
Comput Stat (2018) 33:179–212
https://doi.org/10.1007/s00180-017-0770-y

ORIGINAL PAPER

Coupling stochastic EM and approximate Bayesian
computation for parameter inference in state-space
models

Umberto Picchini1 · Adeline Samson2,3

Received: 29 November 2015 / Accepted: 2 October 2017 / Published online: 23 October 2017
© The Author(s) 2017. This article is an open access publication

Abstract We study the class of state-space models and perform maximum likeli-
hood estimation for the model parameters. We consider a stochastic approximation
expectation–maximization (SAEM) algorithm to maximize the likelihood function
with the novelty of using approximate Bayesian computation (ABC) within SAEM.
The task is to provide each iteration of SAEM with a filtered state of the system, and
this is achieved using an ABC sampler for the hidden state, based on sequential Monte
Carlo methodology. It is shown that the resulting SAEM-ABC algorithm can be cali-
brated to return accurate inference, and in some situations it can outperform a version
of SAEM incorporating the bootstrap filter. Two simulation studies are presented, first
a nonlinear Gaussian state-space model then a state-space model having dynamics
expressed by a stochastic differential equation. Comparisons with iterated filtering for
maximum likelihood inference, and Gibbs sampling and particle marginal methods
for Bayesian inference are presented.

Keywords Hidden Markov model · Maximum likelihood · Particle filter · SAEM ·
Sequential Monte Carlo · Stochastic differential equation

Electronic supplementary material The online version of this article (doi:10.1007/s00180-017-0770-y)
contains supplementary material, which is available to authorized users.

B Umberto Picchini
umberto@maths.lth.se

Adeline Samson
adeline.leclercq-samson@imag.fr

1 Centre for Mathematical Sciences, Lund University, Lund, Sweden

2 Universite Grenoble Alpes, LJK, 38000 Grenoble, France

3 CNRS, LJK, 38000 Grenoble, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-017-0770-y&domain=pdf
http://orcid.org/0000-0002-0732-9154
http://dx.doi.org/10.1007/s00180-017-0770-y

180 U. Picchini, A. Samson

1 Introduction

State-space models (Cappé et al. 2005) are widely applied in many fields, such as
biology, chemistry, ecology, etc. Let us now introduce some notation. Consider an
observable, discrete-time stochastic process {Yt }t≥t0 , Yt ∈ Y ⊆ R

dy and a latent and
unobserved continuous-time stochastic process {Xt }t≥t0 ,Xt ∈ X ⊆ R

dx . ProcessXt ∼
p(xt |xs, θ x) is assumed Markov with transition densities p(·), s < t . Processes {Xt }
and {Yt } depend on their own (unknown) vector-parameters θ x and θ y , respectively.
We consider {Yt } as a measurement-error-corrupted version of {Xt } and assume that
observations for {Yt } are conditionally independent given {Xt }. The state-spacemodel
can be summarised as

{
Yt ∼ f (yt |Xt , θ y),

Xt ∼ p(xt |xs, θ x), t0 ≤ s < t, X0 ∼ p(x0)
(1)

where X0 ≡ Xt0 . We assume f (·) a known density (or probability mass) function set
by the modeller. Regarding the transition density p(xt |xs, ·), this is typically unknown
except for very simple toy models.

Goal of our work is to estimate the parameters (θ x , θ y) by maximum likelihood,
using observations Y1:n = (Y1, . . . , Yn) collected at discrete times {t1, . . . , tn}. Here
Y j ≡ Yt j and we use z1:n to denote a generic sequence (z1, . . . , zn). For ease of
notation we refer to the vector θ := (θ x , θ y) as the object of our inference.

Parameters inference for state-space models has been widely developed, and
sequential Monte Carlo (SMC) methods are now considered the state-of-art when
dealing with nonlinear/non-Gaussian state space models (see Kantas et al. 2015
for a review). Methodological advancements have especially considered Bayesian
approaches. In Bayesian inference the goal is to derive analytically the posterior dis-
tribution π(θ |Y1:n) or, most frequently, implement an algorithm for sampling draws
from the posterior. Sampling procedures are often carried out using Markov chain
Monte Carlo (MCMC) or SMC embedded in MCMC procedures, see Andrieu and
Roberts (2009) and Andrieu et al. (2010).

In thisworkwe instead aimatmaximum likelihood estimation of θ . Severalmethods
for maximum likelihood inference in state-space models have been proposed in the
literature, including the well-known EM algorithm (Dempster et al. 1977). The EM
algorithm computes the conditional expectation of the complete-likelihood for the pair
({Yt }, {Xt }) and then produces a (local)maximizer for the likelihood function based on
the actual observations Y1:n . One of the difficulties is how to compute the conditional
expectation of the state {Xt } given the observations Y1:n . This conditional expectation
can be computed exactly with the Kalman filter when the state-space is linear and
Gaussian (Cappé et al. 2005), otherwise it has to be approximated. In this work we
focus on a stochastic approximationof {Xt }. Therefore,we resort to a stochastic version
of theEMalgorithm, namely the StochasticApproximationEM(SAEM) (Delyon et al.
1999). The problem is to generate, conditionally on the current value of θ during the
EM maximization, an appropriate “proposal” for the state {Xt }, and we use SMC to
obtain such proposal. SMC algorithms (Doucet et al. 2001) have already been coupled

123

Coupling stochastic EM and approximate Bayesian... 181

to stochastic EM algorithms (see e.g. Huys et al. 2006; Huys and Paninski 2009;
Lindsten 2013; Ditlevsen and Samson 2014 and references therein). The simplest and
most popular SMC algorithm, the bootstrap filter (Gordon et al. 1993), is easy to
implement and very general, explicit knowledge of the density f (yt |Xt , ·) being the
only requirement. Therefore the bootstrap filter is often a go-to option for practitioners.
Alternatively, in order to select a path {Xt } to feed SAEMwith, in this paper we follow
an approach based on approximate Bayesian computation (ABC) and specifically we
use the ABC-SMC method for state-estimation proposed in Jasra et al. (2012). We do
not merely consider the algorithm by Jasra et al. within SAEM, but show in detail and
discuss how SAEM-ABC-SMC (shortly SAEM-ABC) can in some cases outperform
SAEM coupled with the bootstrap filter.

We illustrate our SAEM-ABC approach for (approximate) maximum likelihood
estimation of θ using two case studies, a nonlinear Gaussian state-space model and a
more complex state-space model based on stochastic differential equations. We also
compare our method with the iterated filtering for maximum likelihood estimation
(Ionides et al. 2015), Gibbs sampling and particle marginal methods for Bayesian
inference (Andrieu and Roberts 2009) and will also use a special SMC proposal func-
tion for the specific case of stochastic differential equations (Golightly and Wilkinson
2011).

The paper is structured as follows: in Sect. 2 we introduce the standard SAEM
algorithm and basic notions ofABC. In Sect. 3we propose a newmethod formaximum
likelihood estimation by integrating an ABC-SMC algorithmwithin SAEM. Section 4
shows simulation results and Sect. 5 summarize conclusions. An “Appendix” includes
technical details pertaining the simulation studies. Software code can be found online
as supplementary material.

2 The complete likelihood and stochastic approximation EM

Recall that Y1:n = (Y1, . . . , Yn) denotes the available data collected at times
(t1, . . . , tn) and denote with X1:n = (X1, . . . , Xn) the corresponding unobserved
states. We additionally set X0:n = (X0, X1:n) for the vector including an initial (fixed
or random) state X0, that is X1 is generated as X1 ∼ p(x1|x0). When the transition
densities p(x j |x j−1) are available in closed form (j = 1, . . . , n), the likelihood func-
tion for θ can be written as (here we have assumed a random initial state with density
p(X0))

p(Y1:n; θ) =
∫

pY,X(Y1:n, X0:n ; θ) dX0:n

=
∫

pY|X(Y1:n|X0:n ; θ)pX(X0:n; θ) dX0:n

=
∫

p(X0)

{ n∏
j=1

f (Y j |X j ; θ)p(X j |X j−1; θ)

}
dX0 · · · dXn (2)

123

182 U. Picchini, A. Samson

where pY,X is the “complete data likelihood”, pY|X is the conditional law ofY givenX,
pX is the lawofX, f (Y j |X j ; ·) is the conditional density ofY j as in (1) and pX(X0:n; ·)
the joint density of X0:n . The last equality in (2) exploits the notion of conditional
independence of observations given latent states and the Markovian property of {Xt }.
In general the likelihood (2) is not explicitly known either because the integral is
multidimensional and because expressions for transition densities are typically not
available except for trivial toy models.

In addition, when an exact simulator for the solution of the dynamical process
associated with the Markov process {Xt } is unavailable, hence it is not possible to
sample from p(X j |X j−1; θ), numerical discretization methods are required. Without
loss of generality, say that we have equispaced sampling times such that t j = t j−1 +
Δ, with Δ > 0. Now introduce a discretization for the interval [t1, tn] given by
{τ1, τh, . . . , τRh, . . . , τnRh} where h = Δ/R and R ≥ 1. We take τ1 = t1, τnRh = tn
and therefore τi ∈ {t1, . . . , tn} for i = 1, Rh, 2Rh, . . . , nRh. We denote with N
the number of elements in the discretisation {τ1, τh, . . . , τRh, . . . , τnRh} and with
X1:N = (Xτ1 , . . . , XτN) the corresponding values of {Xt } obtained when using a given
numerical/approximated method of choice. Then the likelihood function becomes

p(Y1:n; θ) =
∫

pY,X(Y1:n, X0:N ; θ) dX0:N

=
∫

pY|X(Y1:n|X0:N ; θ)pX(X0:N ; θ) dX0:N

=
∫ { n∏

j=1

f (Y j |X j ; θ)

}
p(X0)

N∏
i=1

p(Xi |Xi−1; θ)dX0 · · · dXN ,

where the product in j is over the Xt j and the product in i is over the Xτi .

2.1 The standard SAEM algorithm

The EM algorithm introduced by Dempster et al. (1977) is a classical approach to
estimate parameters by maximum likelihood for models with non-observed or incom-
plete data. Let us briefly cover the EM principle. The complete data of the model
is (Y1:n, X0:N), where X0:N ≡ X0:n if numerical discretization is not required, and
for ease of writing we denote this as (Y, X) in the remaining of this section. The
EM algorithm maximizes the function Q(θ |θ ′) = E(Lc(Y, X; θ)|Y; θ ′) in two steps,
where Lc(Y, X; θ) := log pY,X(Y, X; θ) is the log-likelihood of the complete data
and E is the conditional expectation under the conditional distribution pX|Y(·; θ ′). At
the k-th iteration of a maximum (user defined) number of evaluations K , the E-step

is the evaluation of Qk(θ) = Q(θ | θ̂ (k−1)
), whereas the M-step updates θ̂

(k−1)
by

maximizing Qk(θ). For cases in which the E-step has no analytic form, Delyon et al.
(1999) introduce a stochastic version of the EM algorithm (SAEM) which evaluates
the integral Qk(θ) by a stochastic approximation procedure. The authors prove the
convergence of this algorithm under general conditions if Lc(Y, X; θ) belongs to the
regular exponential family

123

Coupling stochastic EM and approximate Bayesian... 183

Lc(Y, X; θ) = −Λ(θ) + 〈Sc(Y, X), Γ (θ)〉,

where 〈., .〉 is the scalar product, Λ and Γ are two functions of θ and Sc(Y, X) is
the minimal sufficient statistic of the complete model. The E-step is then divided into
a simulation step (S-step) of the missing data X(k) under the conditional distribution

pX|Y(·; θ̂
(k−1)

) and a stochastic approximation step (SA-step) of the conditional expec-
tation, using (γk)k≥1 a sequence of real numbers in [0, 1], such that

∑∞
k=1 γk = ∞

and
∑∞

k=1 γ 2
k < ∞. This SA-step approximates E

[
Sc(Y, X)|θ̂ (k−1)]

at each iteration

by the value sk defined recursively as follows

sk = sk−1 + γk(Sc(Y, X(k)) − sk−1). (3)

The M-step is thus the update of the estimates θ̂
(k−1)

θ̂
(k) = argmax

θ∈Θ
(−Λ(θ) + 〈sk, Γ (θ)〉) . (4)

The starting s0 can be set to be a vector of zeros. The procedure above can be carried
out iteratively for K iterations. The proof of the convergence of SAEM requires the
sequence γk to be such that

∑∞
k=1 γk = ∞ and

∑∞
k=1 γ 2

k < ∞. A typical choice
is to consider a warmup period with γk = 1 for the first K1 iterations and then
γk = (k − K1)

−1 for k ≥ K1 (with K1 < K). Parameter K1 has to be chosen
by the user. However inference results are typically not very sensitive to this tuning
parameter. Typical values are K1 = 250 or 300 and K = 400, see for example Lavielle
(2014). Usually, the simulation step of the hidden trajectory X(k) conditionally on
the observations Y cannot be directly performed. Lindsten (2013) and Ditlevsen and
Samson (2014) use a sequential Monte Carlo algorithm to perform the simulation step
for state-space models. We propose to resort to approximate Bayesian computation
(ABC) for this simulation step.

