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Abstract Ridge estimation (RE) is an alternative method to ordinary least squares (OLS)
estimation when collinearity is detected in a linear regression model. After applying RE, it is
sensible to determine whether such collinearity has been mitigated. The condition number (CN)
is a commonly applied measure to detect the presence of collinearity in econometric models,
but to the best of our knowledge, it has not been extended to be applied after RE. In OLS
estimation, Belsley et al (1980) established that the regressors must be of unit length and not
centered to correctly calculate the CN. This paper reviews this requirement in the context of RE
and presents an expression to calculate the CN in RE.
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1 Introduction

Collinearity has been widely analyzed by econometricians from three research perspectives: ana-
lyzing its consequences, diagnosing its causes and identifying estimation methodologies to address
it. Regarding the consequences of collinearity, many authors have stated that when there is near
collinearity, the results of the estimation are unstable and present inflated variances, covariances,
correlations, and estimated variance, instability in the estimated parameters and problems with
individual significance tests (Farrar and Glauber, 1967; Gunst and Mason, 1977; Marquardt,
1970; Marquardt and Snee, 1975; Silvey, 1969; Willan and Watts, 1978). Given the relevant
consequences of the existence of near collinearity, a good diagnosis will be essential.
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E-mail: jgarcia@ual.es

Catalina Garćıa
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Maŕıa del Mar López
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2 Román Salmerón et al.

Despite its relevance, there is not single and general methodology to diagnose the existence
of collinearity. Commonly applied measures include the Variance Inflation Factor (VIF) (Fox
and Monette, 1992; Garćıa et al, 2015a; Marquardt, 1970; Theil, 1971), the eigenvalues obtained
through the Condition Index (CI) (Belsley, 1982; Belsley et al, 1980), the Condition Number
(CN) (Marshall and Olkin, 1965, 1969; Casella, 1980b; Belsley et al, 1980; Casella, 1980a; Besley,
1991; Lazaridis, 2007), the Variance Decomposition Proportions (VDP), used to analyze the
correlations between different vectors and their angles (Rawlings et al, 1998; Wichers, 1975),
and the biplot method, which when used to visually diagnose collinearity problems is called a
collinearity biplot (Friendly and Kwan, 2009). Another much-discussed issue in the literature
is that there is no statistical test to objectively determine the presence of collinearity but only
‘rules of thumb’. For instance, it is generally accepted that when the VIF is higher than 10, there
is collinearity. Other authors suggest that one should consider collinearity to be present given
VIF values higher than 4. In the case of the CN, it is considered that the collinearity is moderate
for values below 30, high for values between 30 and 100 and unacceptable for values higher than
100. The threshold can vary from author to author. Other collinearity measures, for example the
Red indicator proposed by Kovacs et al (2005), do not even have an established threshold.

Regardless of the indicator used, once near collinearity is detected, it is necessary to select
an appropriate methodology to estimate the model. It is not the goal of this paper to analyze
the best estimation method in presence of collinearity, but ridge estimation (RE) (Hoerl and
Kennard, 1970b,a) is certainly one of the most commonly applied methods. Figure 1 shows
that extending RE to incorporate the CN , and collinearity diagnostic indicators in general,
is motivated by the need to verify that after applying this estimation methodology from an
appropriately chosen k value, the collinearity has been mitigated to a sufficient extent to not be
a problem for the estimation. Thus, the question is, what should one expect in terms of
an appropriately chosen k value? For example, Hoerl et al (1975) proposed a value

of k = pσ̂2

β̂
′

β̂
that has a probability greater than 0.5 of producing estimations with a

smaller mean square error (MSE) than ordinary least squares. However, this choice
does not guarantee that the CN of X′X+kI will be less than the established threshold.
Another example can be found in McDonald (2010), where different criteria for
selecting k are proposed. One of these criteria leads to VIF values higher than 10,
indicating that collinearity has not been mitigated. The same occurs if we apply the
expression proposed by Hoerl et al (1975) to the example of McDonald (2010).

Therefore, if our goal is to mitigate collinearity, we should not only seek to reduce
the MSE but also to select a value of k that produces CN values that are less than
the established threshold. Thus, to avoid that the CN of X′X + kI will be high
after the application of RE, the next step could be to develop criteria to select k

that consider not only the MSE but also collinearity diagnostic measures. Then, a
possible criterion for selecting k could be to select the value of k that presents the
lowest MSE and a CN value lower than the established threshold. Therefore, it is
sensible to extend the CN to be applied after RE.

In this case, while the detection of collinearity after the application of ordinary least squares
(OLS) is a widely discussed problem for which many different indicators (CN, VIF, CI, VDP, Red,
etc.) have been proposed, there are few references regarding the application of these measures
within RE. The extension of these measures to RE requests a special analysis, such as that in
Garćıa et al (2015a), who presented an extension of the VIF to RE by applying the augmented
model proposed by Marquardt (1970). Thus, Garćıa et al (2015a) showed that the expression of
the VIF as traditionally applied in RE does not satisfy the following conditions: decreasing in k,
continuous for k = 0 and always equal to or higher than one. Thus, the diagnosis generated by
the expression traditionally applied in RE can be misleading or even erroneous.
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Transformation of variables and the Condition Number in Ridge Estimation 3

OLS Regression

Y = Xβ + u

β̂ =
(
X′X

)
−1

X′Y

Indicator

Indicator < threshold?

When the parameter k is equal to zero

β̂ = β̂R(k)

Indicator = IndicatorR(k)

Ridge estimation

β̂R(k) =
(
X
′

X + kI
)
−1

X
′

Y

IndicatorR(k) = f(k)

Finish?

IndicatorR(k) < threshold?Finish?

Increasing the value of k

no

yes

yes

no

Fig. 1: Collinearity diagnostic in ridge estimation

Recall that Belsley et al (1980) established that the regressors must be of unit length and
not centered to correctly calculate the CN in OLS. However, by following Belsley et al (1980),
Lazaridis (2007, pp.130) showed that different scenarios for a given model lead to different values
of the CN in OLS. The main goal of this paper is to analyze how different transformations of the
original data (such as the standardization widely applied in data with collinearity or unit length
recommended by Belsley et al (1980) for the calculation of the CN) affect the calculation of the
CN in OLS and RE. In this sense, Belsley et al (1980) highlighted that in OLS, “the
general problem of optimal scaling-column scaling that results in a data matrix X
with minimal condition number k(X) remains unsolved. However, scaling for equal
column lengths (which our unit column length is but a simple means for effecting)
has known near-optimal properties in this regard (pp. 184).” It is also is important to
recognize that when RE is applied, the matrix X′X is transformed into X′X+ kI, and then the
transformations performed on the matrix X′X are not retained in the matrix X′X+ kI.

