
.1

)
us

in
g

th
e

tr
i−

di
st

an
ce

s

kt_kagg
kind_kagg
NJNNI_kagg

Figure 11: results for the fifteen-variate structure. The generators used across the structure
are all Joe generators. The set of parameters is (τ1:15 = 0.1, τA1 = 0.25, τA2 = 0.5, τB1 =
0.5, τB2 = 0.75, τC1 = 0.35, τC2 = 0.45).

Some comments are:

• As the sample size increases, all estimators perform better.
• The more the target NAC is resolved, the better the performance, as

seen on Figure 7 through 10. The tree structure of a poorly resolved
NAC is, in general, harder to estimate.
• The group of estimators used in this section are clearly not a ho-

mogeneous group regarding performances (or execution times). For
instance, at the top left of Figure 7, one can see that the NJNNI kb
estimator performs slightly better than the S&U estimator in terms

20

of mean 01-distance, while the kt kagg and hD kagg estimators both
significantly perform better.
• Several estimators beat the S&U estimator by a large amount in case

of binary target structures (Figure 7 and 10). For instance, top right of
Figure 10, the kt kagg estimator can be seen to get the target structure
wrong only 20% of the time when the sample size is 30, while the
S&U estimator gets it wrong more than 80% of the time on the same
samples. Moreover, the bottom right part of the same figure shows
that, when the kt kagg gets the target structure wrong, it’s only by a
very small, almost negligible, amount. When the S&U estimator gets
it wrong, the resulting estimate of λ is usually far away from λ itself.
• As seen in Figure 11, the kind kagg and kt kagg estimators seem to

offer the same ability to retrieve the target structure. Note however
that the kt kagg estimator is easier to compute.
• No matter what the generators of the target NAC are, notice that
kt kagg remains the top runner in almost all figures where it is used.
This suggest that what the generators of the target tree are is of little
importance regarding performance.
• In the simulations for the four-variate binary structure, the kt kagg

estimator turned out to be the one with the smallest execution times,
producing estimates up to a 100 times faster than the S&U estima-
tor. Whatever the target NAC, estimators using hierarchical cluster-
ing seemed to always exhibit smaller execution times than the S&U
estimator on the same data.

6 Exams results from 482 students

In this section, a phylogenetic tree is estimated based on the results of 482
students to their exams, using the kt kagg tree structure estimator with τc set
to 0.075. The main reason we use the kt kagg tree structure estimator rather
than another is because it was the best performing one in our performance
study, as well as the fastest.

The 482 students are in their first year, studying economics and man-
agement in a Belgian university. They took 14 exams, that is, there are
14 random variables: Private Law, Psychology and Management, Sociol-
ogy, Chemistry, Geography, English, Dutch, History, Mathematics, Physics,
Statistics, a course designed to make sure students have the required pre-
requisites in sciences (BasicSci), and, finally, micro and macro economics
(Econ103) and a related course (Econ104). Figure 12 shows the estimated
tree.

To help interpret the estimated structure, an estimated summary of the
generator at each internal node of the structure is obtained by averaging the

21

estimated Kendall correlation coefficients of all the pairs of random variables
interacting through that node. For instance, 0.51 was obtained by averaging
the Kendall correlation coefficients of the pairs (Hist, Math), (Hist, Phys),
(Hist, Stat), (Hist, BasicSci), (Hist, Econ103), (Hist, Econ104), (Math,
Phys), (Math, Stat), (Math, BasicSci), (Math, Econ103), (Math, Econ104),
(Phys, Stat), (Phys, BasicSci), (Phys, Econ103), (Phys, Econ104), (Stat,
BasicSci), (Stat, Econ103), (Stat, Econ104), (BasicSci, Econ103) and (Ba-
sicSci, Econ104).

Chem

Law

Econ103 Econ104

Geog

Hist

Engl Dutch

Math Phys

Psyc Socio

Stat BasicSci

0.33

0.44

0.64

0.51

0.47

Figure 12: Phylogenetic tree built on the grades of 482 students.

The estimated average Kendall correlation coefficient at the root is 0.33,
suggesting that students tend to have good grades everywhere or bad grades
everywhere, and less often a mix of good and bad grades. The strongest
estimated Kendall’s τ can be observed between the courses Econ103 and
Econ104. Merging both courses in one exam could be a time-saving idea for
the teachers in charge. English and Dutch courses are apart from the rest

22

of the tree, with an estimated Kendall’s τ of 0.47. Natural sciences such
as Mathematics, Physics or Statistics are related through a rather strong
estimated mean Kendall’s τ (0.51), while courses such as Psychology or
Sociology are both directly connected to the root where the dependence is
the weakest.