It can be noted that the generation of sk in (3) followed by corresponding parameter

estimates θ̂
(k)

in (4) is akin to two steps of a Gibbs sampling algorithm, except that

here θ̂
(k)

is produced by a deterministic step (for given sk). We comment further on
this aspect in Sect. 4.1.4.

2.2 The SAEM algorithm coupled to an ABC simulation step

Approximate Bayesian Computation (ABC, see Marin et al. 2012 for a review) is
a class of probabilistic algorithms allowing sampling from an approximation of a
posterior distribution. The most typical use of ABC is when posterior inference for θ

is the goal of the analysis and the purpose is to sample draws from the approximate
posterior πδ(θ |Y). Here and in the following Y ≡ Y1:n . The parameter δ > 0 is a
threshold influencing the quality of the inference, the smaller the δ the more accurate
the inference, and πδ(θ |Y) ≡ π(θ |Y) when δ = 0. However in our study we are not
interested in conducting Bayesian inference for θ . We will use ABC to sample from

123

184 U. Picchini, A. Samson

an approximation to the posterior distribution π(X0:N |Y; θ) ≡ p(X0:N |Y; θ), that is
for a fixed value of θ , we wish to sample from πδ(X0:N |Y; θ) (recall from Sect. 2.1
that when feasible we can take N ≡ n). For simplicity of notation, in the following we
avoid specifying the dependence on the current value of θ , which has to be assumed
as a deterministic unknown. There are several ways to generate a “candidate” X∗

0:N :
for example we might consider “blind” forward simulation, meaning that X∗

0:N is
simulated from pX(X0:N) and therefore unconditionally on data (i.e. the simulator is
blind with respect to data). Then X∗

0:N is accepted if the corresponding Y∗ simulated
from f (·|X∗

1:n) is “close” to Y, according to the threshold δ, where X∗
1:n contains the

interpolated values of X∗
0:N at sampling times {t1, . . . , tn} and Y∗ ≡ Y∗

1:n . Notice
that the appeal of the methodology is that knowledge of the probabilistic features
of the data generating model is not necessary, meaning that even if the transition
densities p(X j |X j−1) are not known (hence pX is unknown) it is enough to be able to
simulate from themodel (using a numerical scheme if necessary) hence drawsX∗

0:N are
produced by forward-simulation regardless the explicit knowledge of the underlying
densities.

Algorithm 1 illustrates a generic iteration k of a SAEM-ABC method, where the

current value of the parameters is θ̂
(k−1)

and an updated value of the estimates is

produced as θ̂
(k)
. By iterating the procedure K times, the resulting θ̂

(k)
is themaximizer

Algorithm 1 A generic iteration of SAEM-ABC using acceptance-rejection

Simulation step: here we update X(k) using an ABC procedure sampling from πδ(X|Y; θ̂
(k−1)

):
Repeat

– Generate a candidate X∗ from the latent model dynamics conditionally on θ̂
(k−1)

, either by
numerical methods or using the transition density (if available) i.e. by generating using the

exact law pX(·; θ̂
(k−1)

).
– Generate Y∗ from the error model f (Y∗|X∗).

Until ρ(Y∗, Y) ≤ δ

Set X(k) = X∗
Stochastic Approximation step : update of the sufficient statistics

sk = sk−1 + γk

(
Sc(Y, X(k)) − sk−1

)

Maximisation step: update θ

θ̂
(k) = argmax

θ∈Θ
(−Λ(θ) + 〈sk , Γ (θ)〉)

for an approximate likelihood (the approximation implied by using ABC). The “repeat
loop” can be considerably expensive using a distance ρ(Y∗, Y) ≤ δ as acceptance of
Y∗ (hence acceptance of X∗) is a rare event for δ reasonably small. If informative low-
dimensional statisticsη(·) are available, it is recommended to considerρ(η(Y∗), η(Y))

instead.
However Algorithm 1 is not appropriate for state-space models, because the entire

candidate trajectory X∗ is simulated blindly to data (an alternative approach is con-

123

Coupling stochastic EM and approximate Bayesian... 185

sidered in Sect. 3). If we consider for a moment X∗ ≡ X∗
0:N as a generic unknown,

ideally we would like to sample from the posterior π(X∗|Y), which is proportional to

π(X∗|Y) ∝ f (Y|X∗)π(X∗) (5)

for a given “prior” distribution π(X∗). For some models sampling from such posterior
is not trivial, for example when X is a stochastic process and in that case sequential
Monte Carlo methods can be used as described in Sect. 3. A further layer of approx-
imation is introduced when π(X∗|Y) is analytically “intractable”, and specifically
when f (Y|X) is unavailable in closed form (though we always assume f (·|·) to be
known and that it is possible to evaluate it pointwise) or is computationally difficult to
approximate but it is easy to sample from. In this case ABCmethodology turns useful,
and an ABC approximation to π(X∗|Y) can be written as

πδ(X∗|Y) ∝
∫

Jδ(Y, Y∗) f (Y∗|X∗)π(X∗)︸ ︷︷ ︸
∝π(X∗|Y∗)

dY∗. (6)

Here Jδ(·) is some function that depends on δ and weights the intractable posterior
based on simulated data π(X∗|Y∗) with high values in regions where Y and Y∗ are
similar; therefore we would like (i) Jδ(·) to give higher rewards to proposals X∗ corre-
sponding to Y∗ having values close to Y. In addition (ii) Jδ(Y, Y∗) is assumed to be a
constant whenY∗ = Y (i.e. when δ = 0) so that Jδ is absorbed into the proportionality
constant and the exact marginal posterior π(X∗|Y) is recovered. Basically the use of
(6) means to simulate X∗ from its prior (the product of transition densities), then plug
such draw into f (·|X∗) to simulate Y∗, so that X∗ will be weighted by Jδ(Y, Y∗). A
common choice for Jδ(·) is the uniform kernel

Jδ(Y, Y∗) ∝ I{ρ(Y∗,Y)≤δ}

where ρ(Y, Y∗) is some measure of closeness between Y∗ and Y and I is the indicator
function. A further popular possibility is the Gaussian kernel

Jδ(Y, Y∗) ∝ e−(Y∗−Y)′(Y∗−Y)/2δ2 (7)

where ′ denotes transposition, so that Jδ(Y, Y∗) gets larger when Y∗ ≈ Y.
However one of the difficulties is that, in practice, δ has to be set as a compromise

between statistical accuracy (a small positive δ) and computational feasibility (δ not
too small). Notice that a proposal’s acceptance can be significantly enhanced when the
posterior (6) is conditional on summary statistics of data η(Y), rather thanY itself, and
in such case we would consider ρ(η(Y), η(Y∗)). However, in practice for dynamical
models it is difficult to identify “informative enough” summary statistics η(·), but
see Martin et al. (2016) and Picchini and Forman (2015). Another important problem
with the strategy outlined above is that “blind simulation” for the generation of the
entire time series X∗ is often poor. In fact, even when the current value of θ is close to
its true value, proposed trajectories rarely follow measurements when (a) the dataset

123

186 U. Picchini, A. Samson

is a long time series and/or (b) the model is highly erratic, for example when latent
dynamics are expressed by a stochastic differential equation (Sect. 4.2). For these
reasons, sequential Monte Carlo (SMC) (Cappe et al. 2007) methods have emerged
as the most successful solution for filtering in non-linear non-Gaussian state-space
models.

Below we consider the ABC-SMC methodology from Jasra et al. (2012), which
proves effective for state-space models.

3 SAEM coupled with an ABC-SMC algorithm for filtering

Here we consider a strategy for filtering that is based on an ABC version of sequential
Monte Carlo sampling, as presented in Jasra et al. (2012), with some minor modifica-
tions. The advantage of the methodology is that the generation of proposed trajectories
is sequential, that is the ABC distance is evaluated “locally” for each observational
time point. In fact, what is evaluated is the proximity of trajectories/particles to each
data point Y j , and “bad trajectories” are killed thus preventing the propagation of
unlikely states to the next observation Y j+1 and so on. For simplicity we consider the
case N ≡ n, h ≡ Δ. The algorithm samples from the following target density at time
tn′ (n′ ≤ n):

πδ
n′(X1:n′, Y∗

1:n′ |Y1:n′) ∝
n′∏
j=1

J j,δ(Y j , Y∗
j) f (Y

∗
j |X j)p(X j |X j−1)

and for example we could take J j,δ(y j , y∗
j) = IAδ,y j

(y∗
j) with Aδ,y j = {y∗

j ;
ρ(η(y∗

j), η(y j)) < δ} as in Jasra et al. (2012) or the Gaussian kernel (7).
The ABC-SMC procedure is set in Algorithm 2 with the purpose to propagate

forward M simulated states (“particles”). After Algorithm 2 is executed, we select a
single trajectory by retrospectively looking at the genealogy of the generated particles,
as explained further below.The quantityESS is the effective sample size (e.g. Liu 2008)

Algorithm 2 ABC-SMC for filtering

Step 0. Set j = 1. For m = 1, . . . , M sample X(m)
1 ∼ p(X0), Y∗(m)

1 ∼ f (·|X(m)
1), compute weights

W (m)
1 = J1,δ(Y1, Y∗(m)

1) and normalize weights w
(m)
1 := W (m)

1 /
∑M

m=1 W
(m)
1 .

Step 1.

if ESS({w(m)
j }) < M̄ then

resample M particles {X(m)
j , w

(m)
j } and set W (m)

j = 1/M .
end if
Set j := j + 1 and if j = n + 1, stop.

Step 2. For m = 1, . . . , M sample X(m)
j ∼ p(·|X(m)

j−1) and Y∗(m)
j ∼ f (·|X(m)

j). Compute

W (m)
j := w

(m)
j−1 J j,δ(Y j , Y∗(m)

j)

normalize weights w
(m)
j := W (m)

j /
∑M

m=1 W
(m)
j and go to step 1.

123

Coupling stochastic EM and approximate Bayesian... 187

often estimated as ESS({w(m)
j }) = 1/

∑M
m=1(w

(m)
j)2 and taking values between 1

and M . When considering an indicator function for J j,δ , the ESS coincides with the
number of particles having positive weight (Jasra et al. 2012). Under such choice the
integer M̄ ≤ M is a lower bound (threshold set by the experimenter) on the number of
particles with non-zero weight. However in our experiments we use a Gaussian kernel
and since in the examples in Sect. 4 we have a scalar Y j , the kernel is defined as

J j,δ(Y j ,Y
∗(m)
j) ∝ e−(Y ∗(m)

j −Y j)
2/(2δ2) (8)

so thatweightsW (m)
j are larger for particles havingY ∗(m)

j ≈ Y j .We consider “stratified
resampling” (Kitagawa 1996) in step 1 of Algorithm 2.