Finally, although the most widely applied measure to detect collinearity is the VIF, its ap-
plication is not always possible. For example, this is the case when any of the independent
variables is qualitative because of the problems generated in the coefficient of determination of
the auxiliary regression. Another example could be a moderated regression when the
interaction term is obtained from a dichotomous variable. Furthermore, the VIF is
not robust to the presence of high leverage points (outliers) and can be affected by
the sample size (the coefficient of determination and the size of the data tend to
be inversely related, such that with a small number of observations, it is easy to
obtain a high coefficient of determination). Furthermore, taking into account the
expression for the estimated variance of the estimated parameters, high VIF values
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4 Román Salmerón et al.

might not imply high estimated variance because it can be countered by the ratio
of the variance of the error terms divided by the variation in the respective inde-
pendent variable. In these cases, an alternative is the CN. For this reason, this paper
focuses on the CN, presenting two expressions to extend it to RE and analyzing its properties.
The structure of the paper is as follows: Section 2 presents the CN in OLS, while Sections 3
and 4 show, under different assumptions for the matrix of the augmented model proposed by
Marquardt (1970), two extensions of the CN to RE. The results are illustrated with an empirical
application presented in Section 5. Finally, section 6 provides the main conclusions.

2 The Condition Number in OLS

Given the linear regression model
y = Xβ + u, (1)

where the well-known basic hypotheses are verified and the dimension of the matrix X =
(X1 . . .Xm) is n×m (n > m), where Xj is n× 1 with j = 1, . . . ,m, and the condition number
is defined, following Belsley et al (1980); Rawlings et al (1998), as follows:

K(X) =
µmax

µmin

, (2)

where µj are the singular values of the matrix X with j = 1, ...,m. It is known that K(X) ≥ 1.
If the columns of X are orthogonal, then K(X) = 1, which means that this is the lower bound
and K(X) tends to infinity in the case of perfect multicollinearity; see Lazaridis (2007).

Since the eigenvalues of the matrix X′X, λj , with j = 1, ...,m, coincide1 with the square of
singular values of matrix X, that is µ2

j = λj , it is possible to define the condition number with
the following expression:

K(X) =

√
λmax

λmin

. (3)

Belsley et al (1980) stated that values of K(X) lower than 20 imply light collinearity, values be-
tween 20 and 30 imply moderate collinearity, and values higher than 30 imply strong collinearity.

In addition, Belsley et al (1980) established that the regressors must be of unit length and not
centered. Based on this statement, we derive the following considerations are presented:

a) It is not clear that the data should not be centered. Belsley (1984) argues that mean-centering
typically masks the role of the constant term in any underlying near dependencies. In contrast,
Marquardt (1980) states that centering observations removes the nonessential ill conditioning.
Further, we can suppose that the data are centered if we do not wish to study the influence
of the independent term.

b) What does it mean that the data should have unit length? Belsley et al (1980), page 120,
argued that having unit length is similar to transforming the cross-products matrix X′X into
a correlation matrix, except that the mean zero property is not needed. This is to say that
each variable should be divided by its standard deviation multiplied by the square root of
the number of observations. However, Draper and Smith (1998) and Greene (1993) held that
the unit length should be obtained by dividing each variable by its length, it is to say, by the
square root of the sum of every element squared.

1 The singular value decomposition of X is X = UDV
′ where U

′
U = I = V

′
V. Thus, the matrix X

′
X =

VDU
′
UDV

′ = VD
2
V
′.
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Transformation of variables and the Condition Number in Ridge Estimation 5

Regarding the first question, we should highlight that the decision of whether to center the
data is not a minor question. In fact, Garćıa et al (2015b) showed that the values of the CN
in OLS are different and that transforming the data can lead to different conclusions about
the existence of collinearity. These authors recommended centering the data, and the present
paper will review this recommendation. Regarding the definition of the term ’unit length,’ this
paper will consider the definitions of Belsley et al (1980) and Draper and Smith (1998) and an
additional transformation, namely, dividing every variable by its standard deviation. Thus, the
extensions to RE proposed in the following sections are performed under the following scenarios:

S.1) original uncentered data.
S.2) original centered data.
S.3) original uncentered data divided by their standard deviation.
S.4) original centered data divided by their standard deviation (typified data2).
S.5) original data divided by their standard deviation multiplied by the square root of the number

of observations.
S.6) original centered data divided by their standard deviation multiplied by the square root of

the number of observations (standardized data3).
S.7) original uncentered data divided by the square root of the sum of every variable squared

(we will consider this transformation to be the unit length).
S.8) original centered data divided by the square root of the sum of every variable squared4.

From an algebraic perspective, it has not considered the first column of ones (intercept) in matrix
X because of the following:

– When the variables are centered, the intercept is lost and the first column of the resulting
matrix X contains zeros. Then, one of the eigenvalues will be zero, and consequently, the
condition number will be infinite. For this reason, in scenarios S.2, S.4, S.6 and S.8, it is not
possible to consider the intercept in matrix X.

– If there is an intercept, it is not possible to divide by its variance because the latter is zero. For
this reason, in situations S.3, S.4, S.5, S.6 and S.8, it is not possible to include the intercept
in matrix X.

However, from an econometric perspective, it is possible to contemplate the existence of an
intercept in scenarios S.1 and S.7. Thus, two additional scenarios are considered:

S.9) original uncentered data (S.1), where X contents an intercept.
S.10) original uncentered data divided by the square root of the sum of every variable squared

(S.7), where X contains an intercept.

Finally, to illustrate the influence of the transformation of the data on the calculation of the
CN, we calculate it in OLS for the above scenarios and for the following sets of data previously
considered in the literature:

Data 1: 14 observations with 365 days of aging (see Alkhamisi and MacNeill (2015)).
Data 2: 10 observations of the percentage of GNP spent on total national research and develop-

ment expenditures by country from 1972 to 1986 (see Alkhamisi and MacNeill (2015)).

2 If the data are typified, their mean is zero, variance is equal to 1 and the cross products matrix is equal to
the correlation matrix multiplied by the number of observations.

3 If the data are standardized, their mean is zero, variance is equal to 1 divided by the number of observations
and the the cross products matrix is equal to the correlation matrix.

4 Note that if data are centered, this transformation coincides with standardization since
n∑

i=1
x2
ij =

n
(
V ar(Xj)−Xj

)
= n · V ar(Xj) for j = 1, . . . ,m.
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6 Román Salmerón et al.

Data 1 Data 2 Data 3 Data 4 Data 5
S.1 21.05 93.68 57.509 12235103125.707 29931285.78
S.2 52.15 12.33 5.25 10799690757.19 10968511.56
S.3 10.25 171.74 41.09 3109.65 3109.65
S.4 42.67 12.1 3.209 7085.38 7085.38
S.5 10.25 171.74 41.09 3109.65 3109.65
S.6 42.67 12.1 3.209 7085.38 7085.38
S.7 9.602 86.08 25.506 1590.76 1590.76
S.8 42.67 12.1 3.209 7085.38 7085.38
S.9 608.08 410.03 1811.52 87917026016.11 21854820807.84
S.10 251.901 232.32 50.09 92055.89 92055.89

Table 1: Calculation of the CN in OLS for different data sets

Data 3: 21 observations of the oxidation of ammonia to nitric acid (see Alkhamisi and MacNeill
(2015)).

