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Abstract

In this paper, we propose a Ward-like hierarchical clustering algorithm including

spatial/geographical constraints. Two dissimilarity matrices D0 and D1 are inputted,

along with a mixing parameter α ∈ [0, 1]. The dissimilarities can be non-Euclidean

and the weights of the observations can be non-uniform. The first matrix gives the

dissimilarities in the “feature space” and the second matrix gives the dissimilarities

in the “constraint space”. The criterion minimized at each stage is a convex combi-

nation of the homogeneity criterion calculated with D0 and the homogeneity criterion

calculated with D1. The idea is then to determine a value of α which increases the

spatial contiguity without deteriorating too much the quality of the solution based on

the variables of interest i.e. those of the feature space. This procedure is illustrated

on a real dataset using the R package ClustGeo.

Keywords: Ward-like hierarchical clustering, Soft contiguity constraints, Pseudo-inertia,

Non-Euclidean dissimilarities, Geographical distances.

1 Introduction

The difficulty of clustering a set of n objects into k disjoint clusters is one that is well known

among researchers. Many methods have been proposed either to find the best partition

according to a dissimilarity-based homogeneity criterion, or to fit a mixture model of multi-

variate distribution function. However, in some clustering problems, it is relevant to impose
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constraints on the set of allowable solutions. In the literature, a variety of different solutions

have been suggested and applied in a number of fields, including earth science, image pro-

cessing, social science, and - more recently - genetics. The most common type of constraints

are contiguity constraints (in space or in time). Such restrictions occur when the objects in

a cluster are required not only to be similar to one other, but also to comprise a contiguous

set of objects. But what is a contiguous set of objects?

Consider first that the contiguity between each pair of objects is given by a matrix

C = (cij)n×n, where cij = 1 if the ith and the jth objects are regarded as contiguous, and 0

if they are not. A cluster C is then considered to be contiguous if there is a path between

every pair of objects in C (the subgraph is connected). Several classical clustering algorithms

have been modified to take this type of constraint into account (see e.g., Murtagh 1985a;

Legendre and Legendre 2012; Bécue-Bertaut et al. 2014). Surveys of some of these methods

can be found in Gordon (1996) and Murtagh (1985b). For instance, the standard hierarchi-

cal procedure based on Lance and Williams formula (1967) can be constrained by merging

only contiguous clusters at each stage. But what defines “contiguous” clusters? Usually, two

clusters are regarded as contiguous if there are two objects, one from each cluster, which

are linked in the contiguity matrix. But this can lead to reversals (i.e. inversions, upward

branching in the tree) in the hierarchical classification. It was proven that only the complete

link algorithm is guaranteed to produce no reversals when relational constraints are intro-

duced in the ordinary hierarchical clustering procedure (Ferligoj and Batagelj 1982). Recent

implementation of strict constrained clustering procedures are available in the R package

const.clust (Legendre 2014) and in the Python library clusterpy (Duque et al. 2011).

Hierarchical clustering of SNPs (Single Nucleotide Polymorphism) with strict adjacency con-

straint is also proposed in Dehman et al. (2015) and implemented in the R package BALD

(www.math-evry.cnrs.fr/logiciels/bald). The recent R package Xplortext (Bécue-Bertaut

et al 2017) implements also chronogically constrained agglomerative hierarchical clustering

for the analysis of textual data.

The previous procedures which impose strict contiguity may separate objects which are

very similar into different clusters, if they are spatially apart. Other non-strict constrained

procedures have then been developed, including those referred to as soft contiguity or spatial

constraints. For example, Oliver and Webster (1989) and Bourgault et al. (1992) suggest

running clustering algorithms on a modified dissimilarity matrix. This dissimilarity matrix is

a combination of the matrix of geographical distances and the dissimilarity matrix computed

from non-geographical variables. According to the weights given to the geographical dissim-

ilarities in this combination, the solution will have more or less spatially contiguous clusters.

However, this approach raises the problem of defining weight in an objective manner.

In image processing, there are many approaches for image segmentation including for

instance usage of convolution and wavelet transforms. In this field non-strict spatially con-

strained clustering methods have been also developed. Objects are pixels and the most
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common choices for the neighborhood graph are the four and eight neighbors graphs. A

contiguity matrix C is used (and not a geographical dissimilarity matrix as previously) but

the clusters are not strictly contiguous, as a cluster of pixels does not necessarily repre-

sent a single region on the image. Ambroise et al. (1997, 1998) suggest a clustering al-

gorithm for Markov random fields based on an EM (Expectation-Maximization) algorithm.

This algorithm maximizes a penalized likelihood criterion and the regularization parame-

ter gives more or less weight to the spatial homogeneity term (the penalty term). Recent

implementations of spatially-located data clustering algorithms are available in SpaCEM3

(spacem3.gforge.inria.fr), dedicated to Spatial Clustering with EM and Markov Models. This

software uses the model proposed in Vignes and Forbes (2009) for gene clustering via in-

tegrated Markov models. In a similar vein, Miele et al. (2014) proposed a model-based

spatially constrained method for the clustering of ecological networks. This method embeds

geographical information within an EM regularization framework by adding some constraints

to the maximum likelihood estimation of parameters. The associated R package is available

at http://lbbe.univ-lyon1.fr/geoclust. Note that all these methods are partitioning methods

and that the constraints are neighborhood constraints.