In addition to the procedure outlined in Algorithm 2, once the set of weights
{w(1)

n , . . . , w
(M)
n } is available at time tn , we propose to follow Andrieu et al. (2010)

(see their PMMH algorithm) and sample a single index from the set {1, . . . , M} hav-
ing associated probabilities {w(1)

n , . . . , w
(M)
n }. Denote with m′ such index and with

amj the “ancestor” of the genericmth particle sampled at time t j+1, with 1 ≤ amj ≤ M

(m = 1, . . . , M , j = 1, . . . , n). Then we have that particle m′ has ancestor am′
n−1 and

in general particle m′′ at time t j+1 has ancestor bm
′′

j := a
bm

′′
j+1

j , with bm
′

n := m′. Hence,
at the end of Algorithm 2 we can samplem′ and construct its genealogy: the sequence
of states {Xt } resulting from the genealogy ofm′ is the chosen path that will be passed
to SAEM, see Algorithm 3. The selection of this path is crucially affected by “parti-
cles impoverishment” issues, see below. [An alternative procedure, which we do not
pursue here, is to sample at time tn not just a single index m′, but instead sample with
replacement say G ≥ 1 times from the set {1, . . . , M} having associated probabilities
{w(1)

n , . . . , w
(M)
n }. Then construct the genealogy for each of the G sampled indeces,

and for each of the resultingG sampled paths Xg,k calculate the corresponding vector-
summaries Sg,k

c := Sc(Y, Xg,k), g = 1, . . . ,G. Then it would be possible to take the
sample average of those G summaries S̄k

c as in Kuhn and Lavielle (2005), and plug
this average in place of Sc(Y, X(k)) in step 3 of Algorithm 3. Clearly this approach
increases the computational complexity linearly with G.]

Notice that in Jasra et al. (2012) n ABC thresholds {δ1, . . . , δn} are constructed,
one threshold for each corresponding sampling time in {t1, . . . , tn}: these thresholds
do not need to be set by the user but can be updated adaptively using a stochastic data-
driven procedure. This is possible because the ABC-SMC algorithm in Jasra et al.
(2012) is for filtering only, that is θ is a fixed known quantity. However in our scenario
θ is unknown, and letting the thresholds vary adaptively (and randomly) between
each pair of iterations of a parameter estimation algorithm is not appropriate. This
is because the evaluation of the likelihood function at two different iterations k′ and
k′′ of SAEM would depend on a procedure determining corresponding (stochastic)

sequences {δ(k′)
1 , . . . , δ

(k′)
n } and {δ(k′′)

1 , . . . , δ
(k′′)
n }. Therefore the likelihood maximiza-

tion would be affected by the random realizations of the sequences of thresholds. In
our case, we let the threshold vary deterministically: that is we choose a δ common
to all time points {t1, . . . , tn} and execute a number of SAEM iterations using such

123

188 U. Picchini, A. Samson

threshold. Thenwedeterministically decrease the threshold according to a user-defined
scheme and execute further SAEM iterations, and so on. Our SAEM-ABC procedure
is detailed in Algorithm 3 with a user-defined sequence δ1 > · · · > δL > 0 where
each δl is used for kl iterations, so that k1 + · · · + kL = K (l = 1, . . . , L). Here K is
the number of SAEM iterations, as defined at the end of Sect. 2.1. In our applications
we show how the algorithm is not overly sensitive to small variations in the δ’s.

Regarding the choice of δ values in applications, recall that the interpretation of δ in
equation (8) is that of the standard deviation for a perturbed model. This implies that
a synthetic observation at time t j , denoted with Y ∗

j , can be interpreted as a perturbed
version of Y j , where the observed Y j is assumed generated from the state-space model
in equation (1), whileY ∗

j ∼ N (Y j , δ
2).With this fact inmind, δ can easily be chosen to

represent somedeviation from the actual observations. Therefore, typically it is enough
to look at the time evolution of the data, to guess at least the order of magnitude of the
starting value for δ.

Finally, in our applications we compare SAEM-ABC with SAEM-SMC. SAEM-
SMC is detailed in Algorithm 4: it is structurally the same as Algorithm 3 except that
it uses the bootstrap filter to select the state trajectory. The bootstrap filter (Gordon
et al. 1993) is just like Algorithm 2, except that no simulation from the observations
equation is performed (i.e. theY∗(m)

j are not generated) and J j,δ(Y j , Y∗(m)
j) is replaced

with f (Y j |X(m)
j), hence there is no need to specify the δ. The trajectory X(k) selected

by the bootstrap filter at kth SAEM iteration is then used to update the statistics sk .
As studied in detail in Sect. 4.3, the function Jt,δ has an important role in approxi-

mating the density π(X1:t |Y1:t) at a generic time instant t . Indeed πδ(X1:t |Y1:t), the
ABC approximation to π(X1:t |Y1:t), is

πδ(X1:t |Y1:t) =
M∑

m=1

W (m)
t ξx0:t (x

(m)
0:t)

with ξ(·) the Dirac measure and W (m)
t ∝ Jt,δ(Y

∗(m)
t , Yt). This means that for a small

δ (which is set by the user) Jδ assigns large weights only to very promising particles,
that is those particles X(m)

t associated to a Y∗(m)
t very close to Yt . Instead, suppose

that f (·|Xt , θ y) ≡ N (·|Xt ; σ 2
ε)whereN (·|a; b) is a Gaussian distribution with mean

a and variance b, then the bootstrap filter underlying SAEM-SMC assigns weights
proportionally to the measurements density f (Yt |Xt ; σε), which is affected by the
currently available (and possibly poor) value of σε, when σε is one of the unknowns to
be estimated.Whenσε is overestimated, as inSect. 4.3, there is a risk to sample particles
which are not really “important”. Since trajectories selected in step 2 of Algorithm 4
are drawn from π(X1:t |Y1:t), clearly the issues just highlighted contribute to bias the
inference.

A further issue is studied in Sect. 4.1.3. There we explain how SAEM-ABC, despite
being an approximate version of SAEM-SMC (due to the additional approximation
induced by using a strictly positive δ) can in practice outperform SAEM coupled with
the simple bootstrap filter, because of “particles impoverishment” problems. Particles
impoverishment is a pathology due to frequently implementing particles resampling:

123

Coupling stochastic EM and approximate Bayesian... 189

Algorithm 3 SAEM-ABC using a particle filter

Step 0. Set parameters starting values θ̂
(0)

, set M , M̄ and k := 1. Set the sequence {δ1, ..., δL } and
δ := δ1.

Step 1. For fixed θ̂
(k−1)

apply the ABC-SMC algorithm 2 with threshold δ, M particles and particles
threshold M̄ .
2 Sample an index m′ from the probability distribution {w(1)

n , ..., w
(M)
n } on {1, ..., M} and form the path

X(k) resulting from the genealogy of m′.
Step 3. Stochastic Approximation step : update of the sufficient statistics

sk = sk−1 + γk

(
Sc(Y, X(k)) − sk−1

)

Step 4. Maximisation step: update θ

θ̂
(k) = argmax

θ∈Θ
(−Λ(θ) + 〈sk , Γ (θ)〉)

Set k := k + 1. If k ∈ {k1, ..., kL }, e.g. if k = kl , set δ := δl . Go to step 1.

Algorithm 4 SAEM-SMC

Step 0. Set parameters starting values θ̂
(0)

, set M , M̄ and k := 1. For fixed θ̂
(k−1)

apply the bootstrap
filter below using M particles and particles threshold M̄ .

Step 1a. Set j = 1. For m = 1, ..., M and conditionally on θ̂
(k−1)

sample X(m)
1 ∼ p(X0), compute

weights W (m)
1 = f (Y1|X(m)

1) and normalize weights w
(m)
1 := W (m)

1 /
∑M

m=1 W
(m)
1 .

Step 1.b.

if ESS({w(m)
j }) < M̄ then resample M particles {X(m)

j , w
(m)
j } and set W (m)

j = 1/M .
end if
Set j := j + 1. If j = n + 1 go to step 2. If j ≤ n go to step 1.c.

Step 1.c. For m = 1, ..., M and conditionally on θ̂
(k−1)

sample X(m)
j ∼ p(·|X(m)

j−1). Compute

W (m)
j := w

(m)
j−1 f (Y j |X(m)

j)

normalize weights w
(m)
j := W (m)

j /
∑M

m=1 W
(m)
j and go to step 1.b.

Step 2. Sample an indexm′ from the probability distribution {w(1)
n , ..., w

(M)
n } on {1, ..., M} and form the

path X(k) resulting from the genealogy of m′.
Step 3. Stochastic Approximation step : update of the sufficient statistics

sk = sk−1 + γk

(
Sc(Y, X(k)) − sk−1

)

Step 4. Maximisation step: update θ

θ̂
(k) = argmax

θ∈Θ
(−Λ(θ) + 〈sk , Γ (θ)〉)

Set k := k + 1. Go to step 1a.

123

190 U. Picchini, A. Samson

the resampling step reduces the “variety” of the particles, by duplicating the ones with
larger weights and killing the others. We show that when particles fail to get close to
the targeted observations, then resampling is frequently triggered, this degrading the
variety of the particles. However with an ABC filter, particles receive some additional
weighting, due to the function J j,δ in Eq. (8) taking values J j,δ > 1 for small δ

when Y∗
j ≈ Y j , which allows a larger number of particles to have a non-negligible

weight and therefore different particles are resampled, this increasing their variety
(at least for the application in Sect. 4.1.1, but this is not true in general). This is
especially relevant in early iterations of SAEM, where θ (k) might be far from its true
value and therefore many particles might end far from data. By letting δ decrease not
“too fast” as SAEM iterations increase, we allow many particles to contribute to the
states propagation. However, as δ approaches a small value, only the most promising
particles will contribute to selecting the path sampled in step 2 of Algorithm 3.

These aspects are discussed in greater detail in Sects. 4.1.3 and 4.3. However, it
is of course not true that an ABC filter is in general expected to perform better than
a non-ABC one. In the second example, Sect. 4.2, an adapted (not “blind to data”,
i.e. conditional to the next observation) particle filter is used to treat the specific
case of SDE models requiring numerical integration (Golightly and Wilkinson 2011).
The adapted filter clearly outperforms both SAEM-SMC and SAEM-ABC when the
number of particles is very limited (M = 30).

Notice, our SAEM-ABC strategywith a decreasing series of thresholds shares some
similarity with tempering approaches. For example Herbst and Schorfheide (2017)
artificially inflate the observational noise variance pertaining f (yt |Xt , ·), so that the
particle weights have lower variance hence the resulting filter is more stable. More
in detail, they construct a bootstrap filter where particles are propagated through a
sequence of intermediate tempering steps, starting from an observational distribution
with inflated variance, and then gradually reducing the variance to its nominal level.

Fisher Information matrix The SAEM algorithm allows also to compute standard
errors of the estimators, through the approximation of the Fisher Information matrix.
This is detailed below, however notice that the algorithm itself advances between
iterations without the need to compute such matrix (nor the gradient of the function to
maximize). The standard errors of the parameter estimates can be calculated from the
diagonal elements of the inverse of the Fisher information matrix. Its direct evaluation
is difficult because it has no explicit analytic form, however an estimate of the Fisher
information matrix can easily be implemented within SAEM as proposed by Delyon
et al. (1999) using the Louis’ missing information principle (Louis 1982).