Data 4: 16 observations of the percentage of the conversion of n-heptane to acetylene (see Macedo
(2015)).

Data 5: The above data set but after modifying the scale of one of the independent variables by
multiplying it by 10,000 (see Macedo (2015)).

From Table 1 it is possible to conclude the following:

– In the first three data sets, whether one concludes that collinearity exists changes depending
on the scenario considered given the decision threshold of CN> 30.

– The results from all of data sets show the number of condition matches for situations S.3 and
S.5 and for situations S.4 and S.6 (recall that S.6 and S.8 coincide in this case). This will be
shown in Appendix A.

– From data sets 4 and 5, if the data are not transformed (scenarios S.1, S.2 and S.9), then the
CN is affected by the changes in scale. Thus, as stated by Stewart (1987), the remedy for this

problem is to adopt a standard scaling of the columns before computing the condition number,

but what the standard should be is by no means clear.

Then, it seems evident that the transformation of the data is necessary, but it is unclear which
transformation is more appropriate. Answering this question for RE is the main goal of this
paper.

3 Condition Number in Ridge Estimation: extension 1

The augmented model proposed by Marquardt (1970) allows us to know the columns of matrix
X associated with matrix X′X+kI, thereby making it feasible to transform this matrix. For this
reason, to extend the CN to be applied in RE, we begin with the augmented model given by

yR = XRβ + uR, (4)

where XR
(n+m)×m

=

(
X√
kIm

)
and Y(n+m)×1 =

(
Y
0m

)
, with Im being the identity matrix of

order m and 0m a zero vector with m rows.

By denoting the CN in the RE as K(XR, k) it can be obtained as follows:

K(XR, k) =

√
δmax

δmin

, (5)
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Transformation of variables and the Condition Number in Ridge Estimation 7

k

K
(
XR, k

)

K(X)

1

•

Fig. 2: The continuity, monotony and limit of the condition number

where δj , j = 1, . . . ,m, are the eigenvalues of the matrix (XR)′XR. Since (XR)′XR = X′X+ kI
and from the diagonalization X′X = QDλj

Q′, where Dλj
is a diagonal matrix of eigenvalues and

Q is orthogonal (QQ′ = I), it is verified that X′X+ kI = QDλj
Q′ + kQQ′ = Q(Dλj

+ kI)Q′.
Thus, we obtain that δj = λj + k. Consequently, the CN in RE is given by

K(XR, k) =

√
λmax + k

λmin + k
. (6)

It is easy to show that K(XR, k) ≤ K(X) for all k. Furthermore, Appendix B shows that
K(XR, k) is decreasing in k, continuous for k = 0 (that is to say that it coincides with the CN
obtained in OLS) and always equal to or higher than 1. From these properties, it is clear that
K(XR, k) will present a representation similar to Figure 2.

Taking into account the scenarios established in section 2, it is possible to distinguish the following
situations:

1) Scenario S.1 for X, then expression (6) will be denoted as KU (X
R, k).

2) Scenario S.2 for X, then expression (6) will be denoted as KC(X
R, k).

3) Scenario S.3 for X, then expression (6) will be denoted as KUT (X
R, k).

4) Scenario S.4 for X, then expression (6) will be denoted as KT (X
R, k).

5) Scenario S.5 for X, then expression (6) will be denoted as KUS(X
R, k).

6) Scenario S.6 for X, then expression (6) will be denoted as KS(X
R, k).

7) Scenario S.7 for X, then expression (6) will be denoted as KUL(X
R, k).

8) Scenario S.8 for X, then expression (6) will be denoted as KCUL(X
R, k).

9) Scenario S.9 for X, then expression (6) will be denoted as KUit(X
R, k).

10) Scenario S.10 for X, then expression (6) will be denoted as KULit(X
R, k).

4 Condition Number in Ridge Estimation: extension 2

Although the previously presented extension verifies the properties highlighted in the introduc-

tion (continuity, monotony and being equal to or higher than one), the matrix XR =

(
X√
kIm

)

does not have vectors of unit length. Therefore, this section proposes an alternative extension
for calculating the CN in RE, distinguishing the same ten scenarios.
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8 Román Salmerón et al.

4.1 Centered or uncentered variables

Beginning with the matrix X in S.1 or S.2, we will encounter a problem because the matrix

XR =

(
X√
kIm

)
is not in S.1 or S.2. Then, we argue that to correctly extend the CN to RE, the

matrix XR has to be in S.1 (uncentered columns) or S.2 (centered columns).

Scenario 1

If X is in S.1, then XR =

(
X√
kIm

)
is in S.1, and hence, the CN in RE will be obtained from

the eigenvalues
(
XR

)′
XR = X′X+ kI. Thus, the resulting eigenvalues should coincide with the

eigenvalues obtained from KU (X
R, k).

Scenario 2

However, if X is not in S.2, we should transform it in the following way:

X̃C = X− iX =




X11 −X1 · · · X1m −Xm

...
. . .

...
Xn1 −X1 · · · Xnm −Xm


 , i =




1
...
1




n×1

, X =
(
X1 . . . Xm

)
1×m

.

However, XR
C =

(
X̃C√
kIm

)
is not in S.2, and the following transformation is needed xR

C =

XR
C − iRX

R

C . Then,
5:

(
xR
C

)′
xR
C =

(
XR

C − iRX
R

C

)′ (
XR

C − iRX
R

C

)
= X̃′

CX̃C + kIm −
k

n+m
Π

= X′X+ kIm − nX
′
X− k

n+m
Π, (7)

where:

iR(n+m)×1 =




1
...
1


 , X

R

C = i′
√
k

n+m
, Π =




1 · · · 1
...
. . .

...
1 · · · 1




m×m

.

Expression (7) allows us to define the CN associated with matrix xR
C , which we will denote as

KC(x
R, k). Note that there is not a closed expression, but it is easily programmable.

4.2 Typified variables

When transforming matrix X in S.3 or S.4, that is,

X̃UT = X ·Ω =




X11√
V ar(X1)

· · · X1m√
V ar(Xm)

...
. . .

...
Xn1√

V ar(X1)
· · · Xnm√

V ar(Xm)


 , Ω =




1√
V ar(X1)

. . . 0

...
. . .

...
0 . . . 1√

V ar(Xm)


 ,

5 If XR =

(
X̃√
kIm

)
where the variables in X̃ have zero mean, and thus, X

R
j =

√
k

n+m
for j = 1, . . . ,m.
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Transformation of variables and the Condition Number in Ridge Estimation 9

or

X̃T =
(
X− iX

)
·Ω = X̃C ·Ω =




X11−X1√
V ar(X1)

· · · X1m−Xm√
V ar(Xm)

...
. . .