If one is to assume that the five generators of the tree shown in Figure 12
all belong to a same parametric family F , say the Clayton family, estimation
of the related set of parameter Θ can be easily performed by inverting the
mean Kendall correlation coefficients displayed in Figure 12 according to
equation (3.3).

To check the fit, one could compare the empirical correlation matrix,
built on the raw data, versus the correlation matrix one gets from (λ̂, Ψ̂). A
good match between the two matrices does not mean that the true copula
underlying the dataset is a NAC, but is nonetheless a key requirement.

Since comparison of two 14×14 correlation matrices is quite obnoxious to
perform, suggestion is to use principal component analysis to help us perform
this check. The 482 students, projected on the first two components, can be
seen in the top left panel of Figure 13. 5000 points from (λ̂, Ψ̂) can be seen
in the top right panel of Figure 13.

23

●

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

Dim 1 (49.94%)

D
im

 2
 (

7.
24

%
)

●●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●

● ●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

Dim 1 (58.79%)

D
im

 2
 (

7.
80

%
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Dim 1 (49.94%)

D
im

 2
 (

7.
24

%
)

Chem

Law
Econ103
Econ104

Geog

Hist
Math

Phys

Psyc
Socio

Stat

Engl

Nl

BasicSci

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Dim 1 (58.79%)

D
im

 2
 (

7.
80

%
)

LawPsycSocio

ChemGeog

Engl
Nl

HistMath
Phys
StatBasicSci

Econ103Econ104

Figure 13

The circle of correlations based on the 482 students can be seen in the
bottom left panel of Figure 13. The circle of correlations based on 5000
observations from (λ̂, Ψ̂) can be seen in the bottom right panel of Figure 13.
Both figures show a relative good match between the original data and the
one simulated from (λ̂, Ψ̂).

In most papers related to NACs, a generator with the same functional
form is used throughout the tree structure. Different generators can however
be used, as discussed by Hofert (2011), offering extra flexibility. In his paper,
Hofert (2011) gives several examples of different Archimedean families one
can use while meeting the sufficient nesting condition. For instance, Hofert
(2011) tells us that if a parent node is defined through a Clayton generator,
then the child node can be defined through generator

ψh(t) = (1 + t1/θh)−1,

as long as the parameter’s value of the Clayton generator ∈ (0, 1]. Translated
as a Kendall correlation coefficient, it means we cannot exceed 1/3 for the

24

correlation coefficient on the parent node.

Looking back at Figure 12, at least one opportunity for the generator ψh
can be seen: node 0.47. Indeed, the parent node has a Kendall correlation
coefficient just below 1/3. The only remaining task is to revert the value 0.47
in order to get θ̂h. Straighforward calculations can show that θh = 4

6(1−τ) ,

leading to θ̂h = 1.258. The resulting estimated NAC now uses different
generators across its tree structure, and, thanks to Hofert (2011), we know
this estimated NAC is a proper copula.

Of course, one has no reason to use different generators unless the re-
sulting NAC can be shown to fit the data better. To check if using ψh(t)
at node 0.47 allows to improve the fit, let us compare the log-likelihood of
the Archimedean copula on (Engl, Dutch) using a Clayton generator first
and then using ψh(t). Straighforward calculations can show that the copula
density using ψh(t) as generator is

c(u,w; θ) =
2(−1 + 1/u)θ(−1 + 1/w)θ

D
,

where

D = u2w2(−1 + 1/u)(−1 + 1/w)
(
1 + 1/θ((−1 + 1/u)θ + (−1 + 1/w)θ)

)3
,

allowing to calculate the related log-likelihood. The log-likehood using
a Clayton generator is 74.00. Using ψh(t), the log-likelihood is 50.10. So in
our case, it seems we are better off with a Clayton generator at node 0.47.

7 Discussion

Based on the performance study, it seems that the tree structure estimator
kt kagg, introduced in this paper as an extension of the work from Górecki
et al. (2015), is most likely the best NAC tree structure estimator we have
at the moment, not only because it is able to retrieve the target structure
more often than other estimators, but also because it is one of the fastest
tree structure estimator there is. The new tree structure estimator based
on supertree methods has failed to beat the kt kagg estimator in our study,
but nonetheless outperforms the one from Segers and Uyttendaele (2014) in
both speed and ability to retrieve the target tree structure. Can we find a
better tree structure estimator than kt kagg? Research on the matter must
continue. Hopefully, this will be facilitated by the framework developed in
the current paper, as well as by the novel way of comparing tree structure
estimators, using the tri-distance introduced in Section 5.