The Fisher information matrix �(θ) = L(Y; θ) can be expressed as:

∂2θ �(θ) = E

[
∂2θ Lc(Y, X; θ)|Y, θ

]
+E

[
∂θ Lc(Y, X; θ) (∂θ Lc(Y, X; θ))′|Y, θ

]
−E [∂θ Lc(Y, X; θ)|Y, θ] E [∂θ Lc(Y, X; θ)|Y, θ]′

123

Coupling stochastic EM and approximate Bayesian... 191

where ′ denotes transposition. An on-line estimation of the Fisher information is
obtained using the stochastic approximation procedure of the SAEM algorithm as
follows (see Lavielle 2014 for an off-line approach). At the (k + 1)th iteration of the
algorithm, we evaluate the three following quantities:

Gk+1 = Gk + γk

[
∂θ Lc(Y, X(k), θ) − Gk

]
Hk+1 = Hk + γk

[
∂2θ Lc(Y, X(k), θ)

+ ∂θ Lc(Y, X(k), θ) (∂θ Lc(Y, X(k), θ))′ − Hk

]
Fk+1 = Hk+1 − Gk+1 (Gk+1)

′.

As the sequence (θ̂
(k)

)k converges to the maximum of an approximate likelihood,
the sequence (Fk)k converges to the corresponding approximate Fisher information
matrix. It is possible to initialize G0 and H0 to be a vector and a matrix of zeros
respectively.We stress thatwe do notmake use of the (approximate) Fisher information
during the optimization.

4 Simulation studies

Simulationswere coded inMATLAB (except for R examples using thepomp package)
and executed on a Intel Core i7-2600 CPU 3.40 GhZ. Software code can be found as
supplementary material. For all examples we consider a Gaussian kernel for J j,δ as
in (8). As described at the end of Sect. 2.1, in SAEM we always set γk = 1 for
the first K1 iterations and γk = (k − K1)

−1 for k ≥ K1 as in Lavielle (2014). All
results involving ABC are produced using Algorithm 3 i.e. using trajectories selected
via ABC-SMC. We compare our results with standard algorithms for Bayesian and
“classical” inference, namely Gibbs sampling and particle marginal methods (PMM)
(Andrieu and Roberts 2009) for Bayesian inference and the improved iterated filtering
(denoted in literature as IF2) found in Ionides et al. (2015) for maximum likelihood
estimation. In order to perform a fair comparison between methods, we make use of
well tested and maintained code to fit models with PMM and IF2 via the R pomp
package (King et al. 2015). All the methods mentioned above use sequential Monte
Carlo algorithms (SMC), and their pomp implementation considers the bootstrap filter.
We remark that our goal is not to consider specialized state-of-art SMC algorithms,
with the notable exception mentioned below. Our focus is to compare the several
inference methods above, while using the bootstrap filter for the trajectory proposal
step: the bootstrap filter is also the approach considered in King et al. (2015) and
Fasiolo et al. (2016) hence it is easier for us to compare methods using available
software packages such as pomp. However in Sect. 4.2 we also use a particles sampler
that conditions upon data and is suitable for state-space models having latent process
expressed by a stochastic differential equation (Golightly and Wilkinson 2011).

123

192 U. Picchini, A. Samson

0 10 20 30 40 50
time

-4

-2

0

2

4

6

8
data

Fig. 1 Nonlinear-Gaussian model: data when σx = σy = 2.23

4.1 Non-linear Gaussian state-space model

Consider the following Gaussian state-space model

{
Y j = X j + σyν j

X j = 2 sin(eX j−1) + σxτ j , j = 1, ..., n
(9)

with ν j , τ j ∼ N (0, 1) i.i.d. and X0 = 0. Parameters σx , σy > 0 are the only unknowns
and therefore we conduct inference for θ = (σ 2

x , σ 2
y).

We first construct the set of sufficient statistics corresponding to the complete
log-likelihood Lc(Y, X). This is a very simple task since Y j |X j ∼ N (X j , σ

2
y)

and X j |X j−1 ∼ N (2 sin(eX j−1), σ 2
x) and therefore it is easy to show that Sσ 2

x
=∑n

j=1(X j − 2 sin(eX j−1))2 and Sσ 2
y

= ∑n
j=1(Y j − X j)

2 are sufficient for σ 2
x and

σ 2
y respectively. By plugging these statistics into Lc(Y, X) and equating to zero the

gradient of Lc with respect to (σ 2
x , σ 2

y), we find that the M-step of SAEM results in
updated values for σ 2

x and σ 2
y given by Sσ 2

x
/n and Sσ 2

y
/n respectively. Expressions for

the first, second and mixed derivatives, useful to obtain the Fisher information as in
Sect. 3, are given in “Appendix”.

4.1.1 Results

We generate n = 50 observations for {Y j } with σ 2
x = σ 2

y = 5, see Fig. 1.
We first describe results obtained using SAEM-ABC. Since the parameters of
interest are positive, for numerical convenience we work on the log-transformed
versions (log σx , log σy). Our setup consists in running 30 independent experiments
with SAEM-ABC: for each experiment we simulate parameter starting values for
(log σx , log σy) independently generated from a bivariate Gaussian distribution with
mean the true value of the parameters, i.e. (log

√
5, log

√
5), and diagonal covariance

matrix having values (2,2) on its diagonal. For all 30 simulations we use the same data
and the same setup except that in each simulation we use different starting values for
the parameters. For each of the 30 experiments we let the threshold δ decrease in the

123

Coupling stochastic EM and approximate Bayesian... 193

σx

0

2

4

6

8

10

0 100 200 300 400 0 100 200 300 400
σy

0

2

4

6

8

10

Fig. 2 Non-linear Gaussian model: traces obtained with SAEM-ABC when using M = 1000 particles,
M̄ = 200 and (σx , σy) = (2.23, 2.23). Horizontal lines are the true parameter values

set of values δ ∈ {2, 1.7, 1.3, 1} for a total of K = 400 SAEM-ABC iterations, where
we use δ = 2 for the first 80 iterations, δ = 1.7 for further 70 iterations, δ = 1.3
for further 50 iterations and δ = 1 for the remaining 200 iterations. The influence of
this choice is studied below. As explained in Sect. 3, the largest value for δ can be set
intuitively, by looking at Fig. 1, where it is apparent that considering deviations δ = 2
of the simulated observations Y ∗

j from the actual observation Y j should be reasonable.
For example the empirical standard deviation of the differences |Y j − Y j−1| is about
2. Then we let δ decrease progressively as SAEM-ABC evolves. We take K1 = 300 as
the number of SAEM warmup iterations and use different numbers of particles M in
our simulation studies, see Table 1. We impose resampling when the effective sample
size ESS gets smaller than M̄ , for any attempted value of M . At first we show that
taking M̄ = 200 gives good results for SAEM-ABC but not for SAEM-SMC, see
Table 1. Table 1 reports the median of the 30 estimates and their 1st–3rd quartiles: we
notice that M = 1000 particles are able to return satisfactory estimates when using
SAEM-ABC. Figure 2 shows the rapid convergence of the algorithm towards the true
parameter values for all the 30 repetitions (though difficult to notice visually, several
simulations start at locations very far from the true parameter values). Notice that
it only required about 150 seconds to perform all 30 simulations: this is the useful
return out of the effort of constructing the analytic quantities necessary to run SAEM.
Also, the algorithm is not very sensitive to the choice of δ′s. For example, we also
experimented with δ ∈ {4, 3, 2, 1} and we obtained very similar results, for exam-
ple our thirty experiments with (M, M̄) = (1000, 200) resulted in medians (1st-3rd
quartiles) σ̂x = 2.30 [2.27,2.35], σ̂y = 1.90 [1.86,1.91], which are very close to the
ones in Table 1. Finally, notice that results are not overly sensitive to the way δ is
decreased: for example, if we let δ decrease uniformly with steps of size 1/3, that is
δ ∈ {2, 1.67, 1.33, 1} with δ = 2 for the first 50 iterations, then let it decrease every
50 iterations until δ = 1, we obtain (when M = 1000 and M̄ = 200) σ̂x = 2.30
[2.27,2.33], σ̂y = 1.91 [1.87,1.95], compare with Table 1.

We then perform 30 simulations with SAEM-SMC using the same simulated data
and parameters starting values as for SAEM-ABC. As from Table 1 simulations for

123

194 U. Picchini, A. Samson

Ta
bl

e
1

N
on
-l
in
ea
r
G
au
ss
ia
n
m
od
el
:m

ed
ia
ns

an
d
1s
t–
3r
d
qu
ar
til
es

fo
r
es
tim

at
es

ob
ta
in
ed

on
30

in
de
pe
nd
en
ts
im

ul
at
io
ns
,u
si
ng

M̄
=

20
0
an
d
di
ff
er
en
tn

um
be
r
of

pa
rt
ic
le
s

M

(M
,
M̄

)
=

(5
00

,
20

0)
(M

,
M̄

)
=

(1
00

0,
20

0)
(M

,
M̄

)
=

(2
00

0,
20

0)
(M

,
M̄

)
=

(1
00

0,
20

)

σ
x
es
tim

at
es

(t
ru
e
=
2.
23

)

SA
E
M
-A

B
C

2.
42

[2
.3
9,
2.
47

]
2.
30

[2
.2
7,
2.
32

]
2.
19

[2
.1
7,
2.
24

]
1.
88

[1
.8
1,
1.
93

]

SA
E
M
-S
M
C

2.
54

[2
.5
3,
2.
54

]
2.
55

[2
.5
4,
2.
56

]
2.
55

[2
.5
4,
2.
56

]
1.
99

[1
.8
5,
2.
14

]

IF
2*

1.
26

[1
.2
1,
1.
41

]
1.
35

[1
.2
8,
1.
41

]
1.
33

[1
.2
8,
1.
40

]
1.
35

[1
.2
8,
1.
41

]

σ
y
es
tim

at
es

(t
ru
e
=
2.
23

)

SA
E
M
-A

B
C

1.
90

[1
.8
7,
1.
94

]
1.
91

[1
.8
8,
1.
95

]
1.
87

[1
.8
4,
1.
93

]
1.
91

[1
.8
9,
1.
96

]

SA
E
M
-S
M
C

0.
11

[0
.1
0,
0.
13

]
0.
06

[0
.0
6,
0.
07

]
0.
04

[0
.0
3,
0.
04

]
1.
23

[0
.9
9,
1.
39

]

IF
2*

1.
62

[1
.5
6,
1.
75

]
1.
64

[1
.5
8,
1.
67

]
1.
63

[1
.5
9,
1.
67

]
1.
64

[1
.5
8,
1.
67

]

(*
)T
he

IF
2
m
et
ho
d
re
sa
m
pl
es

at
ev
er
y
tim

e
po
in
t,
w
hi
le
SA

E
M
-A

B
C
an
d
SA

E
M
-S
M
C
re
sa
m
pl
es

on
ly

w
he
n
E
S
S

<
M̄
.T

ru
e
pa
ra
m
et
er

va
lu
es

ar
e

(σ
x
,
σ
y
)
=

(2
.2
3,
2.
23

)

123

Coupling stochastic EM and approximate Bayesian... 195

σy converge to completely wrong values. For this case we also experimented with
M = 5000 using M̄ = 2000 but this does not solve the problem with SAEM-SMC,
even if we let the algorithm start at the true parameter values. We noted that when
using M = 2000 particles with SAEM-ABC and M̄ = 200 the algorithm resamples
every fourth observation, and in a generic iteration we observed an ESS of about 100
at the last time point. Under the same setup SAEM-SMC resampled at each time point
and resulted in an ESS of about 10 at the last time point (a study on the implications of
frequent resampling is considered in Sect. 4.1.3). Therefore we now perform a further
simulation study to verify whether using a smaller M̄ (hence reducing the number of
times resampling is performed) can improve the performance of SAEM-SMC. Indeed,
using for example M̄ = 20 gives better results for SAEM-SMC, see Table 1 (there we
only use M = 1000 for comparison between methods). This is further investigated in
Sect. 4.1.3.