...
Xn1−X1√
V ar(X1)

· · · Xnm−Xm√
V ar(Xm)


 ,

we will encounter a problem because matrix XR =

(
X̃√
kIm

)
is not in S.3 (uncentered columns)

or S.4 (centered columns) and the CN will not be correctly extended to RE.

Scenario 3

Beginning from matrix X̃ in S.3 (the variance of each column is 1), to obtain that XR is in S.3,
the following transformation is required xR

UT = XR
UT ·ΩUT , where:

XR
UT =

(
X̃UT√
kIm

)
,

ΩUT =




1√
V ar(XR

1,UT )
0 . . . 0

0 1√
V ar(XR

2,UT )
. . . 0

...
...

. . .
...

0 0 . . . 1√
V ar(XR

m,UT )




,

where XR
j,UT is the j-th column of XR

UT and j = 1, . . . ,m. In this case:

(
xR
UT

)′
xR
UT = ΩUT ·

(
XR

UT

)′
XR

UT ·ΩUT = ΩUT ·
(
X̃′

UT X̃UT + kIm

)
·ΩUT

= ΩUT · (ΩX′XΩ + kIm) ·ΩUT . (8)

Scenario 4

When beginning from matrix X̃ in S.4 (the mean and variance of each column are zero and
one, respectively), to obtain that XR is in S.4, the following transformation is required: xR

T =(
XR

T − iRX
R

T

)
·ΩT , where

6:

XR
T =

(
X̃T√
kIm

)
, X

R

T = i′
√
k

n+m
, ΩT =

(√
n(n+m) + (n+m− 1) · k

(n+m)2

)−1

· Im.

In this case,

(
xR
T

)′
xR
T = ΩT

(
XR

T − iRX
R

T

)′ (
XR

T − iRX
R

T

)
·ΩT

= ΩT

(
Ω

(
X′X− nX

′
X
)
Ω + kIm −

k

n+m
Π

)
ΩT . (9)

6 If XR =

(
X̃√
kIm

)
, where the variables contained in X̃ have zero mean and variance equal to one, and it is

verified that X
R
j =

√
k

n+m
and V ar

(
XR

j

)
=

n(n+m)+(n+m−1)k

(n+m)2
for j = 1, . . . ,m (see Appendix C).
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10 Román Salmerón et al.

Expressions (8) and (9) allow us to define the CN associated with matrix xR
UT or xR

T , which we
will denote asKUT (x

R, k) and KT (x
R, k), respectively. Note that there is not a closed expression,

but it is easily programmable.

4.3 Standardized variables

By transforming matrix X in S.5 or S.6, we obtain the following:

X̃US =
1√
n
·X ·Ω =

1√
n
X̃UT




X11√
n·V ar(X1)

· · · X1m√
n·V ar(Xm)

...
. . .

...
Xn1√

n·V ar(X1)
· · · Xnm√

n·V ar(Xm)


 ,

or

X̃S =
1√
n
·
(
X− iX

)
·Ω =

1√
n
· X̃C ·Ω =

1√
n
· X̃T =




X11−X1√
n·V ar(X1)

· · · X1m−Xm√
n·V ar(Xm)

...
. . .

...
Xn1−X1√
n·V ar(X1)

· · · Xnm−Xm√
n·V ar(Xm)


 ,

we will encounter a problem because matrix XR =

(
X̃√
kIm

)
is not in S.5 (uncentered columns)

or S.6 (centered columns), and the CN will not be correctly extended to RE.

Scenario 5

Beginning from matrix X̃ in S.5 (the variance of each column is 1
n
), to obtain that XR is in S.5,

the following transformation is required xR
US = XR

US ·ΩUS , where:

XR
US =

(
X̃US√
kIm

)
,

ΩUS =
1√

n+m
·ΩUT =




1√
(n+m)·V ar(XR

1,US)
0 . . . 0

0 1√
(n+m)·V ar(XR

2,US)
. . . 0

...
...

. . .
...

0 0 . . . 1√
(n+m)·V ar(XR

m,US)




,

where XR
j,US is the j-the column of XR

US with j = 1, . . . ,m. In this case,

(
xR
US

)′
xR
US = ΩUS ·

(
XR

US

)′
XR

US ·ΩUS = ΩUS ·
(
X̃′

USX̃US + kI
)
·ΩUS

= ΩUS ·
(
1

n
ΩX′XΩ + kI

)
·ΩUS

=
1

n+m
ΩUT ·

(
1

n
ΩX′XΩ + kI

)
·ΩUT . (10)
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Transformation of variables and the Condition Number in Ridge Estimation 11

Scenario 6

However, beginning from matrix X̃ in S.6 (the mean and variance of each column is zero and
1
n
, respectively), to obtain that XR is in S.6, the following transformation is required xR

S =(
XR

S − iRX
R

S

)
·ΩS , where:

7:

XR
S =

(
X̃S√
kIm

)
X

R

S = i′
√
k

n+m
, ΩS =

(√
(n+m) + (n+m− 1) · k

n+m

)−1

· Im.

In this case,

(
xR
S

)′
xR
S = ΩS

(
XR

S − iRX
R

S

)′ (
XR

S − iRX
R

S

)
·ΩS

= ΩS

(
1

n
Ω

(
X′X− nX

′
X
)
Ω + kIm −

k

n+m
Π

)
ΩS . (11)

Then, expressions (10) and (11) allow us to define the CN associated with matrix xR
US or xR

S ,
which we will denote as KUS(x

R, k) and KS(x
R, k), respectively. Note that there is not a closed

expression, but it is easily programmable.

4.4 Unit length variables

Scenario 7

In this section, we assume that XR =

(
X√
kIm

)
allows X to be is in S.7. In the case in which X

is not in S.7, it should be transformed in the following way:

X̃UL = X ·ΩUL, ΩUL =




1
||X1|| · · · 0
...

. . .
...

0 · · · 1
||Xm||


 ,

where ||Xj || =
√

n∑
i=1

X2
ij with j = 1, . . . ,m. That is to say, X̃j,UL =

Xj

||Xj || such that ||X̃j,UL|| = 1.

However, XR
UL =

(
X̃UL√
kIm

)
is not in S.7, and to have XR be in S.7, the following transformation

is required: xR
UL = XR

ULΩ
R
UL, where

Ω
R
UL =




1
||XR

1,UL
|| · · · 0

...
. . .

...
0 · · · 1

||XR
m,UL

||


 ,

7 If XR =

(
X̃√
kIm

)
, where the variables contained in X̃ present zero mean and variance equal to 1

n
, and it is

verified that X
R
j =

√
k

n+m
y V ar

(
XR

j

)
=

(n+m)+(n+m−1)k

(n+m)2
for j = 1, . . . ,m (see Appendix C).
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12 Román Salmerón et al.

being XR
j,UL the j-th column of XR

UL with j = 1, . . . ,m and with ||XR
j,UL|| =

√
n∑

i=1

X̃2
ij,UL + k =

√
||X̃j,UL||2 + k =

√
1 + k for j = 1, . . . ,m.