In this paper, we propose a hierarchical clustering (and not partitioning) method includ-

ing spatial constraints (not necessarily neighborhood constraints). This Ward-like algorithm

uses two dissimilarity matrices D0 and D1 and a mixing parameter α ∈ [0, 1]. The dissim-

ilarities are not necessarily Euclidean (or non Euclidean) distances and the weights of the

observations can be non-uniform. The first matrix gives the dissimilarities in the ‘feature

space’ (socio-economic variables or grey levels for instance). The second matrix gives the

dissimilarities in the ‘constraint space’. For instance, D1 can be a matrix of geographical

distances or a matrix built from the contiguity matrix C. The mixing parameter α sets

the importance of the constraint in the clustering procedure. The criterion minimized at

each stage is a convex combination of the homogeneity criterion calculated with D0 and

the homogeneity criterion calculated with D1. The parameter α (the weight of this convex

combination) controls the weight of the constraint in the quality of the solutions. When α

increases, the homogeneity calculated with D0 decreases whereas the homogeneity calculated

with D1 increases. The idea is to determine a value of α which increases the spatial-contiguity

without deteriorating too much the quality of the solution on the variables of interest. The R

package ClustGeo (Chavent et al. 2017) implements this constrained hierarchical clustering

algorithm and a procedure for the choice of α.

The paper is organized as follows. After a short introduction (this section), Section 2

presents the criterion optimized when the Lance-Williams (1967) parameters are used in

Ward’s minimum variance method but dissimilarities are not necessarily Euclidean (or non-

Euclidean) distances. We also show how to implement this procedure with the package

ClustGeo (or the R function hclust) when non-uniform weights are used. In Section 3 we

present the constrained hierarchical clustering algorithm which optimizes a convex combi-
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nation of this criterion calculated with two dissimilarity matrices. Then the procedure for

the choice of the mixing parameter is presented as well as a description of the functions

implemented in the package ClustGeo. In Section 4 we illustrate the proposed hierarchical

clustering process with geographical constraints using the package ClustGeo before a brief

discussion given in Section 5.

Throughout the paper, a real dataset is used for illustration and reproducibility purposes.

This dataset contains 303 French municipalities described based on four socio-economic

variables. The matrix D0 will contain the socio-economic distances between municipalities

and the matrix D1 will contain the geographical distances. The results will be easy to

visualize on a map.

2 Ward-like hierarchical clustering with dissimilarities

and non-uniform weights

Let us consider a set of n observations. Let wi be the weight of the ith observation for

i = 1, . . . , n. Let D = [dij] be a n×n dissimilarity matrix associated with the n observations,

where dij is the dissimilarity measure between observations i and j. Let us recall that the

considered dissimilarity matrix D is not necessarily a matrix of Euclidean (or non-Euclidean)

distances. When D is not a matrix of Euclidean distances, the usual inertia criterion (also

referred to as variance criterion) used in Ward (1963) hierarchical clustering approach is

meaningless and the Ward algorithm implemented with the Lance and Williams (1967)

formula has to be re-interpreted. The Ward method has already been generalized to use with

non-Euclidean distances, see e.g. Strauss and von Maltitz (2017) for l1 norm or Manhattan

distances. In this section the more general case of dissimilarities is studied. We first present

the homogeneity criterion which is optimized in that case and the underlying aggregation

measure which leads to a Ward-like hierarchical clustering process. We then provide an

illustration using the package ClustGeo and the well-known R function hclust.

2.1 The Ward-like method

Pseudo-inertia. Let us consider a partition PK = (C1, . . . , CK) in K clusters. The pseudo-

inertia of a cluster Ck generalizes the inertia to the case of dissimilarity data (Euclidean or

not) in the following way :

I(Ck) =
∑
i∈Ck

∑
j∈Ck

wiwj
2µk

d2ij (1)

where µk =
∑

i∈Ck wi is the weight of Ck. The smaller the pseudo-inertia I(Ck) is, the more

homogenous are the observations belonging to the cluster Ck.
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The pseudo within-cluster inertia of the partition PK is therefore:

W (PK) =
K∑
k=1

I(Ck).

The smaller this pseudo within-inertia W (PK) is, the more homogenous is the partition in

K clusters.

Spirit of the Ward hierarchical clustering. To obtain a new partition PK in K clusters

from a given partition PK+1 in K+1 clusters, the idea is to aggregate the two clusters A and

B of PK+1 such that the new partition has minimum within-cluster inertia (heterogeneity,

variance), that is:

arg min
A,B∈PK+1

W (PK), (2)

where PK = PK+1\{A,B} ∪ {A ∪ B} and

W (PK) = W (PK+1)− I(A)− I(B) + I(A ∪ B).

Since W (PK+1) is fixed for a given partition PK+1, the optimization problem (2) is equivalent

to:

min
A,B∈PK+1

I(A ∪ B)− I(A)− I(B). (3)

The optimization problem is therefore achieved by defining

δ(A,B) := I(A ∪ B)− I(A)− I(B)

as the aggregation measure between two clusters which is minimized at each step of the

hierarchical clustering algorithm. Note that δ(A,B) = W (PK) −W (PK+1) can be seen as

the increase of within-cluster inertia (loss of homogeneity).

Ward-like hierarchical clustering process for non-Euclidean dissimilarities. The

interpretation of the Ward hierarchical clustering process in the case of dissimilarity data is

the following:

• Step K = n: initialization.

The initial partition Pn in n clusters (i.e. each cluster only contains an observation) is

unique.

• Step K = n − 1, . . . , 2: obtaining the partition in K clusters from the partition in

K + 1 clusters.

At each step K, the algorithm aggregates the two clusters A and B of PK+1 according

to the optimization problem (3) such that the increase of the pseudo within-cluster

inertia is minimum for the selected partition over the other ones in K clusters.
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• Step K = 1: stop. The partition P1 in one cluster (containing the n observations) is

obtained.