4.1.2 Comparison with iterative filtering and a pseudo-marginal Bayesian algorithm

We compare the results above with the iterated filtering methodology for maximum
likelihood estimation (IF2, Ionides et al. 2015), using the R package pomp (King et al.
2015). We provide pomp with the same data and starting parameter values as consid-
ered in SAEM-ABC and SAEM-SMC. We do not provide a detailed description of
IF2 here: it suffices to say that in IF2 particles are generated for both parameters θ (e.g.
via perturbations using random walks) and for the systems state (using the bootstrap
filter). Moreover, same as with ABC methods, a “temperature” parameter (to use an
analogy with the simulated annealing optimization method) is let decrease until the
algorithm “freezes” around an approximated MLE. This temperature parameter, here
denoted with ε, is decreased in ε ∈ {0.9, 0.7, 0.4, 0.3, 0.2} which seems appropriate
as explained below, where the first value is used for the first 500 iterations of IF2, then
each of the remaining values is used for 100 iterations, for a total of 900 iterations.
Notice that the tested version of pomp (v. 1.4.1.1) uses a bootstrap filter that resamples
at every time point, hence results obtained with IF2 are not directly comparable with
SAEM-ABC and SAEM-SMC. Results are in Table 1 and a sample output from one
of the simulations obtained with M = 1000 is in Fig. 3. From the loglikelihood in
Fig. 3 we notice that the last major improvement in likelihood maximization takes
place at iteration 600 when ε becomes ε = 0.7. Reducing ε further does not give any
additional benefit (we have verified this in a number of experiments with this model).
Notice that in order to run, say, 400 iterations of IF2 with M = 1000 for a single
experiment, instead of thirty, it required about 70 s. That is IF2 is about fourteen times
slower than SAEM-ABC, although the comparison is not completely objective as we
coded SAEM-ABC with Matlab, while IF2 is provided in an R package with forward
model simulation implemented in C.

Finally we use a particle marginal method (PMM, Andrieu and Roberts 2009) on a
single simulation (instead of thirty), as this is a fully Bayesianmethodology and results
are not directly comparablewith SAEMnor IF2. The PMMwe construct approximates
the likelihood function of the state space model using a bootstrap filter with M parti-
cles, then plugs such likelihood approximation into a Metropolis–Hastings algorithm.
As remarkably shown in Beaumont (2003) and Andrieu and Roberts (2009), a PMM

123

196 U. Picchini, A. Samson

−
11

9
−

11
6

lo
gl

ik
−

1.
0

0.
0

0.
5

1.
0

nf
ai

l
0.

5
1.

0
1.

5
2.

0

si
gm

ax

0 200 400 600 800

MIF iteration

0.
5

1.
0

1.
5

2.
0

si
gm

ay

−
1.

0
0.

0
0.

5
1.

0

x.
0

0 200 400 600 800

MIF iteration

MIF2 convergence diagnostics

Fig. 3 Non-linear Gaussian model: traces obtained with IF2 when using M = 1000 particles. (Top left)
evolution of the loglikelihood function; (bottom left) evolution of σx ; (top right) evolution of σy

returns a Markov chain for θ having the posterior π(θ |Y1:n) as its stationary distribu-
tion. This implies that PMM is an algorithm producing exact Bayesian inference for
θ , regardless the number of particles used to approximate the likelihood.

Oncemorewemake use of facilities provided in pomp to run PMM.We set uniform
priors U (0.1, 15) for both σx and σy and run 4000 MCMC iterations of PMM using
2000 particles for the likelihood approximation. Also, we set the PMM algorithm
in the most favourable way, by starting it at the true parameter values (we are only
interested in the inference results, rather than showing the performance of the algorithm
when starting from remote values). The proposal function for the parameters uses an
adaptiveMCMCalgorithmbased onGaussian randomwalks, andwas tuned to achieve
the optimal 7% acceptance rate (Sherlock et al. 2015). For this single simulation, we
obtained the following posterior means and 95% intervals: σ̂x = 1.52 [0.42,2.56],
σ̂y = 1.53 [0.36,2.34].

4.1.3 The particles impoverishment problem

Figure 4 reports the effective sample size ESS as a function of time t (at a generic
iteration of SAEM-SMC, the 20th in this case). As expected, for a smaller value of M̄
the ESS is most of times smaller than when a larger M̄ is chosen, with the exception of
a few peaks. This is a direct consequence of performing resampling more frequently
when M̄ is larger. However, a phenomenon that is known to be strictly linked to
resampling is that of “samples impoverishment”, that is the resampling step reduces

123

Coupling stochastic EM and approximate Bayesian... 197

0 5 10 15 20 25 30 35 40 45 50
time

0

200

400

600

800

1000

1200

Fig. 4 Nonlinear-Gaussian model: ESS for SAEM-SMC when (M̄, M) = (20, 1000) (solid line) and
(M̄, M) = (200, 1000) (dashed line) as a function of time

0 5 10 15 20 25 30 35 40 45 50

time

0

200

400

600

800

1000

1200

Fig. 5 Nonlinear-Gaussian model: number of distinct particles for SAEM-SMC when (M̄, M) =
(20, 1000) (solid line) and (M̄, M) = (200, 1000) (dashed line) as a function of time

the “variety” of particles, by duplicating the ones with larger weight and killing the
others. In fact, when many particles have a common “parent” at time t , these are likely
to end close to each other at time t + 1. This has a negative impact on the inference
because the purpose of the particles is to approximate the density (5) (or (6)) which
generates the trajectory sampled at step 2 in Algorithms 3 and 4. Lack of variety in
the particles reduces the quality of this approximation.

Indeed, Fig. 5 shows that the variety of the particles (as measured by the number of
distinct particles) gets impoverished for a larger M̄ , notice for example that the solid
line in Fig. 5 almost always reaches its maximum attainable value M = 1000, that is
all particles are distinct, while this is often not the case for the dashed line. Since the
trajectory X(k) that is selected at iteration k of SAEM, either in step 2 of algorithm 3
or in step 2 of algorithm 4, follows from backward-tracing the genealogy of a certain
particle, having variety in the cloud of particles is crucial here.

This seems related to the counter-intuitive good performance of the ABC-filter,
even though SAEM-ABC is based on the additional approximation induced by the
J function in Eq. (8). We now produce plots for the ESS values and the number of
distinct particles at the smallest value of the ABC threshold δ. As we see in Fig. 6,
while the ESS are not much different from the ones in Fig. 4, instead the number of
distinct particles in Fig. 7 is definitely higher than the SAEM-SMC counterpart in
Fig. 5, meaning that such number drops below the maximum M = 1000 fewer times.

123

198 U. Picchini, A. Samson

0 10 20 30 40 50
time

0

200

400

600

800

1000

1200

Fig. 6 Nonlinear-Gaussian model: ESS for SAEM-ABC when (M̄, M) = (20, 1000) (solid line) and
(M̄, M) = (200, 1000) (dashed line) as a function of time

0 10 20 30 40 50
time

0

200

400

600

800

1000

1200

Fig. 7 Nonlinear-Gaussian model: number of distinct particles for SAEM-ABC when (M̄, M) =
(20, 1000) (solid line) and (M̄, M) = (200, 1000) (dashed line) as a function of time

For example from Fig. 5 we can see that when (M̄, M) = (200, 1000) the number
of distinct particles drops 19 times away from the maximum M = 1000, when using
SAEM-SMC. With SAEM-ABC this number drops only 13 times (Fig. 7). When the
number of resampling steps is reduced, using (M̄, M) = (20, 1000), we have more
even results, with the number of distinct particles dropping six times for SAEM-SMC
and five times for SAEM-ABC.

As a support to this remark, refer to Table 2: we perform thirty independent estima-
tion procedures, and in each we obtain the sample mean of the ESS (means computed
over varying time t) and the sample mean of the number of distinct particles (again
over varying t). Then, we report the mean over the thirty estimated sample means of
the ESS (and corresponding standard deviation) and the same for the number of dis-
tinct particles. Clearly numbers are favourable to SAEM-ABC, showing consistently
larger values (with small variation between the thirty experiments).

We argue that when many particles, as generated in the bootstrap filter, fail to get
close to the target observations, then resampling is frequently triggered, this degrad-
ing the variety of the particles. However with an ABC filter, particles receive some
additional weighting (due to a J j,δ > 1 in (8) when Y ∗(m)

j ≈ Y j and a small δ) which
allows for a larger number of particles to have a non-negligible weight. While it is not
true that an ABC filter is in general expected to perform better than a non-ABC one,
here we find that the naive bootstrap filter performs worse than the ABC counterpart
for the reasons discussed above.

123

Coupling stochastic EM and approximate Bayesian... 199

Table 2 Nonlinear-Gaussian model: mean ESS and mean number of distinct particles (and corresponding
standard deviations in parentheses) at a generic iteration of SAEM-ABC and SAEM-SMC

(M, M̄) = (1000, 20) (M, M̄) = (1000, 200)

ESS # Distinct particles ESS # Distinct particles

SAEM-SMC 202.20 (61.70) 871.83 (90.62) 252.10 (83.31) 616.40 (212.61)

SAEM-ABC 202.62 (12.31) 905.64 (7.95) 351.80 (14.75) 812.85 (4.68)

Averages and standard deviations are taken over 30 independent repetitions of the experiment

4.1.4 Relation with Gibbs sampling

As previouslymentioned, the generation of sk in (3) followed by corresponding param-

eter estimates θ̂
(k)

in (4) is akin to two steps of a Gibbs sampling algorithm, with the

important distinction that in SAEM θ̂
(k)

is produced by a deterministic step (for given
sk). We show that the construction of a Gibbs-within-Metropolis sampler is possible,
but that a naive implementation fails while a “non-central parametrization” seems nec-
essary (Papaspiliopoulos et al. 2007). For given initial vectors (X(0), σ

(0)
x , σ

(0)
y), we

alternate sampling from the conditional distributions (i) p(X(b)|σ (b−1)
x , σ

(b−1)
y , Y),

(ii) p(σ (b)
x |, σ (b−1)

y , X(b), Y) and (iii) p(σ (b)
y |, σ (b)

x , X(b), Y) where b represents the
iteration counter in theGibbs sampler (b = 1, 2, ...). The resultingmultivariate sample
(X(b), σ

(b)
x , σ

(b)
y) is a draw from the posterior distribution π(X, σx , σy |Y). We cannot

sample from the conditional densities in (i)–(iii), however at a generic iteration b it
is possible to incorporate a single Metropolis-Hastings step targeting the correspond-
ing densities in (i)–(iii) separately, resulting in a Metropolis-within-Gibbs sampler,
see e.g. Liu (2008). Notice that what (i) implies is a joint sampling (block-update)
for all the elements in X, however it is also possible to sample individual elements
one at a time (single-site update) from p(X (b)

j |X (b)
j−1, X

(b−1)
j+1 , σ

(b−1)
x , σ

(b−1)
y , Y). For

both single-site and block-update sampling, the mixing of the resulting chain is very
poor, this resulting from the high correlations between sampled quantities, notably the
correlation between elements in X and also between X and (σx , σy). However, there
exists a simple solution based on breaking down the dependence between some of the
involved quantities: for example at iteration b we propose in block a vector X# gener-
ated “blindly” (i.e. conditionally on the current parameter values (σ

(b−1)
x , σ

(b−1)
y), but

unconditionally on Y) by iterating through (9) then accept/reject the proposal accord-
ing to a Metropolis-Hastings step, then define X∗(b) := X̃/σ

(b−1)
x , where X̃ is the

last accepted proposal of X (that is X̃ ≡ X# if X# has been accepted). Sample from
(ii) p(σ (b)

x |, σ (b−1)
y , X∗(b), Y) and (iii) p(σ (b)

y |, σ (b)
x , X∗(b), Y), and transform back to

X̃ := σ
(b)
x X∗(b). This type of updating scheme is known as non-central parametrization

(Papaspiliopoulos et al. 2007). The expressions for the conditional densities in (i)–(iii)
are given in the “Appendix” for the interested reader. Note that the SAEM-ABC and
SAEM-SMC do not require a non-central parametrization. The maximization step of
SAEM smooths out the correlation between the proposed parameter and the latent
state, and the numerical convergence of the algorithms still occur (this has also been

123

200 U. Picchini, A. Samson

σx ×105
0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
σy ×105

0

2

4

6

8

10

Fig. 8 Nonlinear Gaussian model: three chains with different starting values from the Metropolis-within-
Gibbs sampler for data generated with (σ 2

x , σ 2
y) = (5, 5). Horizontal lines are the true parameter values

σx

0

0.5

1

1.5

2

0.5 1 1.5 2 2.5 3 2 2.5 3 3.5 4 4.5 5
σy

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 9 Nonlinear Gaussian model: marginal posteriors from the Metropolis-within-Gibbs sampler for data
generated with (σx , σy) = (2.23, 2.23). Vertical lines are the true parameter values

noticed in previous papers on SAEM-MCMC, see Kuhn and Lavielle 2005; Donnet
and Samson 2008).