25

References

Olaf RP Bininda-Emonds. The evolution of supertrees. Trends in Ecology
& Evolution, 19(6):315–322, 2004.

J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Incorporated,
2004. ISBN 9780878931774.

Walter M Fitch. Toward defining the course of evolution: minimum change
for a specific tree topology. Systematic Biology, 20(4):406–416, 1971.

Jan Górecki, Marius Hofert, and Martin Holeňa. On the consistency of an
estimator for hierarchical archimedean copulas. 2014.

Jan Górecki, Marius Hofert, and Martin Holeňa. An approach to structure
determination and estimation of hierarchical archimedean copulas and its
application to bayesian classification. Journal of Intelligent Information
Systems, pages 1–39, 2015.

Wassily Hoeffding. A non-parametric test of independence. The Annals of
Mathematical Statistics, pages 546–557, 1948.

M. Hofert and M. Maechler. Nested Archimedean Copulas Meet R: The
nacopula Package. Journal of Statistical Software, 39(9):1–20, 3 2011.
ISSN 1548-7660. Please note the package nacopula has been merged with
the package copula.

Marius Hofert. Efficiently sampling nested Archimedean copulas. Compu-
tational Statistics & Data Analysis, 55(1):57–70, 2011.

Marius Hofert and David Pham. Densities of nested archimedean copulas.
Journal of Multivariate Analysis, 118:37–52, 2013.

Martin Holena, Lukas Bajer, and Martin Scavnicky. Using copulas in data
mining based on the observational calculus.

H. Joe. Multivariate Models and Dependence Concepts. Chapman and Hall,
London, 1997.

A. J. McNeil and J. Nešlehová. Multivariate Archimedean copulas, d-
monotone functions and l1-norm symmetric distributions. The Annals
of Statistics, 37:3059–3097, 2009.

Alexander J. McNeil. Sampling nested Archimedean copulas. Journal
of Statistical Computation and Simulation, 78(6):567–581, 2008. doi:
10.1080/00949650701255834.

Meei Pyng Ng and Nicholas C Wormald. Reconstruction of rooted trees
from subtrees. Discrete Applied Mathematics, 69(1):19–31, 1996.

26

Kevin C Nixon. The parsimony ratchet, a new method for rapid parsimony
analysis. Cladistics, 15(4):407–414, 1999.

O. Okhrin and A. Ristig. Hierarchical Archimedean Copulae: The HAC
Package. Journal of Statistical Software, 58:1–20, 2014.

Ostap Okhrin, Yarema Okhrin, and Wolfgang Schmid. On the structure and
estimation of hierarchical Archimedean copulas. Journal of Econometrics,
173(2):189–204, 2013a. ISSN 0304-4076.

Ostap Okhrin, Yarema Okhrin, and Wolfgang Schmid. Properties of hier-
archical Archimedean copulas. Statistics & Risk Modeling, 30(1):21–54,
2013b.

Liam J. Revell. phytools: An R package for phylogenetic comparative bi-
ology (and other things). Methods in Ecology and Evolution, 3:217–223,
2012.

Mohsen Rezapour. On the construction of nested archimedean copulas for
d-monotone generators. Statistics & Probability Letters, 101:21–32, 2015.

Naruya Saitou and Masatoshi Nei. The neighbor-joining method: a new
method for reconstructing phylogenetic trees. Molecular biology and evo-
lution, 4(4):406–425, 1987.

Johan Segers and Nathan Uyttendaele. Nonparametric estimation of the
tree structure of a nested archimedean copula. Computational Statistics
& Data Analysis, 72:190–204, 2014.

M Shel Swenson, Rahul Suri, C Randal Linder, and Tandy Warnow. Su-
perfine: fast and accurate supertree estimation. Systematic biology, 61(2):
214–227, 2012.

Mark Wilkinson, James A Cotton, Chris Creevey, Oliver Eulenstein, Si-
mon R Harris, Francois-Joseph Lapointe, Claudine Levasseur, James O
Mcinerney, Davide Pisani, and Joseph L Thorley. The shape of supertrees
to come: tree shape related properties of fourteen supertree methods.
Systematic biology, 54(3):419–431, 2005.

27