The hierarchically-nested set of such partitions {Pn, . . . ,PK , . . . ,P1} is represented graph-

ically by a tree (also called dendrogram) where the height of a cluster C = A ∪ B is

h(C) := δ(A,B).

In practice, the aggregation measures between the new cluster A ∪ B and any cluster D
of PK+1 are calculated at each step thanks to the well-known Lance and Williams (1967)

equation:

δ(A ∪ B,D) =
µA + µD

µA + µB + µD
δ(A,D) +

µB + µD
µA + µB + µD

δ(B,D)

− µD
µA + µB + µD

δ(A,B).

(4)

In the first step the partition is Pn and the aggregation measures between the singletons

are calculated with

δij := δ({i}, {j}) =
wiwj
wi + wj

d2ij,

and stored in the n × n matrix ∆ = [δij]. For each subsequent step K, the Lance and

Williams formula (4) is used to build the corresponding K ×K aggregation matrix.

The hierarchical clustering process described above is thus suited for non-Euclidean dis-

similarities and then for non-numerical data. In this case, it optimises the pseudo within-

cluster inertia criterion (3).

Case when the dissimilarities are Euclidean distances. When the dissimilarities

are Euclidean distances calculated from a numerical data matrix X of dimension n × p for

instance, the pseudo-inertia of a cluster Ck defined in (1) is now equal to the inertia of the

observations in Ck:
I(Ck) =

∑
i∈Ck

wid
2(xi, gk)

where xi ∈ <p is the ith row ofX associated with the ith observation, and gk = 1
µk

∑
i∈Ck wixi ∈

Rp is the center of gravity of Ck. The aggregation measure δ(A,B) between two clusters is

written then as:

δ(A,B) =
µAµB
µA + µB

d2(gA, gB).

2.2 Illustration using the package ClustGeo

Let us examine how to properly implement this procedure with R. The dataset is made up

of n = 303 French municipalities described based on p = 4 quantitative variables and is

available in the package ClustGeo. A more complete description of the data is provided in

Section 4.1.
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> library(ClustGeo)

> data(estuary)

> names(estuary)

[1] "dat" "D.geo" "map"

To carry out Ward hierarchical clustering, the user can use the function hclustgeo imple-

mented in the package ClustGeo taking the dissimilarity matrix D (which is an object of class

dist, i.e. an object obtained with the function dist or a dissimilarity matrix transformed

in an object of class dist with the function as.dist) and the weights w = (w1, . . . , wn) of

observations as arguments.

> D <- dist(estuary$dat)

> n <- nrow(estuary$dat)

> tree <- hclustgeo(D, wt=rep(1/n,n))

Remarks.

• The function hclustgeo is a wrapper of the usual function hclust with the following

arguments:

– method = "ward.D",

– d = ∆,

– members = w.

For instance, when the observations are all weighted by 1/n , the argument d must be

the matrix ∆ = D2

2n
and not the dissimilarity matrix D:

> tree <- hclust(D^2/(2*n), method="ward.D")

• As mentioned before, the user can check that the sum of the heights in the dendrogram

is equal to the total pseudo-inertia of the dataset:

> inertdiss(D, wt=rep(1/n, n)) # the pseudo-inertia of the data

[1] 1232.769

> sum(tree$height)

[1] 1232.769

• When the weights are not uniform, the calculation of the matrix ∆ takes a few lines of

code and the use of the function hclustgeo is clearly more convenient than hclust:

> w <- estuary$map@data$POPULATION # non-uniform weights

> tree <- hclustgeo(D, wt=w)

> sum(tree$height)

[1] 1907989
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versus

> Delta <- D

> for (i in 1:(n-1)) {

for (j in (i+1):n) {

Delta[n*(i-1) - i*(i-1)/2 + j-i] <-

Delta[n*(i-1) - i*(i-1)/2 + j-i]^2*w[i]*w[j]/(w[i]+w[j])

}}

> tree <- hclust(Delta, method="ward.D", members=w)

> sum(tree$height)

[1] 1907989

3 Ward-like hierarchical clustering with two dissimi-

larity matrices

Let us consider again a set of n observations, and let wi be the weight of the ith observation

for i = 1, . . . , n. Let us now consider that two n × n dissimilarity matrices D0 = [d0,ij]

and D1 = [d1,ij] are provided. For instance, let us assume that the n observations are

municipalities, D0 can be based on a numerical data matrix of p0 quantitative variables

measured on the n observations and D1 can be a matrix containing the geographical distances

between the n observations.

In this section, a Ward-like hierarchical clustering algorithm is proposed. A mixing parameter

α ∈ [0, 1] allows the user to set the importance of each dissimilarity matrix in the clustering

procedure. More specifically, if D1 gives the dissimilarities in the constraint space, the mixing

parameter α sets the importance of the constraint in the clustering procedure and controls

the weight of the constraint in the quality of the solutions.

3.1 Hierarchical clustering algorithm with two dissimilarity ma-

trices

For a given value of α ∈ [0, 1], the algorithm works as follows. Note that the partition in K

clusters will be hereafter indexed by α as follows: PαK .