Once more, we attempt estimating data produced with (σx , σy) = (2.23, 2.23)
(as in Sect. 4.1.1) this time using Metropolis-within-Gibbs. Trace plots in Fig. 8
show satisfactory mixing for three chains starting at three random values around
(σx , σy) = (6, 6). However, while the chains initialized at values far from the truth
rapidly approach the true values, the 95% posterior intervals fail to include them,
see Fig. 9. If we re-execute the same experiment, this time with data generated with
smaller noise (σx , σy) = (0.71, 0.71), it seems impossible to catch the ground truth
parameters. From a typical chain, we obtain the following posterior means and 95%
posterior intervals: σ̂x = 1.59 [1.18,2.02], σ̂y = 1.63 [1.28,2.08]. Clearly for noisy
time-dependent data, such as state-space models, particles based methods seem to
better address cases where noisy data are affected by both measurement and systemic
noise.

4.2 A pharmacokinetics model

Here we consider a model for pharmacokinetics dynamics. For example we could
formulate amodel to study the Theophylline drug pharmacokinetics. This example has

123

Coupling stochastic EM and approximate Bayesian... 201

often been described in literature devoted to longitudinal data modelling with random
parameters (mixed–effects models), see Pinheiro and Bates (1995) and Donnet and
Samson (2008). Same as in Picchini (2014) here we do not consider a mixed–effects
model. We denote with Xt the level of drug concentration in blood at time t (hrs).
Consider the following non-authonomous stochastic differential equation:

dXt =
(
Dose · Ka · Ke

Cl
e−Kat − KeXt

)
dt + σ

√
XtdWt , t ≥ t0 (10)

where Dose is the known drug oral dose received by a subject, Ke is the elimination
rate constant, Ka the absorption rate constant, Cl the clearance of the drug and σ the
intensity of the intrinsic stochastic noise. We simulate data at n = 100 equispaced
sampling times {t1, tΔ, ..., t100Δ} = {1, 2, ..., 100}whereΔ = t j−t j−1 = 1. The drug
oral dose is chosen to be 4mg.After the drug is administered, we consider as t0 = 0 the
time when the concentration first reaches Xt0 = X0 = 8. The error model is assumed
to be linear, Y j = X j + ε j where the ε j ∼ N (0, σ 2

ε) are i.i.d., j = 1, ..., n. Inference
is based on data {Y1, ...,Yn} collected at corresponding sampling times. Parameter Ka

is assumed known, hence parameters of interest are θ = (Ke,Cl, σ 2, σ 2
ε) as X0 is

also assumed known.
Equation (10) has no available closed-form solution, hence simulated data are cre-

ated in the following way. We first simulate numerically a solution to (10) using the
Euler–Maruyama discretization with stepsize h = 0.05 on the time interval [t0, 100].
The Euler-Maruyama scheme is given by

Xt+h = Xt +
(
Dose · Ka · Ke

Cl
e−Kat − KeXt

)
h + (σ

√
h · Xt)Zt+h

where the {Zt } are i.i.d. N (0, 1) distributed. The grid of generated values X0:N is then
linearly interpolated at sampling times {t1, ..., t100} to give X1:n . Finally residual error
is added to X1:n according to the model Y j = X j + ε j as explained above. Since
the errors ε j are independent, data {Y j } are conditionally independent given the latent
process {Xt }.

Sufficient statistics for SAEM The complete likelihood is given by

p(Y, X0:N ; θ) = p(Y|X0:N ; θ)p(X0:N ; θ) =
n∏
j=1

p(Y j |X j ; θ)

N∏
i=1

p(Xi |Xi−1; θ)

where the unconditional density p(x0) is disregarded in the last product since we
assume X0 deterministic. Hence the complete-data loglikelihood is

Lc(Y, X0:N ; θ) =
n∑
j=1

log p(Y j |X j ; θ) +
N∑
i=1

log p(Xi |Xi−1; θ).

Here p(y j |x j ; θ) is a Gaussian with mean x j and variance σ 2
ε . The transition density

p(xi |xi−1; θ) is not known for this problem, hencewe approximate itwith theGaussian

123

202 U. Picchini, A. Samson

density induced by the Euler-Maruyama scheme, that is

p(xi |xi−1; θ) ≈ 1

σ
√
2πxi−1h

× exp

{
−

[
xi − xi−1 − (Dose·Ka ·Ke

Cl e−Kaτi−1 − Kexi−1
)
h
]2

2σ 2xi−1h

}
.

(11)

Notice the Gaussian distribution implied by (11) shares some connection with tools
developed for optimal states predictions in signal processing, such as the unscented
Kalman filter, e.g. Sitz et al. (2002). We now derive sufficient summary statistics for
the parameters of interest, based on the complete loglikelihood. Regarding σ 2

ε this
is trivial as we only have to consider

∑n
j=1 log p(y j |x j ; θ) to find that a sufficient

statistic is Sσ 2
ε

= ∑n
j=1(y j − x j)2. Regarding the remaining parameters we have to

consider
∑N

i=1 log p(xi |xi−1; θ). For σ 2 a sufficient statistic is

Sσ 2 =
N∑
i=1

([
xi − xi−1 − (Dose·Ka ·Ke

Cl e−Kaτi−1 − Kexi−1
)
h
]2

xi−1h

)
.

Regarding Ke and Cl reasoning is a bit more involved: we can write

N∑
i=1

log p(xi |xi−1; θ) ∝
N∑
i=1

[
xi − xi−1 − (Dose·Ka ·Ke

Cl e−Kaτi−1 − Kexi−1
)
h
]2

xi−1

=
N∑
i=1

[
xi − xi−1√

xi−1
−

(
Dose · Ka · Ke

Cl
√
xi−1

e−Kaτi−1 − Kexi−1√
xi−1

)
h

]2
.

The last equality suggests a linear regression approach E(V) = β1C1 + β2C2 for
“responses” Vi = (xi − xi−1)/

√
xi−1 and “covariates”

Ci1 = Dose · Kae−Kaτi−1h√
xi−1

Ci2 = − xi−1√
xi−1

h = −√
xi−1h

and β1 = Ke/Cl, β2 = Ke. By considering the design matrix C with columns C1

and C2, that is C = [C1, C2], from standard regression theory we have that β̂ =
(C′C)−1C′V is a sufficient statistic for β = (β1, β2), where ′ denotes transposition.
We take SKe := β̂2 also to be used as the updated value of Ke in the maximisations
step of SAEM. Then we have that β̂1 is sufficient for the ratio Ke/Cl and use β̂2/β̂1
as the update of Cl in the M-step of SAEM. The updated values of σ and σε are given

by
√
Sσ 2/N and

√
Sσ 2

ε
/n respectively.

123

Coupling stochastic EM and approximate Bayesian... 203

4.3 Results

Weconsider an experimentwhere 50datasets of lengthn = 100 each are independently
simulated using parameter values (Ke, Ka,Cl, σ, σε) = (0.05, 1.492, 0.04, 0.1, 0.1).
All results pertaining SAEM-ABC use the Gaussian kernel (8). For SAEM-ABC we
use a number of “schedules” to decrease the threshold δ. One of our attempts decreases
the threshold as δ ∈ {0.5, 0.2, 0.1, 0.03} (results for this schedule are reported as
SAEM-ABC(1) in Table 3): same as in the previous application, all we need is to
determine an appropriate order of magnitude for the largest δ. As an heuristic, we have
that the empirical standard deviation of the differences |Y j − Y j−1| is about 0.3. The
first value of δ is used for the first 80 iterations then it is progressively decreased every
50 iterations. For both SAEM-ABC and SAEM-SMCwe use K1 = 250 and K = 300
and optimization started at parameter values very far from the true values: starting
values are Ke = 0.80, Cl = 10, σ = 0.14 and σε = 1. We first show results using
(M, M̄) = (200, 10).We startwithSAEM-ABC, seeFig. 10where the effect of using a
decreasing δ is evident, especially on the trajectories for σε. All trajectories but a single
erratic one converge towards the true parameter values. Estimation results are in Table
3, giving results for three different decreasing schedules for δ, reported as SAEM-
ABC(0) for δ ∈ {0.5, 0.2, 0.1, 0.05, 0.01}, the already mentioned SAEM-ABC(1)
having δ ∈ {0.5, 0.2, 0.1, 0.03} and finally SAEM-ABC(2) where δ ∈ {1, 0.4, 0.1}.
Results are overall satisfactory for all parameters but σ , which remains unidentified
for all attempted SAEM algorithms, including those discussed later. The benefit of

Table 3 Theophylline: medians and 1st–3rd quartiles for estimates obtained on 50 independent simulations
using SAEM-ABC and SAEM-SMC when σε = 0.1

True values Ke Cl σ σε

0.050 0.040 0.1 0.1

(M, M̄) = (200, 10)

SAEM-ABC(0) 0.059 [0.054,0.067] 0.034 [0.027,0.038] 1.57 [1.35,2.15] 0.15 [0.11,0.22]

SAEM-ABC(1) 0.063 [0.058,0.074] 0.031 [0.026,0.035] 2.09 [1.56,2.80] 0.16 [0.13,0.25]

SAEM-ABC(2) 0.073 [0.065,0.088] 0.025 [0.022,0.028] 2.69 [2.44,3.50] 0.32 [0.27,0.37]

SAEM-SMC 0.078 [0.071,0.087] 0.022 [0.019,0.027] 3.45 [3.01,4.09] 0.45 [0.36,0.55]

SAEM-GW 0.061 [0.057,0.066] 0.032 [0.026,0.036] 1.84 [1.44,2.81] 0.12 [0.09,0.21]

(M, M̄) = (1000, 100)

SAEM-ABC(0) 0.061 [0.054,0.065] 0.033 [0.027,0.035] 1.78 [1.48,2.48] 0.13 [0.09,0.19]

SAEM-ABC(1) 0.063 [0.059,0.070] 0.031 [0.025,0.035] 1.93 [1.65,2.41] 0.15 [0.13,0.23]

SAEM-ABC(2) 0.073 [0.064,0.081] 0.024 [0.021,0.028] 2.98 [2.54,3.42] 0.27 [0.24,0.35]

SAEM-SMC 0.062 [0.057,0.068] 0.033 [0.027,0.036] 1.91 [1.40,2.25] 0.12 [0.09,0.19]

SAEM-GW 0.061 [0.057,0.068] 0.032 [0.025,0.035] 1.90 [1.40,2.68] 0.13 [0.1,0.24]

SAEM-ABC(0) denotes results obtained with δ ∈ {0.5, 0.2, 0.1, 0.05, 0.01}, SAEM-ABC(1) denotes
results obtained with δ ∈ {0.5, 0.2, 0.1, 0.03} and SAEM-ABC(2) denotes results obtained with δ ∈
{1, 0.4, 0.1}

123

204 U. Picchini, A. Samson

Ke

0

0.5

1

1.5

Cl

0

0.5

1

σ

0

20

40

60

80

0 100 200 300 400 0 100 200 300 400

0 100 200 300 400 0 100 200 300 400

σ

0

5

10

Fig. 10 Theophylline model: 50 independent estimations using K = 300 iterations of SAEM-ABC when
M = 200 and δ ∈ {0.5, 0.2, 0.1, 0.03}. Top: Ke (left) and Cl (right). Bottom: σ (left) and σε (right).
Horizontal lines are the true parameter values

Ke

0

0.2

0.4

0.6

0.8

Cl

0

50

100

150

200

σ

0

20

40

60

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350

50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400

σ

0

5

10

15

Fig. 11 Theophylline model: 50 independent estimations using K = 300 iterations of SAEM-SMC when
M = 200. Top: Ke (left) and Cl (right). Bottom: σ (left) and σε (right). Horizontal lines are the true
parameter values

decreasing δ to values close to zero are noticeable, that is among the algorithms using
ABC, SAEM-ABC(0) gives the best results.

