Skip to main content
Log in

The odd log-logistic Topp–Leone G family of distributions: heteroscedastic regression models and applications

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

We introduce a new class of distributions and provide a comprehensive treatment of its mathematical properties. The maximum likelihood method is discussed to estimate the parameters of the new model by means of Monte-Carlo simulation study. The heteroscedastic regression models with long-term survival are introduced to model data sets with the non homogeneity of the error variances in the presence of cured individuals. The potentiality of the proposed models is illustrated by means of four real data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alizadeh M, Emadi M, Doostparast M, Cordeiro GM, Ortega EMM, Pescim RR (2015) A new family of distributions: the Kumaraswamy odd log-logistic, properties and applications. Hacet J Math Stat 44:1491–1512

    MathSciNet  MATH  Google Scholar 

  • Alzaatreh A, Lee C, Famoye F (2013) A new method for generating families of continuous distributions. Metron 71:63–79

    Article  MathSciNet  MATH  Google Scholar 

  • Alzaatreh A, Famoye F, Lee C (2014) The gamma-normal distribution: properties and applications. Comput Stat Data Anal 69:67–80

    Article  MathSciNet  Google Scholar 

  • Berkson J, Gage RP (1952) Survival curve for cancer patients following treatment. J Am Stat Assoc 47:501–515

    Article  Google Scholar 

  • Boag JW (1949) Maximum likelihood estimates of the proportion of patients cured by cancer therapy. J R Stat Soc Ser B 11:15–53

    MATH  Google Scholar 

  • Braga AS, Cordeiro GM, da Ortega EMM, Cruz JN (2016) The odd log-logistic normal distribution: theory and applications in analysis of experiments. J Stat Theory Pract. https://doi.org/10.1080/15598608.2016.1141127

    MathSciNet  Google Scholar 

  • Chen G, Balakrishnan N (1995) A general purpose approximate goodness-of-fit test. J Qual Technol 27:154–161

    Article  Google Scholar 

  • Cordeiro GM, de Castro M (2011) A new family of generalized distributions. J Stat Comput Simul 81:883–898

    Article  MathSciNet  MATH  Google Scholar 

  • Cordeiro GM, Nadarajah S, Ortega EMM (2012) The Kumaraswamy Gumbel distribution. Stat Methods Appl 21:139–168

    Article  MathSciNet  Google Scholar 

  • Cordeiro GM, Alizadeh M, Tahir MH, Mansoor M, Bourguignon M, Hamedani GG (2016a) The beta odd log-logistic generalized family of distributions. Hacet J Math Stat 45:1175–1202

    MathSciNet  MATH  Google Scholar 

  • Cordeiro GM, Alizadeh M, Ortega EM, Serrano LHV (2016b) The Zografos–Balakrishnan odd log-logistic family of distributions: properties and applications. Hacet J Math Stat 45:1781–1803

    MathSciNet  MATH  Google Scholar 

  • Eugene N, Lee C, Famoye F (2002) Beta-normal distribution and its applications. Commun Stat Theory Methods 31:497–512

    Article  MathSciNet  MATH  Google Scholar 

  • Feigl P, Zelen M (1965) Estimation of exponential probabilities with concomitant information. Biometrics 21:826–838

    Article  Google Scholar 

  • Genc A (2012) Moments of order statistics of Topp Leone distribution. Stat Pap 53:117–131

    Article  MathSciNet  MATH  Google Scholar 

  • Genc A (2013) Estimation of the P(X \(>\) Y ) with Topp Leone distribution. J Stat Comput Simul 83:326–339

    Article  MathSciNet  MATH  Google Scholar 

  • Ghitany ME, Kotz S, Xie M (2005) On some reliability measures and their stochastic orderings for the Topp Leone distribution. J Appl Stat 32:715–722

    Article  MathSciNet  MATH  Google Scholar 

  • Gleaton JU, Lynch JD (2006) Properties of generalized log-logistic families of lifetime distributions. J Prob Stat Sci 4:51–64

    MathSciNet  Google Scholar 

  • Gupta RD, Kundu D (1999) Theory and methods: generalized exponential distributions. Aust N Z J Stat 41:173–188

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta RC, Gupta PL, Gupta RD (1998) Modeling failure time data by Lehman alternatives. Commun Stat Theory Methods 27:887–904

    Article  MathSciNet  MATH  Google Scholar 

  • Haghbin H, Ozel G, Alizadeh M, Hamedani GG (2016) A new generalized odd log-logistic family of distributions. Commun Stat Theory Methods. https://doi.org/10.1080/03610926.2016.1222428.

    MATH  Google Scholar 

  • Jacome AAA, Wohnrath DR, Neto CS, Fregnani JHTG, Quinto AL, Oliveira ATT, Vazquez VL, Fava G, Martinez EZ, Santos JS (2013) Effect of adjuvant chemoradiotherapy on overall survival of gastric cancer patients submitted to D2 lymphadenectomy. J Gastric Cancer 16:233–238

    Article  Google Scholar 

  • Kakde CS, Shirke DT (2006) On exponentiated lognormal distribution. Int J Agric Stat Sci 2:319–326

    Google Scholar 

  • Kotz S, Seier E (2007) Kurtosis of the Topp–Leone distributions. Interstat 1:1–15

    Google Scholar 

  • Martinez EZ, Achcar JA, Jácome AAA, Santos JS (2013) Mixture and non-mixture cure fraction models based on the generalized modifi ed Weibull distribution with an application to gastric cancer data. Comput Methods Prog Biomed 112:343–355

    Article  Google Scholar 

  • Mudholkar GS, Srivastava DK (1993) Exponentiated Weibull family for analysing bathtub failure rate data. IEEE Trans Reliab 42:299–302

    Article  MATH  Google Scholar 

  • Mudholkar GS, Srivastava DK, Freimer M (1995) The exponentiated Weibull family: a reanalysis of the bus-motor-failure data. Technometrics 37:436–445

    Article  MATH  Google Scholar 

  • Nadarajah S (2006) The exponentiated Gumbel distribution with climate application. Environmetrics 17:13–23

    Article  MathSciNet  Google Scholar 

  • Nadarajah S, Gupta AK (2007) The exponentiated gamma distribution with application to drought data. Calcutta Stat Assoc Bull 59:29–54

    Article  MathSciNet  MATH  Google Scholar 

  • Nadarajah S, Kotz S (2006) The exponentiated type distributions. Acta Appl Math 92:97–111

    Article  MathSciNet  MATH  Google Scholar 

  • Nadarajah S, Cordeiro GM, Ortega EMM (2015) The Zografos–Balakrishnan-G family of distributions: mathematical properties and applications. Commun Stat Theory Methods 44:186–215

    Article  MathSciNet  MATH  Google Scholar 

  • Nichols MD, Padgett WJ (2006) A bootstrap control chart for Weibull percentiles. Qual Reliab Eng Int 22:141–151

    Article  Google Scholar 

  • Topp CW, Leone FC (1955) A family of J-shaped frequency functions. J Am Stat Assoc 50:209–219

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Rasekhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, M., Lak, F., Rasekhi, M. et al. The odd log-logistic Topp–Leone G family of distributions: heteroscedastic regression models and applications. Comput Stat 33, 1217–1244 (2018). https://doi.org/10.1007/s00180-017-0780-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-017-0780-9

Keywords

Navigation