In this case,

(
xR
UL

)′
xR
UL =

(
Ω

R
UL

)′ (
XR

UL

)′
XR

ULΩ
R
UL = Ω

R
UL

(
X̃′

ULX̃UL + kIm

)
Ω

R
UL

= Ω
R
UL (ΩULX

′XΩUL + kIm)ΩR
UL. (12)

Expression (12) allows us to define the CN associated with matrix xR
UL, which we will denote

as KUL(x
R, k). Note that, similar to the cases above, there is not a closed expression, but it is

easily programmable.

Scenario 8

Now, we will see that if matrix X is centered, this transformation (scenario S.8) coincides with
scenario S.6. Indeed, Appendix D shows that working with centered data, the transformation

X̃CUL =
(
X− iX

)
ΩCUL, ΩCUL =




1
||X1|| · · · 0
...

. . .
...

0 · · · 1
||Xm||


 ,

is inadequate since the columns of matrix X̃CUL do not have length equal to 1. In that case, the
correct transformation will be given by

X̃CUL =
(
X− iX

)
ΩCUL = X̃CΩCUL, ΩCUL =




1

||X̃1,C || · · · 0

...
. . .

...
0 · · · 1

||X̃m,C ||


 ,

where X̃j,C is the j-th column of X̃C with j = 1, . . . ,m. That is to say,

||X̃j,C ||2 =
n∑

i=1

X̃2
ij,C =

n∑

i=1

(
Xij −Xj

)2
= n · V ar (Xj) , j = 1, . . . ,m,

and then ΩCUL = 1√
n
Ω.

However, again, XR
CUL =

(
X̃CUL√
kIm

)
is not in S.8, and the following transformation is required:

xR
CUL =

(
XR

CUL − iRX
R

CUL

)
Ω

R
CUL = X̃R

CΩCUL, where

X
R

CUL = i′
√
k

n+m
, Ω

R
CUL =




1

||X̃1,C || · · · 0

...
. . .

...
0 · · · 1

||X̃m,C ||


 ,
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Transformation of variables and the Condition Number in Ridge Estimation 13

Table 2: VIF values in ridge regression for X1, X2 and X3

k X1 X2 X3 k X1 X2 X3

0 154.948757 37.268158 222.814314 0 154.9488 37.2682 222.8143
0.01 39.399287 21.955079 49.459193 0.1 6.7362 6.1326 7.0842
0.02 24.114188 16.601705 28.446546 0.2 3.8902 3.713 3.9924
0.03 17.718249 13.469864 20.168229 0.3 2.8876 2.802 2.937
0.04 14.135007 11.385386 15.720666 0.4 2.3768 2.3257 2.4063
0.05 11.824723 9.892666 12.938903 0.5 2.0684 2.034 2.0882
0.06 10.204944 8.769506 11.032729 0.6 1.8626 1.8377 1.8769
0.07 9.003767 7.893256 9.644171 0.7 1.716 1.6971 1.7269
0.08 8.076331 7.190354 8.587250 0.8 1.6067 1.5918 1.6153
0.09 7.338069 6.613907 7.755671 0.9 1.5223 1.5101 1.5293
0.1 6.736164 6.132574 7.084235 1 1.4553 1.4452 1.4611

and where X̃R
j,C is the j-th column of X̃R

C with j = 1, . . . ,m. That is (see Appendix C),

||X̃R
j,C ||2 =

n+m∑

i=1

(
X̃R

ij,C

)2

=
n+m∑

i=1

(
XR

ij −X
R

j

)2

= (n+m) · V ar
(
XR

S,j

)
=

(n+m) + (n+m− 1)k

n+m
, j = 1, . . . ,m,

and then Ω
R
CUL = ΩS .

In that case,

(
xR
CUL

)′
xR
CUL = Ω

R
CUL

(
ΩCUL

(
X′X− nX

′
X
)
ΩCUL − kIm −

k

n+m
Π

)
Ω

R
CUL

= ΩS

(
1

n
Ω

(
X′X− nX

′
X
)
Ω − kIm −

k

n+m
Π

)
ΩS =

(
xR
S

)′
xR
S .

5 Empirical application

To illustrate the contribution of this paper, we analyze the data collected by Wissel (2009)
but extend the sample with data from 1995 to 2011 obtained from Economic reports of the
President Economic reports of the President (2011). The variables considered are mortgage debt
outstanding (in trillions of dollars),Y, personal consumption (in trillions of dollars),X1, personal
income (in trillions of dollars), X2, and consumer credit outstanding (in trillions of dollars), X3.
This data set was previously analyzed by Salmerón et al (2016) via RE, which yielded the VIF
values reported in Table 2. Note that the VIF value obtained via OLS (k = 0) is always higher
than 10, indicating the presence of collinearity.
Table 3 shows the CN in OLS obtained from expression (3) from data in scenarios S.1-S.10. Note
that different transformations of the original data lead to different CN values, and in all cases,
the values are higher than 30, which is the threshold above which the model is considered to
exhibit severe collinearity. Indeed, as anticipated, the results for scenarios S.3 and S.5 coincide,
as do the results for scenarios S.4, S.6 and S.8.
We present the CN values in RE from extensions 1 (see section 3) and 2 (see section 4) for
different values of k in Tables 4 and 5, respectively. We can establish the following:

– The CN also provides different values in RE in scenarios S.1-S.10. Consequently, we can affirm
that different transformations of the data lead to different conclusions regarding whether
collinearity has been mitigated.
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14 Román Salmerón et al.

Table 3: CN values in OLS from data in scenarios S.1-S.10

Scenario S.1 S.2 S.3 S.4 S.5
CN 5942.57595218 5609.76501621 75.16946674 33.19428616 75.16946674

Scenario S.6 S.7 S.8 S.9 S.10
CN 33.19428616 60.09226704 33.19428616 87249657.88750964 233.88678067

– In scenarios S.1, S.2 and S.9, the results are excessively high and inconsistent. For k = 1, it
is established that there is a high degree of collinearity.

– For scenarios S.3 and S.4, the CN decreases slowly, while for S.5, S.6, S.7, S.8 and S.10 it
decreases substantially more rapidly.

– For extension 1, the CN in RE is always continuous for k = 0. For extension 2, it is also
continuous for k = 0 except in S.3 and S.5.