From results in Table 3 and Fig. 11, again considering the case M = 200, we
notice that SAEM-SMC struggles in identifying most parameters with good preci-
sion. As discussed later on, when showing results with M = 30, it is clear that when

123

Coupling stochastic EM and approximate Bayesian... 205

0

0.1

0.2

0.3

0.4
t=10

0

0.05

0.1

0.15

0.2

0.25

0.3
t=10

0

0.2

0.4

0.6

0.8
t=40

0

0.1

0.2

0.3
t=40

0

1

2

3

4

5

6
t=70

-5 0 5 10 15 20 -10 -5 0 5 10 15 20 25 30

-2 0 2 4 6 8 10 12 -5 0 5 10 15 20 25 30 35 40

-0.5 0 0.5 1 1.5 2 2.5 -5 0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4
t=70

(a) SAEM-ABC(0) at t = 10 (b) SAEM-SMC at t = 10

(c) SAEM-ABC(0) at t = 40 (d) SAEM-SMC at t = 40

(e) SAEM-ABC(0) at t = 70 (f) SAEM-SMC at t = 70

Fig. 12 Kernel smoothed approximations of π(Xt |Y1:t−1) (blue) and π(Xt |Y1:t) (orange) at different
values of t for the case (M = 200, M̄ = 10). Green asterisks are the true values of Xt . Notice scales on
x-axes are different

a very limited amount of particles is available (which is of interest when it is com-
putationally demanding to forward-simulate from a complex model) SAEM-SMC is
suboptimal compared to SAEM-ABC at least for the considered example. However
results improve noticeably for SAEM-SMC as soon as the number of particles is
enlarged, say to M = 1000. In fact for M = 1000 the inference results for SAEM-
ABC(0) and SAEM-SMC are basically the same. It is of course interesting to uncover
the reason why SAEM-ABC(0) performs better than SEM-SMC when the number of
particles is small, e.g. M = 200 (see later on for results with M = 30). In Fig. 12
we compare approximations to the distribution π(Xt |Y1:t−1), that is the distribution
of the state at time t given previous data, and the filtering distribution π(Xt |Y1:t)
including the most recent data. The former one, π(Xt |Y1:t−1), is approximated by
kernel smoothing applied on the particles X(m)

t . The filtering distribution π(Xt |Y1:t)
is approximatedbykernel smoothing assigningweightsW (m)

t to the correspondingpar-
ticles. It is from the (particles induced) discrete distribution approximating π(Xt |Y1:t)

123

206 U. Picchini, A. Samson

that particles are sampled when propagating to the next time point. Both densities are
computed from particles obtained at the last SAEM iteration, K , for different values
of t , at the beginning of the observational interval (t = 10), at t = 40 and towards
the end of the observational interval (t = 70). Since in Fig. 12 we also report the
true values of Xt , we can clearly see that, for SAEM-SMC, as t increases the true
value of Xt is unlikely under π(Xt |Y1:t) (the orange curve). In particular, by look-
ing at the orange curve in panel (f) in Fig. 12 we notice that many of the particles
ending-up far from the true Xt = 1.8 receive non-negligible weight. Instead in panel
(e) only particles very close to the true value of the state receive considerable weight
(notice the different scales on the abscissas for panel (e) and (f)). Therefore it is not
unlikely that for SAEM-SMC several “remote” particles are resampled and propa-
gated. The ones resampled in SAEM-ABC received a weight W (m)

t ∝ Jt,δ which is
large only if the simulated observation is very close to the actual observation, since
δ is very small. Therefore for SAEM-SMC, when M is small, the path sampled in
step 2 of Algorithm 4 (which is from π(X1:tn |Y1:tn)) is poor and the resulting infer-
ence biased. For a larger M (e.g. M = 1000) SAEM-SMC enjoys a larger number of
opportunities for particles to fall close to the targeted observation hence an improved
inference.

An improvement over the bootstrap filter used in SAEM-SMC is given by amethod-
ology where particles are not proposed from the transition density of the latent process
(the latter proposes particles “blindly”with respect to the next data point). For example,
Golightly and Wilkinson (2011) consider a proposal distribution based on a diffusion
bridge, conditionally to observed data. Their methodology is specific for state-space
models driven by a stochastic differential equation whose approximate solution is
obtained via the Euler-Maruyama discretisation, which is what we require. We use
their approach to “propagate forward” particles. We write SAEM-GW to denote a
SAEM algorithm using the proposal sampler in Golightly and Wilkinson (2011). By
looking at Table 3 we notice the improvement over the simpler SAEM-SMC when
M = 200. In fact SAEM-GW gives the best results of all SAEM-based algorithms we
attempted, the downside being that such sampler is not very general and is only appli-
cable to a specific class of models, namely (i) state-space models having an SDE that
has to be numerically solved via Euler-Maruayama, (ii) observations having additive
Gaussian noise, and (iii) observations having a state entering linearly, e.g. y = a ·x+ε

for some constant a.
Same as in Sect. 4.1, we consider Bayesian estimation using a particle marginal

method (PMM). PMM is run with 1000 particles for 2000 MCMC iterations. How-
ever it turns out that PMM cannot be initialized at the same remote starting values
we used for SAEM, as the approximated log-likelihood function at the starting
parameter results not-finite for the considered number of particles. Therefore we
let PMM start at Ke = 0.05, Cl = 0.04, σ = 0.2, σε = 0.3 and use priors
Ke ∼ U (0.01, 0.2), Cl ∼ U (0.01, 0.2), σ ∼ U (0.01, 0.3), σε ∼ U (0.05, 0.5).
Posterior means and 95% intervals are: Ke = 0.076 [0.067,0.084], Cl = 0.056
[0.047,0.068], σ = 0.13 [0.10,0.16], σε = 0.12 [0.099,0.139]. Hence, for starting
parameter values close to the true values PMM behaves well (and estimates σ cor-

123

Coupling stochastic EM and approximate Bayesian... 207

logKe logCl log σ log σ

-10

-5

0

5

SAEM-SMC

Fig. 13 Theophylline model: estimates obtained with SAEM-SMC when M = 30. From left to right:
log Ke , logCl, log σ and log σε . Green lines are the true parameter values on log-scale

logKe logCl log σ log σ

-10

-5

0

5

SAEM-GW

Fig. 14 Theophylline model: estimates obtained with the Golightly-Wilkinson sampler coupled with
SAEM (SAEM-GW) when M = 30. From left to right: log Ke , logCl, log σ and log σε . Green lines
are the true parameter values on log-scale

rectly), but otherwise it might be impossible to initialize PMM, as also shown in
Fasiolo et al. (2016).

We now explore whether the ABC approach can be of aid when saving computa-
tional time is essential, for example when simulating from the model is expensive.
Although the model here considered can be simulated relatively quickly (it requires
numerical integration hence computing times are affected by the size of the inte-
gration stepsize h), assuming this is not the case we explore what could happen
if we can only afford running a simulation with M = 30 particles. We run 100
simulations with this setting. To ease graphic representation in the presence of out-
liers, estimates are reported on log-scales in the boxplots in Figs. 13, 14, and 15.
We notice that, with such a small number of particles, SAEM-ABC is still able
to estimate Ke and Cl accurately whereas SAEM-SMC returns more biased esti-
mates for all parameters. Also, while both methodologies fail in estimating σ and σε

when M = 30 SAEM-ABC is still better than SAEM-SMC confirming the previ-
ous finding that, should the computational budget be very limited, SAEM-ABC is a

123

208 U. Picchini, A. Samson

log Ke log Cl log σ log σ

-10

-5

0

5

SAEM-ABC

Fig. 15 Theophylline model: estimates obtained with SAEM-ABC when M = 30. From left to right:
log Ke , logCl, log σ and log σε . Green lines are the true parameter values on log-scale

viable option. SAEM-GW is instead able to estimate also the residual error variability
σε.

5 Summary

We have introduced a methodology for approximate maximum likelihood estima-
tion of the parameters in state-space models, incorporating an approximate Bayesian
computation (ABC) strategy. The general framework is the stochastic approximation
EM algorithm (SAEM) of Delyon et al. (1999), and we embed a sequential Monte
Carlo ABC filter into SAEM. SAEM requires model-specific analytic computations,
at the very least the derivation of sufficient statistics for the complete log-likelihood, to
approach the parameters maximum likelihood estimate with minimal computational
effort. However at any iteration of SAEM, it is required the availability of a filtered
trajectory of the latent systems state, which we provide via the ABC filter of Jasra et al.
(2012).We call this algorithm SAEM-ABC.An advantage of using theABCfilter is its
flexibility, as it is possible tomodify its setup to influence theweighting of the particles.
In other words, it is possible to tune a positive tolerance δ to enhance the importance
of those particles that are the closest to the observations. This produced sampled tra-
jectories for step 2 of Algorithm 3 that resulted in a less biased parameter inference.
This observation turned especially true for experiments run with a limited number of
particles (M = 30 or 200), which is relevant for computationaly intensive models not
allowing for the propagation of a large number of particles. We compared our SAEM-
ABC algorithmwith a version of SAEMemploying the bootstrap filter of Gordon et al.
(1993). The bootstrap filter is the simplest sequential Monte Carlo algorithm, and is
typically a default option in many software packages (e.g. the smfsb and pomp R
packages,Wilkinson 2015 andKing et al. 2015 respectively). In ourworkwe show that,
in some cases, SAEM-SMC (that is SAEM using a bootstrap filter) is sometimes infe-
rior to SAEM-ABC, for example when the number of particles is small (Sect. 4.3) or
when too frequent resampling causes “particles impoverishment” (Sect. 4.1.3). SAEM-
ABC requires the user to specify a sequence of ABC thresholds δ1 > · · · δL > 0. For

123

Coupling stochastic EM and approximate Bayesian... 209

one-dimensional time-series setting these thresholds is intuitive, since these represent
standard deviations of perturbed (simulated) observations. Therefore the size of the
largest one (δ1) can be determined by looking at plots of the observed time-series.

Ultimately, while we are not claiming that an ABC filter should in general be pre-
ferred to a non-ABC filter, as the former one induces some approximation, it can be
employed when it is difficult to construct (or implement) a more advanced sequen-
tial Monte Carlo filter. In our second application we consider a sequential Monte
Carlo filter due to Golightly and Wilkinson (2011). This filter (which we call GW) is
specifically designed for state-spacemodels driven by stochastic differential equations
(SDEs) requiring numerical discretization. While GW improves noticeably over the
basic bootstrap filter, GW is not very general: again, it is specific for state-space mod-
els driven by SDEs; the observation equation must have latent states entering linearly
and measurement errors must be Gaussian distributed. The ABC approach instead
does not impose any limitation on the model structure.