Definitions. The mixed pseudo inertia of the cluster Cα
k (called mixed inertia hereafter

for sake of simplicity) is defined as

Iα(Cαk ) = (1− α)
∑
i∈Cαk

∑
j∈Cαk

wiwj
2µαk

d20,ij + α
∑
i∈Cαk

∑
j∈Cαk

wiwj
2µαk

d21,ij, (5)

where µαk =
∑

i∈Cαk
wi is the weight of Cαk and d0,ij (resp. d1,ij) is the normalized dissimilarity

between observations i and j in D0 (resp. D1).
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The mixed pseudo within-cluster inertia (called mixed within-cluster inertia hereafter for

sake of simplicity) of a partition PαK = (Cα1 , . . . , CαK) is the sum of the mixed inertia of its

clusters:

Wα(PαK) =
K∑
k=1

Iα(Cαk ). (6)

Spirit of the Ward-like hierarchical clustering. As previously, in order to obtain a

new partition PαK in K clusters from a given partition PαK+1 in K + 1 clusters, the idea is

to aggregate the two clusters A and B of PK+1 such that the new partition has minimum

mixed within-cluster inertia. The optimization problem can now be expressed as follows:

arg min
A,B∈PαK+1

Iα(A ∪ B)− Iα(A)− Iα(B). (7)

Ward-like hierarchical clustering process.

• Step K = n: initialization.

The dissimilarities can be re-scaled between 0 and 1 to obtain the same order of mag-

nitude: for instance,

D0 ←
D0

max(D0)
and D1 ←

D1

max(D1)
.

Note that this normalization step can also be done in a different way.

The initial partition Pαn =: Pn in n clusters (i.e. each cluster only contains an obser-

vation) is unique and thus does not depend on α.

• Step K = n − 1, . . . , 2: obtaining the partition in K clusters from the partition in

K + 1 clusters.

At each step K, the algorithm aggregates the two clusters A and B of PαK+1 according

to the optimization problem (7) such that the increase of the mixed within-cluster

inertia is minimum for the selected partition over the other ones in K clusters.

More precisely, at step K, the algorithm aggregates the two clusters A and B such

that the corresponding aggregation measure

δα(A,B) := Wα(PαK+1)−Wα(PαK) = Iα(A ∪ B)− Iα(A)− Iα(B)

is minimum.

• Step K = 1: stop. The partition Pα1 =: P1 in one cluster is obtained. Note that this

partition is unique and thus does not depend on α.
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In the dendrogram of the corresponding hierarchy, the value (height) of a cluster A ∪ B is

given by the agglomerative cluster criterion value δα(A,B).

In practice, the Lance and Williams equation (4) remains true in this context (where δ

must be replaced by δα). The aggregation measure between two singletons are written now:

δα({i}, {j}) = (1− α)
wiwj
wi + wj

d20,ij + α
wiwj
wi + wj

d21,ij.

The Lance and Williams equation is then applied to the matrix

∆α = (1− α)∆0 + α∆1.

where ∆0 (resp. ∆1) is the n × n matrix of the values δ0,ij =
wiwj
wi+wj

d20,ij (resp. δ1,ij =
wiwj
wi+wj

d21,ij).

Remarks.

• The proposed procedure is different from applying directly the Ward algorithm to the

“dissimilarity” matrix obtained via the convex combination Dα = (1 − α)D0 + αD1.

The main benefit of the proposed procedure is that the mixing parameter α clearly

controls the part of pseudo-inertia due to D0 and D1 in (5). This is not the case when

applying directly the Ward algorithm to Dα since it is based on a unique pseudo-inertia.

• When α = 0 (resp. α = 1), the hierarchical clustering is only based on the dissimilarity

matrix D0 (resp. D1). A procedure to determine a suitable value for the mixing

parameter α is proposed hereafter, see Section 3.2.

3.2 A procedure to determine a suitable value for the mixing pa-

rameter α

The key point is the choice of a suitable value for the mixing parameter α ∈ [0, 1]. This

parameter logically depends on the number of clusters K and this logical dependence is an

issue when it comes to decide an optimal value for the parameter α. In this paper a practical

(but not globally optimal) solution to this issue is proposed: conditioning on K and choosing

α that best compromises between loss of socio-economic and loss of geographical homogene-

ity. Of course other solutions than conditioning on K could be explored (conditioning on α

or defining a global criterion) but these solutions seem to be more difficult to implement in

a sensible procedure.

To illustrate the idea of the proposed procedure, let us assume that the dissimilarity ma-

trix D1 contains geographical distances between n municipalities, whereas the dissimilarity

matrix D0 contains distances based on a n×p0 data matrix X0 of p0 socio-economic variables

measured on these n municipalities. An objective of the user could be to determine a value
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of α which increases the geographical homogeneity of a partition in K clusters without ad-

versely affecting socio-economic homogeneity. These homogeneities can be measured using

the appropriate pseudo within-cluster inertias.

Let β ∈ [0, 1]. Let us introduce the notion of proportion of the total mixed (pseudo)

inertia explained by the partition PαK in K clusters:

Qβ(PαK) = 1− Wβ(PαK)

Wβ(P1)
∈ [0, 1].

Some comments on this criterion.

• When β = 0, the denominator W0(P1) is the total (pseudo) inertia based on the dis-

similarity matrix D0 and the numerator is the (pseudo) within-cluster inertia W0(PαK)

based on the dissimilarity matrix D0, i.e. only from the socio-economic point of view

in our illustration.

The higher the value of the criterion Q0(PαK), the more homogeneous the partition PαK
is from the socio-economic point of view (i.e. each cluster Cαk , k = 1, . . . , K has a low

inertia I0(Cαk ) which means that individuals within the cluster are similar).

When the considered partition PαK has been obtained with α = 0, the criterion Q0(PαK)

is obviously maximal (since the partition P0
K was obtained by using only the dissimi-

larity matrix D0), and this criterion will naturally tend to decrease as α increases from

0 to 1.