– The CN is always decreasing in k and higher than 1.
– In OLS, the CN coincides in scenarios S.4, S.6 and S.8, while in RE it coincides in scenarios

S.6 and S.8.
– Establishing 20 as the threshold above which collinearity is a concern, we conclude the fol-

lowing:
– In scenarios S.1, S.2, S.3 and S.9, collinearity is not mitigated for the considered values

of k (the CN is always higher than 30).
– In scenario S.5, the CN is lower than 20 for k > 0.2.
– In scenario S.4, the CN is lower than 20 for k ≥ 0.08.
– In scenarios S.6, S.7, S.8 and S.10, the CN is lower than 20 for k ≥ 0.01.
If we compare these conclusions with those obtained from the VIF in Table 2, and because the
collinearity is mitigated for values of the V IF < 10 (which is the case for values of k ≥ 0.07),
we conclude that the results are consistent only in scenario S.4.

From these considerations, we recommend calculating the CN in RE based on scenario S.4, that
is, from typified data (taking the mean values of the original data and dividing them by the
standard deviation). Thus, the CN in OLS should also be calculated is the same way. In this
case, the recommendation of Belsley et al (1980) should not be followed: having unit length is
similar to transforming the cross-products matrix X′X into a correlation matrix, except that
the mean zero property is not needed (scenario S.5). Note that in this case, the results will be
consistent with those obtained from the VIF with the threshold VIF< 4.
Table 6 reports the difference between the values obtained for the CN in extensions 1 and 2 in
each proposed scenario. Note the following:

– The two extensions nearly coincide in scenarios S.1, S.7, S.9 and S.10 (there is a difference of
less than 10−7).

– Both extensions present values that are very similar in scenarios S.2 and S.4 (there is a
difference of less than 10−3) and in S.6 and S.8 (there is a difference of less than 10−2).

– The two extensions present different values for scenarios S.3 and S.5.

To confirm these findings, we offer a simulation analysis for the following matrix in scenarios S.1
to S.10:

X = [Z1, Z1 + γ ·W] , X = [Z1, Z2, Z1 + Z2 + γ ·W] ,

X = [Z1, Z2, Z3, Z1 + Z2 + Z3 + γ ·W] ,

where Zi, i = 1, 2, 3, and W have been independently generated from a normally typified matrix;
that is, we consider matrices with 2, 3 and 4 independent variables with different degrees of linear
relationships as a function of the parameter γ. We have considered the following:

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



Transformation of variables and the Condition Number in Ridge Estimation 15

Table 4: Values of CN in RE from extension 1 and data in scenarios S.1-S.10

k KU (XR, k) KC(XR, k) KUT (XR, k) KT (XR, k) KUS(X
R, k)

0 5942.57595218 5609.76501621 75.16946674 33.19428616 75.16946674
0.1 5942.57580567 5609.76288895 64.05068737 18.25046713 28.34847761
0.2 5942.57565916 5609.76076170 56.74835869 14.01895889 20.80880563
0.3 5942.57551265 5609.75863446 51.48335761 11.81344632 17.22026098
0.4 5942.57536614 5609.75650721 47.45615300 10.40645118 15.01966267
0.5 5942.57521964 5609.75437997 44.24716843 9.40966605 13.49489584
0.6 5942.57507313 5609.75225273 41.61226706 8.65629049 12.35870496
0.7 5942.57492662 5609.75012549 39.39846174 8.06124049 11.47003716
0.8 5942.57478011 5609.74799826 37.50436341 7.57597326 10.75046568
0.9 5942.57463360 56097.4587102 35.85976659 7.17050835 10.15244992
1 5942.57448710 5609.74374379 34.41431134 6.82519811 9.64527315

k KS(X
R, k) KUL(X

R, k) KCUL(X
R, k) KUit(X

R, k) KULit(X
R, k)

0 33.19428616 60.09226704 33.19428616 87249657.88750964 233.88678067
0.1 5.47164817 5.53831084 5.47164817 25585350.55549748 6.37231440
0.2 3.95754764 3.98718809 3.95754764 18493513.77817653 4.56183814
0.3 3.28913038 3.30839233 3.28913038 15214243.27781145 3.76941719
0.4 2.89486438 2.90933595 2.89486438 13226288.51196591 3.30257135
0.5 2.62909088 2.64080648 2.62909088 11857231.28391437 2.98761930
0.6 2.43540130 2.44531983 2.43540130 10840819.35944916 2.75772559
0.7 2.28679508 2.29544341 2.28679508 10047734.50294692 2.58100163
0.8 2.16853196 2.17623071 2.16853196 9406595.12800260 2.44006913
0.9 2.07180330 2.07876240 2.07180330 8874355.41049992 2.32455247
1 1.99098430 1.99734895 1.99098430 8423311.00126480 2.22782891

k KU (XR, k) KC(XR, k) KUT (XR, k) KT (XR, k) KUS(X
R, k)

0 5942.57595218 5609.76501621 75.16946674 33.19428616 75.16946674
0.01 5942.57593753 5609.76480348 73.79014391 29.91512663 59.35826733
0.02 5942.57592288 5609.76459076 72.48408367 27.44927546 50.59592564
0.03 5942.57590822 5609.76437803 71.24502226 25.50805913 44.83688777
0.04 5942.57589357 5609.76416531 70.06742088 23.92849097 40.68276961
0.05 5942.57587892 5609.76395258 68.94636128 22.61066650 37.50436341
0.06 5942.57586427 5609.76373986 67.87745917 21.48948698 34.97121496
0.07 5942.57584962 5609.76352713 66.85679187 20.52047573 32.89093934
0.08 5942.57583497 5609.76331440 65.88083770 19.67207403 31.14293085
0.09 5942.57582032 5609.76310168 64.94642473 18.92118581 29.64723577
0.1 5942.57580567 5609.76288895 64.05068737 18.25046713 28.34847761

k KS(X
R, k) KUL(X

R, k) KCUL(X
R, k) KUit(X

R, k) KULit(X
R, k)

0 33.19428616 60.09226704 33.19428616 87249657.88750964 233.88678067
0.01 15.33044156 16.65203518 15.33044156 60746880.67926855 19.86201719
0.02 11.48597416 12.02671221 11.48597416 49349444.05888925 14.08758600
0.03 9.58583554 9.90193716 9.58583554 42630764.91315606 11.52382919
0.04 8.40254741 8.61851209 8.40254741 38072980.07538167 9.99542679
0.05 7.57597326 7.73705117 7.57597326 34721075.27531780 8.95295873
0.06 6.95707226 7.08415797 6.95707226 32122619.62489100 8.18405792
0.07 6.47153515 6.57579191 6.47153515 30031958.63986814 7.58702885
0.08 6.07762206 6.16563442 6.07762206 28302685.60632128 7.10626687
0.09 5.74984578 5.82578676 5.74984578 26841402.82737018 6.70846934
0.1 5.47164817 5.53831084 5.47164817 25585350.55549748 6.37231440
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Table 5: Values of CN in RE from extension 2 and data in scenarios S.1-S.10

k KU (xR, k) KC(xR, k) KUT (xR, k) KT (xR, k) KUS(x
R, k)