Acknowledgements We thank anonymous reviewers for helping improve considerably the quality of the
work. Umberto Picchini was partially funded by the Swedish Research Council (VR Grant 2013-5167).
Adeline Samsonwas partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded
by the French program Investissement d’avenir.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Conditional densities for the Gibbs sampler in Sect. 4.1.4.

Here we report the conditional densities for the Gibbs sampler when X is sampled in
block. Here π(σx) and π(σy) are prior densities.

p(σx |σy, X, Y) ∝
n∏
j=1

1

σx
e
− 1

2σ2x
(X j−2 sin(exp(X j−1)))

2

π(σx)

p(σy |σx , X, Y) ∝
n∏
j=1

1

σy
e
− 1

2σ2y
(Y j−X j)

2

π(σy)

p(X|σx , σy, Y) ∝
n∏
j=1

1

σxσy
e
− 1

2σ2y
(Y j−X j)

2− 1
2σ2x

(X j−2 sin(exp(X j−1)))
2

First and second derivatives for the example in Sect. 4.1.

Here we report the first and second derivatives of the complete log-likelihood
Lc(X, Y; θ) with respect to θ = (σ 2

x , σ 2
y).

∂Lc(X, Y; θ)

∂σ 2
x

= − n

2σ 2
x

+ 1

2σ 4
x

n∑
j=1

[X j − 2 sin(exp(X j−1))]2,

123

http://creativecommons.org/licenses/by/4.0/

210 U. Picchini, A. Samson

∂Lc(X, Y; θ)

∂σ 2
y

= − n

2σ 2
y

+ 1

2σ 4
y

n∑
j=1

(Y j − X j)
2,

∂2Lc(X, Y; θ)

∂σ 2
x ∂σ 2

y
= ∂2Lc(X, Y; θ)

∂σ 2
y ∂σ 2

x
= 0,

∂2Lc(X, Y; θ)

∂(σ 2
x)2

= n

2σ 4
x

− 1

σ 6
x

n∑
j=1

[X j − 2 sin(exp(X j−1))]2,

∂2Lc(X, Y; θ)

∂(σ 2
y)2

= n

2σ 4
y

− 1

σ 6
y

n∑
j=1

(Y j − X j)
2.

Fisher Information matrix for the example in Sect. 4.2.

To compute the Fisher Information matrix as suggested in Sect. 3 we need to
differentiate the complete data log-likelihood with respect to the four parameters
θ = (Ke,Cl, σ 2, σ 2

ε). We differentiate w.r.t. (σ 2, σ 2
ε) instead of (σ, σε) because the

complete log-likelihood is expressed as a function of sufficient statistics for (σ 2, σ 2
ε).

Set, for i = 1, . . . , N ,

zi (θ) = xi − xi−1 − h

(
Dose · Ka · Ke

Cl
· e−Kaτi−1 − Ke · xi−1

)
.

The four coordinates of the gradient are:

∂

∂Ke
Lc(Y, X; θ) = − 1

σ 2

N∑
i=1

zi (θ)

xi−1

(
xi−1 − Dose · Ka

Cl
e−Kaτi−1

)

∂

∂Cl
Lc(Y, X; θ) = − 1

σ 2

N∑
i=1

zi (θ)

xi−1

(
Dose · Ka · Ke

Cl2
e−Kaτi−1

)

∂

∂σ 2 Lc(Y, X; θ) = − N

2σ 2 + 1

2hσ 4

N∑
i=1

zi (θ)2

xi−1

∂

∂σ 2
ε

Lc(Y, X; θ) = − n

2σ 2
ε

+ 1

2σ 4
ε

n∑
j=1

(y j − x j)
2.

Entries for the Fisher information matrix are (recall this is a symmetric matrix, there-
fore redundant terms are not reported. Further missing entries consist of zeros):

∂2

∂2Ke
Lc(Y, X; θ) = − h

σ 2

N∑
i=1

(xi−1 − Dose · Ka

Cl
· e−Kaτi−1)2

1

xi−1

123

Coupling stochastic EM and approximate Bayesian... 211

∂2

∂2Cl
Lc(Y, X; θ) = − 1

σ 2

N∑
i=1

{
1

xi−1

[
Dose · Ka · Ke

Cl2
e−Kaτi−1

(
h − 2zi (θ)

Cl

)]}

∂2

∂2σ 2 Lc(Y, X; θ) = N

2σ 4 − 1

hσ 6

N∑
i=1

zi (θ)2

xi−1

∂2

∂2σ 2
ε

Lc(Y, X; θ) = n

2σ 4
ε

− 1

σ 6
ε

n∑
j=1

(y j − x j)
2

∂2

∂Ke∂Cl
Lc(Y, X; θ) = − 1

σ 2

N∑
i=1

1

xi−1

×
{
Dose · Ka

Cl2
e−Kaτi−1

[
h · Ke

(
xi−1 − Dose · Ka

Cl
e−Kaτi−1

)

+ zi (θ)

]}

∂2

∂σ 2∂Ke
Lc(Y, X; θ) = 1

σ 4

N∑
i=1

zi (θ)

xi−1

(
xi−1 − Dose · Ka

Cl
e−Kaτi−1

)

∂2

∂σ 2∂Cl
Lc(Y, X; θ) = 1

σ 4

N∑
i=1

zi (θ)

xi−1

(
Dose · Ka · Ke

Cl2
e−Kaτi−1

)
.

References

Andrieu C, Roberts G (2009) The pseudo-marginal approach for efficient Monte Carlo computations. Ann
Stat 37:697–725

Andrieu C, Doucet A, Holenstein R (2010) Particle Markov chain Monte Carlo methods (with discussion).
J Roy Stat Soc B 72(3):269–342

Beaumont M (2003) Estimation of population growth or decline in genetically monitored populations.
Genetics 164(3):1139–1160

Cappé O, Moulines E, Rydén T (2005) Inference in hidden Markov models. Springer, New York
Cappe O, Godsill SJ, Moulines E (2007) An overview of existing methods and recent advances in sequential

Monte Carlo. Proc IEEE 95:899–924
Delyon B, Lavielle M, Moulines E (1999) Convergence of a stochastic approximation version of the EM

algorithm. Ann Stat 27:94–128
Dempster AP, Laird N, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm.

J Roy Stat Soc B 39(1):1–38
Ditlevsen S, Samson A (2014) Estimation in the partially observed stochastic Morris-Lecar neuronal model

with particle filter and stochastic approximation methods. Ann Appl Stat 2:674–702
Donnet S, Samson A (2008) Parametric inference for mixed models defined by stochastic differential

equations. ESAIM Probab Stat 12:196–218
Doucet A, de Freitas N, Gordon N (eds) (2001) Sequential Monte Carlo methods in practice. Springer, New

York
Fasiolo M, Pya N, Wood S (2016) A comparison of inferential methods for highly nonlinear state space

models in ecology and epidemiology. Stat Sci 31(1):96–118
Golightly A, Wilkinson D (2011) Bayesian parameter inference for stochastic biochemical network models

using particle Markov chain Monte Carlo. Interface Focus 1(6):807–820
Gordon N, Salmond D, Smith A (1993) Novel approach to nonlinear/non-Gaussian Bayesian state estima-

tion. IEE Proc F Radar Signal Process 140:107–113
Herbst E, Schorfheide F (2017) Tempered particle filtering. Technical Report 23448, National Bureau of

Economic Research, May

123

212 U. Picchini, A. Samson

Huys Q, Ahrens MB, Paninski L (2006) Efficient estimation of detailed single-neuron models. J Neuro-
physiol 96(2):872–890

Huys QJM, Paninski L (2009) Smoothing of, and parameter estimation from, noisy biophysical recordings.
PLoS Comput Biol 5(5):e1000379

Ionides E, Nguyen D, Atchadé Y, Stoev S, King A (2015) Inference for dynamic and latent variable models
via iterated, perturbed Bayes maps. Proc Nat Acad Sci 112(3):719–724

Jasra A, Singh S, Martin J, McCoy E (2012) Filtering via approximate Bayesian computation. Stat Comput
22(6):1223–1237

KantasN,DoucetA, Singh S,Maciejowski J, ChopinN (2015)On particlemethods for parameter estimation
in state-space models. Stat Sci 30(3):328–351

King A, Nguyen D, Ionides E (2015) Statistical inference for partially observed Markov processes via the
R package pomp. J Stat Softw 69(12). doi:10.18637/jss.v069.i12

Kitagawa G (1996) Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J
Comput Graph Stat 5(1):1–25

Kuhn E, Lavielle M (2005) Maximum likelihood estimation in nonlinear mixed effects models. Comput
Stat Data Anal 49(4):1020–1038

Lavielle M (2014) Mixed effects models for the population approach: models, tasks, methods and tools.
CRC Press, Boca Raton

Lindsten F (2013) An efficient stochastic approximation EM algorithm using conditional particle filters. In:
IEEE international conference on acoustics, speech and signal processing (ICASSP) pp 6274–6278

Liu J (2008) Monte Carlo strategies in scientific computing. Springer, New York
Louis T (1982) Finding the observed information matrix when using the EM algorithm. J Roy Stat Soc B

44:226–233
Marin JM, Pudlo P, Robert CP, Ryder R (2012) Approximate Bayesian computational methods. Stat Comput

22(6):1167–1180
Martin G,McCabe B, Frazier D, ManeesoonthornW, Robert CP (2016) Auxiliary likelihood-based approx-

imate Bayesian computation in state space models. arXiv:1604.07949
PapaspiliopoulosO, Roberts G, SköldM (2007)A general framework for the parametrization of hierarchical

models. Stat Sci 22:59–73
Picchini U (2014) Inference for SDE models via approximate Bayesian computation. J Comput Graph Stat

23(4):1080–1100
Picchini U, Forman J (2015) Accelerating inference for diffusions observed with measurement error and

large sample sizes using approximate Bayesian computation. J Stat Comput Simul 86:195–213
Pinheiro J, Bates D (1995) Approximations to the log-likelihood function in the nonlinear mixed-effects

model. J Comput Graph Stat 4(1):12–35
Sherlock C, Thiery A, Roberts G, Rosenthal J (2015) On the efficiency of pseudo-marginal random walk

Metropolis algorithms. Ann Stat 43(1):238–275
Sitz A, Schwarz U, Kurths J, Voss H (2002) Estimation of parameters and unobserved components for

nonlinear systems from noisy time series. Phys Rev E 66(1):016210
Wilkinson D (2015) SMfSB: stochastic modelling for systems biology https://cran.r-project.org/web/

packages/smfsb/

123

http://dx.doi.org/10.18637/jss.v069.i12
http://arxiv.org/abs/1604.07949
https://cran.r-project.org/web/packages/smfsb/
https://cran.r-project.org/web/packages/smfsb/

	Coupling stochastic EM and approximate Bayesian computation for parameter inference in state-space models
	Abstract
	1 Introduction
	2 The complete likelihood and stochastic approximation EM
	2.1 The standard SAEM algorithm
	2.2 The SAEM algorithm coupled to an ABC simulation step

	3 SAEM coupled with an ABC-SMC algorithm for filtering
	4 Simulation studies
	4.1 Non-linear Gaussian state-space model
	4.1.1 Results
	4.1.2 Comparison with iterative filtering and a pseudo-marginal Bayesian algorithm
	4.1.3 The particles impoverishment problem
	4.1.4 Relation with Gibbs sampling

	4.2 A pharmacokinetics model
	4.3 Results

	5 Summary
	Acknowledgements
	Conditional densities for the Gibbs sampler in Sect. 4.1.4.
	First and second derivatives for the example in Sect. 4.1.
	Fisher Information matrix for the example in Sect. 4.2.
	References