• Similarly, when β = 1, the denominator W1(P1) is the total (pseudo) inertia based on

the dissimilarity matrix D1 and the numerator is the (pseudo) within-cluster inertia

W1(PαK) based on the dissimilarity matrix D1, i.e. only from a geographical point of

view in our illustration.

Therefore, the higher the value of the criterion Q1(PαK), the more homogeneous the

partition PαK from a geographical point of view.

When the considered partition PαK has been obtained with α = 1, the criterion Q1(PαK)

is obviously maximal (since the partition P1
K was obtained by using only the dissimi-

larity matrix D1), and this criterion will naturally tend to decrease as α decreases from

1 to 0.

• For a value of β ∈]0, 1[, the denominator Wβ(P1) is a total mixed (pseudo) inertia

which can not be easily interpreted in practice, and the numerator Wβ(PαK) is the

mixed (pseudo) within-cluster inertia. Note that when the considered partition PαK has

been obtained with α = β, the criterion Qβ(PαK) is obviously maximal by construction,

and it will tend to decrease as α moves away from β.
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• Finally, note that this criterion Qβ(PαK) is decreasing in K. Moreover, ∀β ∈ [0, 1], it

is easy to see that Qβ(Pn) = 1 and Qβ(P1) = 0. The more clusters there are in a

partition, the more homogeneous these clusters are (i.e. with a low inertia). Therefore

this criterion can not be used to select an appropriate number K of clusters.

How to use this criterion to select the mixing parameter α. Let us focus on the

above mentioned case where the user is interested in determining a value of α which increases

the geographical homogeneity of a partition in K clusters without deteriorating too much the

socio-economic homogeneity. For a given number K of clusters (the choice of K is discussed

later), the idea is the following:

• Let us consider a given grid of J values for α ∈ [0, 1]:

G = {α1 = 0, α1, . . . , αJ = 1}.

For each value αj ∈ G, the corresponding partition PαjK in K clusters is obtained using

the proposed Ward-like hierarchical clustering algorithm.

• For the J partitions {PαjK , j = 1, . . . , J}, the criterion Q0(P
αj
K ) is evaluated. The plot

of the points {(αj, Q0(P
αj
K )), j = 1, . . . , J} provides a visual way to observe the loss

of socio-economic homogeneity of the partition PαjK (from the “pure” socio-economic

partition P0
K) as αj increases from 0 to 1.

• Similarly, for the J partitions {PαjK , j = 1, . . . , J}, the criterion Q1(P
αj
K ) is evaluated.

The plot of the points {(αj, Q1(P
αj
K )), j = 1, . . . , J} provides a visual way to observe

the loss of geographical homogeneity of the partition PαjK (from the “pure” geographical

partition P1
K) as αj decreases from 1 to 0.

• These two plots (superimposed in the same figure) allow the user to choose a suitable

value for α ∈ G which is a trade-off between the loss of socio-economic homogeneity

and greater geographical cohesion (when viewed through increasing values of α) .

Case where the two total (pseudo) inertias W0(P1) and W1(P1) used in Q0(PαK) and

Q1(PαK) are very different. Let us consider for instance that the dissimilarity matrix D1 is

a “neighborhood” dissimilarity matrix, constructed from the corresponding adjacency matrix

A: that is D1 = 1n −A with 1n,ij = 1 for all (i, j), aij equal to 1 if observations i and j are

neighbors and 0 otherwise, and aii = 1 by convention. With this kind of local dissimilarity

matrix D1, the geographical cohesion for few clusters is often small: indeed, W1(P1) could

be very small and thus the criterion Q1(PαK) takes values generally much smaller than those

obtained by the Q0(PαK). Consequently, it is not easy for the user to select easily and
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properly a suitable value for the mixing parameter α since the two plots are in two very

different scales.

One way to remedy this problem is to consider a renormalization of the two plots.

Rather than reasoning in terms of absolute values of the criterion Q0(PαK) (resp. Q1(PαK))

which is maximal in α = 0 (resp. α = 1), we will renormalize Q0(PαK) and Q1(PαK) as follows:

Q∗0(PαK) = Q0(PαK)/Q0(P0
K) and Q∗1(PαK) = Q1(PαK)/Q1(P1

K) and we then reason in terms of

proportions of these criteria. Therefore the corresponding plot {(αj, Q∗0(P
αj
K )), j = 1, . . . , J}

(resp. {(αj, Q∗1(P
αj
K )), j = 1, . . . , J}) starts from 100% and decreases as αj increases from 0

to 1 (resp. as αj decreases from 1 to 0).

The choice of the number K of clusters. The proposed procedure to select a suitable

value for the mixing parameter α works for a given number K of clusters. Thus, it is first

necessary to select K.

One way of achieving this is to focus on the dendrogram of the hierarchically-nested set of

such partitions {P0
n = Pn, . . . ,P0

K , . . . ,P0
1 = P1} only based on the dissimilarity matrix D0

(i.e. for α = 0, that is considering only the socio-economic point of view in our application).

According to the dendrogram, the user can select an appropriate number K of clusters with

their favorite rule.

3.3 Description of the functions of the package ClustGeo

The previous Ward-like hierarchical clustering procedure is implemented in the function

hclustgeo with the following arguments:

hclustgeo(D0, D1 = NULL, alpha = 0, scale = TRUE, wt = NULL)

where:

• D0 is the dissimilarity matrix D0 between n observations. It must be an object of class

dist, i.e. an object obtained with the function dist. The function as.dist can be

used to transform object of class matrix to object of class dist.