0 5942.57595218 5609.76501621 61.52013310 33.19428616 61.52013310
0.1 5942.57580567 5609.76300686 52.35231857 18.24759858 23.27996638
0.2 5942.57565916 5609.76099752 46.37328099 14.01455992 17.34775137
0.3 5942.57551265 5609.75898817 42.06955841 11.80789664 14.70218266
0.4 5942.57536614 5609.75697883 38.78179575 10.39994565 13.15178250
0.5 5942.57521964 5609.75496950 36.16503228 9.40232755 12.07006872
0.6 5942.57507313 5609.75296016 34.01882866 8.64820536 11.23871754
0.7 5942.57492662 5609.75095083 32.21768889 8.05247364 10.56553411
0.8 5942.57478011 5609.74894150 30.67849460 7.56657577 10.00266999
0.9 5942.57463360 5609.74693217 29.34371999 7.16052176 9.52151901
1 5942.57448710 5609.74492284 28.17211789 6.81465712 9.10337373

k KS(x
R, k) KUL(x

R, k) KCUL(x
R, k) KUit(x

R, k) KULit(x
R, k)

0 33.19428616 60.09226704 33.19428616 87249657.88750964 233.88678067
0.1 5.45828586 5.53831084 5.45828586 25585350.55549821 6.37231440
0.2 3.93880510 3.98718809 3.93880510 18493513.77817661 4.56183814
0.3 3.26645371 3.30839233 3.26645371 15214243.27781127 3.76941719
0.4 2.86901519 2.90933595 2.86901519 13226288.51196609 3.30257135
0.5 2.60056281 2.64080648 2.60056281 11857231.28391432 2.98761930
0.6 2.40454854 2.44531983 2.40454854 10840819.35944930 2.75772559
0.7 2.25388778 2.29544341 2.25388778 10047734.50294686 2.58100163
0.8 2.13378475 2.17623071 2.13378475 9406595.12800262 2.44006913
0.9 2.03539171 2.07876240 2.03539171 8874355.41050002 2.32455247
1 1.95305509 1.99734895 1.95305509 8423311.00126478 2.22782891

k KU (xR, k) KC(xR, k) KUT (xR, k) KT (xR, k) KUS(x
R, k)

0 5942.57595218 56097.6501621 61.52013310 33.19428616 61.52013310
0.01 5942.57593753 56097.6481527 60.35997779 29.91465600 48.50884067
0.02 5942.57592287 56097.6461434 59.28058218 27.44841176 41.34474191
0.03 5942.57590822 56097.6441340 58.25956994 25.50685524 36.64569279
0.04 5942.57589357 56097.6421247 57.29071241 23.92698531 33.26234083
0.05 5942.57587892 56097.6401153 56.36931403 22.60888827 30.67849460
0.06 5942.57586427 56097.6381060 55.49143704 21.48745917 28.62332213
0.07 5942.57584962 56097.6360966 54.65366073 20.51821694 26.93926130
0.08 5942.57583497 56097.6340873 53.85296454 19.66959965 25.52759643
0.09 5942.57582032 56097.6320780 53.08665579 18.91850880 24.32292279
0.1 5942.57580567 56097.6300686 52.35231857 18.24759858 23.27996638

k KS(x
R, k) KUL(x

R, k) KCUL(x
R, k) KUit(x

R, k) KULit(x
R, k)

0 33.19428616 60.09226704 33.19428616 87249657.88750964 233.88678067
0.01 15.32659029 16.65203518 15.32659029 60746880.67926394 19.86201719
0.02 11.48022083 12.02671221 11.48022083 49349444.05888682 14.08758600
0.03 9.57865585 9.90193716 9.57865585 42630764.91315262 11.52382919
0.04 8.39418270 8.61851209 8.39418270 38072980.07537316 9.99542679
0.05 7.56657577 7.73705117 7.56657577 34721075.27531861 8.95295873
0.06 6.94674923 7.08415797 6.94674923 32122619.62489043 8.18405792
0.07 6.46036747 6.57579191 6.46036747 30031958.63986744 7.58702885
0.08 6.06567357 6.16563442 6.06567357 28302685.60631992 7.10626687
0.09 5.73716859 5.82578676 5.73716859 26841402.82737157 6.70846934
0.1 5.45828586 5.53831084 5.45828586 25585350.55549821 6.37231440
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Table 6: Difference in the CN between extensions 1 and 2 in scenarios S.1-S.10
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– γ ∈ [0.1, 10] with intervals of 0.01 considering 991 values. Note that the collinearity decreases
as γ increases.

– The sizes of the generated sample are 20, 50, 100, 150 and 200.

Figure 3 displays the Mean Absolute Error (MAE) of the differences in each scenario between
extensions 1 and 2 in the 991 simulations, that is,

MAE =
1

991

991∑

r=1

∑

k

∣∣Kl

(
XR, k

)
r
−Kl

(
xR, k

)
r

∣∣,

where l = U,UT, US,C, T, S, UL,CUL,Uit, ULit. The results are depicted from left to right for
the 2, 3 and 4 variables. Every trend line corresponds to one of the considered sample sizes: 20,
blue circles; 50, green diamonds; 100, red pluses; 150, cyan stars; and 200, magenta squares. Note
the following:

– The MAE decreases as the sample size increases.
– In all cases, the highest errors correspond to scenarios S.2, S.6 and S.8.
– The highest MAE is lower than 0.4.

Thus, it has been shown that the two extensions present similar results. Therefore, we recommend
obtaining the CN from the first extension, which is easier to calculate. Moreover, since the first
extension has a closed expression, it was possible to show that the three desirable properties
established in Garćıa et al (2015a) are verified. That is, the CN in OLS and RE should be
calculated from KT (X

R, k).

6 Conclusions

Ridge estimation is applied to estimate a linear model in which collinearity has been detected.
Then, it is necessary to determine whether the collinearity has been mitigated after the applica-
tion of this estimation approach. This fact motivates extending collinearity diagnostic indicators
to ridge estimation (see Figure 1). In this paper, we have presented an extension of the condition
number to ridge estimation under two approaches.

First, we extended it by requiring the presence of matrix X in different scenarios. This
extension verifies the properties of being continuous in k = 0, monotonous decreasing in k and
higher than 1. However, in this case, matrix (XR)′XR does not, for example, have unit length or
is not typified. For this reason, we present a second extension by requiring matrix (XR)′XR to be
present in various scenarios. In this second case, it is not possible to obtain an algebraic closed-
form expression for the CN, and consequently, is not possible to analyze whether the desirable
properties are verified.

Given the results, we recommend calculating the CN from typified data, as in this case, the
conclusions are similar to those obtained with the VIF. Further, although we are aware that,
given the definition of the condition number, the second extension is the natural one,
as both extensions lead to similar results, with very small differences, we consider it
appropriate to use the first one because it is easier to apply. Thanks to the closed-form
expression of the CN, it was possible to show that it verifies the properties established in Garćıa
et al (2015a).