• D1 is the dissimilarity matrix D1 between the same n observations. It must be an

object of class dist. By default D1=NULL and the clustering is performed using D0

only.

• alpha must be a real value between 0 and 1. The mixing parameter α gives the relative

importance of D0 compared to D1. By default, this parameter is equal to 0 and only

D0 is used in the clustering process.

• scale must be a logical value. If TRUE (by default), the dissimilarity matrices D0 and

D1 are scaled between 0 and 1 (that is divided by their maximum value).
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• wt must be a n-dimensional vector of the weights of the observations. By default,

wt=NULL corresponds to the case where all observations are weighted by 1/n.

The function hclustgeo returns an object of class hclust.

The procedure to determine a suitable value for the mixing parameter α is applied through

the function choicealpha with the following arguments:

choicealpha(D0, D1, range.alpha, K, wt = NULL, scale = TRUE, graph = TRUE)

where:

• D0 is the dissimilarity matrix D0 of class dist, already defined above.

• D1 is the dissimilarity matrix D1 of class dist, already defined above.

• range.alpha is the vector of the real values αj (between 0 and 1) considered by the

user in the grid G of size J .

• K is the number of clusters chosen by the user.

• wt is the vector of the weights of the n observations, already defined above.

• scale is a logical value that allows the user to rescale the dissimilarity matrices D0

and D1, already defined above.

• graph is a logical value. If graph=TRUE, the two graphics (proportion and normalized

proportion of explained inertia) are drawn.

This function returns an object of class choicealpha which contains

• Q is a J × 2 real matrix such that the jth row contains Q0(P
αj
K ) and Q1(P

αj
K ).

• Qnorm is a J × 2 real matrix such that the jth row contains Q∗0(P
αj
K ) and Q∗1(P

αj
K )..

• range.alpha is the vector of the real values αj considered in the G.

A plot method is associated with the class choicealpha.

4 An illustration of hierarchical clustering with geo-

graphical constraints using the package ClustGeo

This section illustrates the procedure of hierarchical clustering with geographical constraints

on a real dataset using the package ClustGeo. The complete procedure and methodology

for the choice of the mixing parameter α is provided with two types of spatial constraints

(with geographical distances and with neighborhood contiguity). We have provided the R

code of this case study so that readers can reproduce our methodology and obtain map

representations from their own data.
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4.1 The data

Data were taken from French population censuses conducted by the National Institute of

Statistics and Economic Studies (INSEE). The dataset is an extraction of p = 4 quantitative

socio-economic variables for a subsample of n = 303 French municipalities located on the

Atlantic coast between Royan and Mimizan:

• employ.rate.city is the employment rate of the municipality, that is the ratio of

the number of individuals who have a job to the population of working age (generally

defined, for the purposes of international comparison, as persons of between 15 and 64

years of age).

• graduate.rate refers to the level of education of the population, i.e. the highest

qualification declared by the individual. It is defined here as the ratio for the whole

population having completed a diploma equal to or greater than two years of higher

education (DUT, BTS, DEUG, nursing and social training courses, la licence, mâıtrise,

DEA, DESS, doctorate, or Grande Ecole diploma).

• housing.appart is the ratio of apartment housing.

• agri.land is the part of agricultural area of the municipality.

We consider here two dissimilarity matrices:

• D0 is the Euclidean distance matrix between the n municipalities performed with the

p = 4 available socio-economic variables,

• D1 is a second dissimilarity matrix used to take the geographical proximity between

the n municipalities into account.

> library(ClustGeo)

> data(estuary) # list of 3 objects (dat, D.geo, map)

# where dat= socio-economic data (n*p data frame),

# D.geo = n*n data frame of geographical distances,

# map = object of class "SpatialPolygonsDataFrame"

# used to draw the map

> head(estuary$dat)

employ.rate.city graduate.rate housing.appart agri.land

17015 28.08 17.68 5.15 90.04438

17021 30.42 13.13 4.93 58.51182

17030 25.42 16.28 0.00 95.18404

17034 35.08 9.06 0.00 91.01975

17050 28.23 17.13 2.51 61.71171

17052 22.02 12.66 3.22 61.90798

> D0 <- dist(estuary$dat) # the socio-economic distances

> D1 <- as.dist(estuary$D.geo) # the geographic distances between the municipalities
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Figure 1: Dendrogram of the n = 303 municipalities based on the p = 4 socio-economic

variables (that is using D0 only).

4.2 Choice of the number K of clusters

To choose the suitable number K of clusters, we focus on the Ward dendrogram based on

the p = 4 socio-economic variables, that is using D0 only.

> tree <- hclustgeo(D0)

> plot(tree,hang=-1, label=FALSE, xlab="", sub="", main="")

> rect.hclust(tree, k=5, border=c(4, 5, 3, 2, 1))

> legend("topright", legend=paste("cluster", 1:5), fill=1:5, bty="n", border="white")

The visual inspection of the dendrogram in Figure 1 suggests to retain K = 5 clusters. We

can use the map provided in the estuary data to visualize the corresponding partition in

five clusters, called P5 hereafter.