Finally, since the calculation of the CN in OLS leads to different results depending on the
data transformations, we also recommend calculating the CN in OLS using typified data to be
consistent with the option recommended in RE. Note that typified data coincide with unit length
centered data, in contrast to the statement of Belsley et al (1980).
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Fig. 3: MAE in scenarios S.1-S.10 for 2, 3 and 4 variables
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A Equivalence for transformations in OLS

Taking into account the notation given in Section 4, we now show that the CN in OLS coincides in scenarios S.3
and S.5, and in S.4 and S.6.
Since

X̃
′
UT X̃UT = ΩX

′
XΩ, X̃

′
USX̃US =

1

n
ΩX

′
XΩ,

it is verified that if δ is an eigenvalue of X̃′UT X̃UT , then α = 1
n
δ is an eigenvalue of X̃′USX̃US . In this case,

K
(
X̃US

)
=

√
αmax

αmin

=

√√√√
1
n
δmax

1
n
δmin

=

√
δmax

δmin

= K
(
X̃UT

)
.

However, as

X̃
′
T X̃T = Ω

(
X
′
X− nX

′
X

)
Ω, X̃

′
SX̃S =

1

n
Ω

(
X
′
X− nX

′
X

)
Ω,

it is verified that if δ is an eigenvalue of X̃′T X̃T , then α = 1
n
δ is an eigenvalue of X̃′SX̃S . In this case,

K
(
X̃S

)
=

√
αmax

αmin

=

√√√√
1
n
δmax

1
n
δmin

=

√
δmax

δmin

= K
(
X̃T

)
.

B Properties of the CN in RE: extension 1

The Condition Number (CN) was previously applied by Riley (1955) to show that the matrix A + kI is better
conditioned than the matrix A and to show that the CN of the matrix A+kI is always lower than that of matrix A
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for k > 0. Casella (1980a) developed some properties of the CN associated with ridge estimation. In this appendix,
it is shown that K(XR, k) is decreasing in k, continuous for k = 0 and always equal to or higher than one.

Decreasing in k: As f(k) = λmax+k
λmin+k

, it is obtained that

∂

∂k
f(k) =

λmin + k − λmax − k

(λmin + k)2
=

λmin − λmax

(λmin + k)2
≤ 0,

since 0 ≤ λmin ≤ λmax (because X
′
X is positive defined, its eigenvalues are real positive numbers).

In this case, since K(XR, k) =
√

f(x) and the positive square root is a strictly monotone function, it is
verified that K(XR, k) is decreasing in k.

Continuous for k = 0: It is evident that

K(XR, 0) =

√
λmax

λmin

= K(X),

as K(X) is the condition number associated with model (1).
Always equal to or higher than 1: It is evident that

lim
k→+∞

K(XR, k) = lim
k→+∞

√
k

k
· λmax + k

λmin + k
= lim

k→+∞

√√√√
λmax

k
+ 1

λmin
k

+ 1
= 1.

Then, since the first value is given by K(X) ≥ 1, is decreasing in k and its limit for k → +∞ is 1, it must be
the case that it is always equal to or higher than one.

C Mean and variance of the independent variables of the augmented model

In this appendix, we obtain the mean and variance of the variables contained in matrix X
R given the model (4)

and under the following assumptions:
– Matrix X has zero mean and variance equal to one (typified).
– Matriz X has zero mean and variance equal to one divided by the number of observations (standardized).

If the original matrix X does not satisfy these conditions, it has to be transformed in the following way:
– For each column of matrix X, we subtract its mean and divide by its standard deviation. Thus, we have that

the columns of XR are given by

X
R
T,j =

(

X1j −Xj
√

V ar(Xj)
. . .

Xnj −Xj
√

V ar(Xj)
0 . . .

√
k . . . 0

)

, j = 1, . . . ,m.

In this case:

X
R

T,j =
1

n+m

(

n
∑

i=1

Xij −Xj
√

V ar(Xj)
+
√
k

)

=

√
k

n+m
,

V ar(XR
T,j) =

1

n+m

(

n
∑

i=1

(Xij −Xj)
2

V ar(Xj)
+ k

)

−
(

X
R

T,j

)2

=
1

n+m

(

n · V ar(Xj)

V ar(Xj)
+ k

)

− k

(n+m)2
=

n(n+m) + (n+m− 1)k

(n+m)2
.

– For each column of X, we subtract its mean and divide by its standard deviation multiplied by the square
root of the number of observations. Thus, the columns of XR are given by

X
R
S,j =

(

X1j −Xj
√

n · V ar(Xj)
. . .

Xnj −Xj
√

n · V ar(Xj)
0 . . .

√
k . . . 0

)

, j = 1, . . . ,m.

In this case,

X
R

S,j =
1

n+m

(

n
∑

i=1

Xij −Xj
√

n · V ar(Xj)
+
√
k

)

=

√
k

n+m
,

V ar(XR
S,j) =

1

n+m

(

n
∑

i=1

(Xij −Xj)
2

n · V ar(Xj)
+ k

)

−
(

X
R

S,j

)2

=
1

n+m

(

n · V ar(Xj)

n · V ar(Xj)
+ k

)

− k

(n+m)2
=

(n+m) + (n+m− 1)k

(n+m)2
.
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D Order of operations to obtain unit length

Given a vector X of dimension n× 1, the transformed vector Z given by

Zi =
Xi −X

||X|| =
Xi −X
√

n
∑

i=1
X2

i

, i = 1, . . . , n.

In this case,

Z =
1

n

n
∑

i=1

Zi =
1

n

1
√

n
∑

i=1
X2

i

n
∑

i=1

(

Xi −X
)

= 0,

V ar(Z) =
1

n

n
∑

i=1

Z2
i − Z

2
=

1

n

1
n
∑

i=1
X2

i

n
∑

i=1

(

Xi −X
)2

=
V ar(X)
n
∑

i=1
X2

i

,

||Z|| =

√

√

√

√

n
∑

i=1

Z2
i =

√

n · V ar(Z) 6= 1. (13)

That is, although the transformation leads to a centered vector (zero mean), such vectors do not have unit length.
However, we then consider the transformed vector Z given by

Zi =
Yi

||Y|| =
Yi

√

n
∑

i=1
Y 2
i

, Yi = Xi −X, i = 1, . . . , n.

In this case,

Z =
1

n

n
∑

i=1

Zi =
1

n

1
√

n
∑

i=1
Y 2
i

n
∑

i=1

(

Xi −X
)

= 0,

V ar(Z) =
1

n

n
∑

i=1

Z2
i − Z

2
=

1

n

1
n
∑

i=1
Y 2
i

n
∑

i=1

(

Xi −X
)2

=
1

n
,

||Z|| =

√

√

√

√

n
∑

i=1

Z2
i =

√

n · 1
n

= 1. (14)

That is, in this case, the transformation leads to a centered vector with variance 1
n

(standardized data) and unit
length.
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