> P5 <- cutree(tree, 5) # cut the dendrogram to get the partition in 5 clusters

> sp::plot(estuary$map, border="grey", col=P5) # plot an object of class sp

> legend("topleft", legend=paste("cluster", 1:5), fill=1:5, bty="n", border="white")

Figure 2 shows that municipalities of cluster 5 are geographically compact, corresponding

to Bordeaux and the 15 municipalities of its suburban area and Arcachon. On the contrary,

municipalities in cluster 3 are scattered over a wider geographical area from North to South

of the study area. The composition of each cluster is easily obtained, as shown for cluster 5:

# list of the municipalities in cluster 5

> city_label <- as.vector(estuary$map$"NOM_COMM")

> city_label[which(P5 == 5)]

[1] "ARCACHON" "BASSENS" "BEGLES"

[4] "BORDEAUX" "LE BOUSCAT" "BRUGES"

[7] "CARBON-BLANC" "CENON" "EYSINES"
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Figure 2: Map of the partition P5 in K = 5 clusters only based on the socio-economic

variables (that is using D0 only).

[10] "FLOIRAC" "GRADIGNAN" "LE HAILLAN"

[13] "LORMONT" "MERIGNAC" "PESSAC"

[16] "TALENCE" "VILLENAVE-D’ORNON"

The interpretation of the clusters according to the initial socio-economic variables is in-

teresting. Figure 7 shows the boxplots of the variables for each cluster of the partition (left

column). Cluster 5 corresponds to urban municipalities, Bordeaux and its outskirts plus

Arcachon, with a relatively high graduate rate but low employment rate. Agricultural land

is scarce and municipalities have a high proportion of apartments. Cluster 2 corresponds

to suburban municipalities (north of Royan; north of Bordeaux close to the Gironde estu-

ary) with mean levels of employment and graduates, a low proportion of apartments, more

detached properties, and very high proportions of farmland. Cluster 4 corresponds to mu-

nicipalities located in the Landes forest. Both the graduate rate and the ratio of the number

of individuals in employment are high (greater than the mean value of the study area). The

number of apartments is quite low and the agricultural areas are higher to the mean value of

the zone. Cluster 1 corresponds to municipalities on the banks of the Gironde estuary. The

proportion of farmland is higher than in the other clusters. On the contrary, the number of

apartments is the lowest. However this cluster also has both the lowest employment rate and

the lowest graduate rate. Cluster 3 is geographically sparse. It has the highest employment

rate of the study area, a graduate rate similar to that of cluster 2, and a collective housing

rate equivalent to that of cluster 4. The agricultural area is low.
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4.3 Obtaining a partition taking into account the geographical

constraints

To obtain more geographically compact clusters, we can now introduce the matrix D1 of

geographical distances into hclustgeo. This requires a mixing parameter to be selected

α to improve the geographical cohesion of the 5 clusters without adversely affecting socio-

economic cohesion.

Choice of the mixing parameter α. The mixing parameter α ∈ [0, 1] sets the impor-

tance of D0 and D1 in the clustering process. When α = 0 the geographical dissimilarities

are not taken into account and when α = 1 it is the socio-economic distances which are not

taken into account and the clusters are obtained with the geographical distances only.

The idea is to perform separate calculations for socio-economic homogeneity and the geo-

graphic cohesion of the partitions obtained for a range of different values of α and a given

number of clusters K.

To achieve this, we can plot the quality criterion Q0 and Q1 of the partitions Pα
K obtained

with different values of α ∈ [0, 1] and choose the value of α which is a trade-off between the

lost of socio-economic homogeneity and the gain of geographic cohesion. We use the function

choicealpha for this purpose.

> cr <- choicealpha(D0, D1, range.alpha=seq(0, 1, 0.1), K=5, graph=TRUE)

> cr$Q # proportion of explained pseudo-inertia

Q0 Q1

alpha=0 0.8134914 0.4033353

alpha=0.1 0.8123718 0.3586957

alpha=0.2 0.7558058 0.7206956

alpha=0.3 0.7603870 0.6802037

alpha=0.4 0.7062677 0.7860465

alpha=0.5 0.6588582 0.8431391

alpha=0.6 0.6726921 0.8377236

alpha=0.7 0.6729165 0.8371600

alpha=0.8 0.6100119 0.8514754

alpha=0.9 0.5938617 0.8572188

alpha=1 0.5016793 0.8726302

> cr$Qnorm # normalized proportion of explained pseudo-inertias

Q0norm Q1norm

alpha=0 1.0000000 0.4622065

alpha=0.1 0.9986237 0.4110512

alpha=0.2 0.9290889 0.8258889

alpha=0.3 0.9347203 0.7794868

alpha=0.4 0.8681932 0.9007785

alpha=0.5 0.8099142 0.9662043
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Figure 3: Choice of α for a partition in K = 5 clusters when D1 is the geographical distances

between municipalities. Top: proportion of explained pseudo-inertias Q0(PαK) versus α (in

black solid line) and Q1(PαK) versus α (in dashed line). Bottom: normalized proportion of

explained pseudo-inertias Q∗0(PαK) versus α (in black solid line) and Q∗1(PαK) versus α (in

dashed line).

Figure 3 gives the plot of the proportion of explained pseudo-inertia calculated with D0 (the

socio-economic distances) which is equal to 0.81 when α = 0 and decreases when α increases

(black solid line). On the contrary, the proportion of explained pseudo-inertia calculated

with D1 (the geographical distances) is equal to 0.87 when α = 1 and decreases when α

decreases (dashed line).

Here, the plot would appear to suggest choosing α = 0.2 which corresponds to a loss of only

7% of socio-economic homogeneity, and a 17% increase in geographical homogeneity.

19



Final partition obtained with α = 0.2. We perform hclustgeo with D0 and D1 and

α = 0.2 and cut the tree to get the new partition in five clusters, called P5bis hereafter.

> tree <- hclustgeo(D0, D1, alpha=0.2)

> P5bis <- cutree(tree, 5)

> sp::plot(estuary$map, border="grey", col=P5bis)

> legend("topleft", legend=paste("cluster", 1:5), fill=1:5, bty="n", border="white")

The increased geographical cohesion of this partition P5bis can be seen in Figure 4. Figure 7

shows the boxplots of the variables for each cluster of the partition P5bis (middle column).

Cluster 5 of P5bis is identical to cluster 5 of P5 with the Blaye municipality added in.

Cluster 1 keeps the same interpretation as in P5 but has gained spatial homogeneity. It is

now clearly located on the banks of the Gironde estuary, especially on the north bank. The

same applies for cluster 2 especially for municipalities between Bordeaux and the estuary.

Both clusters 3 and 4 have changed significantly. Cluster 3 is now a spatially compact zone,

located predominantly in the Médoc.

It would appear that these two clusters have been separated based on proportion of

farmland, because the municipalities in cluster 3 have above-average proportions of this

type of land, while cluster 4 has the lowest proportion of farmland of the whole partition.

Cluster 4 is also different because of the increase in clarity both from a spatial and socio-

economic point of view. In addition, it contains the southern half of the study area. The

ranges of all variables are also lower in the corresponding boxplots.

cluster 1
cluster 2
cluster 3
cluster 4
cluster 5

Figure 4: Map of the partition P5bis in K = 5 clusters based on the socio-economic distances

D0 and the geographical distances between the municipalities D1 with α = 0.2.
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4.4 Obtaining a partition taking into account the neighborhood

constraints

Let us construct a different type of matrix D1 to take neighbouring municipalities into

account when clustering the 303 municipalities.

Two regions with contiguous boundaries, that is sharing one or more boundary point,

are considered as neighbors. Let us first build the adjacency matrix A.

> list.nb <- spdep::poly2nb(estuary$map,

row.names=rownames(estuary$dat)) #list of neighbors

It is possible to obtain the list of the neighbors of a specific city. For instance, the neighbors

of Bordeaux (which is the 117th city in the R data table) is given by the script:

> city_label[list.nb[[117]]] # list of the neighbors of BORDEAUX

[1] "BASSENS" "BEGLES" "BLANQUEFORT" "LE BOUSCAT" "BRUGES"

[6] "CENON" "EYSINES" "FLOIRAC" "LORMONT" "MERIGNAC"

[11] "PESSAC" "TALENCE"

The dissimilarity matrix D1 is constructed based on the adjacency matrix A with D1 =

1n − A.

> A <- spdep::nb2mat(list.nb, style="B") # build the adjacency matrix

> diag(A) <- 1

> colnames(A) <- rownames(A) <- city_label

> D1 <- 1-A

> D1[1:2, 1:5]

ARCES ARVERT BALANZAC BARZAN BOIS

ARCES 0 1 1 0 1

ARVERT 1 0 1 1 1

> D1 <- as.dist(D1)

Choice of the mixing parameter α. The same procedure for the choice of α is then

used with this neighborhood dissimilarity matrix D1.

> cr <- choicealpha(D0, D1, range.alpha=seq(0, 1, 0.1), K=5, graph=TRUE)

> cr$Q # proportion of explained pseudo-inertia

> cr$Qnorm # normalized proportion of explained pseudo-inertia

With these kinds of local dissimilarities in D1, the neighborhood within-cluster cohesion is

always very small. Q1(PαK) takes small values: see the dashed line of Q1(PαK) versus α at

the top of Figure 5. To overcome this problem, the user can plot the normalized proportion

of explained inertias (that is Q∗0(PαK) and Q∗1(PαK)) instead of the proportion of explained
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Figure 5: Choice of α for a partition in K = 5 clusters when D1 is the neighborhood dissim-

ilarity matrix between municipalities. Top: proportion of explained pseudo-inertias Q0(PαK)

versus α (in black solid line) and Q1(PαK) versus α (in dashed line). Bottom: normalized

proportion of explained pseudo-inertias Q∗0(PαK) versus α (in black solid line) and Q∗1(PαK)

versus α (in dashed line).

inertias (that is Q0(PαK) and Q1(PαK)). At the bottom of Figure 5, the plot of the normalized

proportion of explained inertias suggests to retain α = 0.2 or 0.3. The value α = 0.2 slightly

favors the socio-economic homogeneity versus the geographical homogeneity. According to

the priority given in this application to the socio-economic aspects, the final partition is

obtained with α = 0.2.

Final partition obtained with α = 0.2. It remains only to determine this final partition

for K = 5 clusters and α = 0.2, called P5ter hereafter. The corresponding map is given in

Figure 6.

> tree <- hclustgeo(D0, D1, alpha=0.2)

> P5ter <- cutree(tree, 5)

> sp::plot(estuary$map, border="grey", col=P5ter)

> legend("topleft", legend=paste("cluster", 1:5), fill=1:5, bty="n", border="white")
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Figure 6: Map of the partition P5ter in K = 5 clusters based on the socio-economic distances

D0 and the “neighborhood” distances of the municipalities D1 with α = 0.2.

Figure 6 shows that clusters of P5ter are spatially more compact than that of P5bis. This

is not surprising since this approach builds dissimilarities from the adjacency matrix which

gives more importance to neighborhoods. However since our approach is based on soft

contiguity constraints, municipalities that are not neighbors are allowed to be in the same

clusters. This is the case for instance for cluster 4 where some municipalities are located in

the north of the estuary whereas most are located in the southern area (corresponding to

forest areas). The quality of the partition P5ter is slightly worse than that of partition P5ter

according to criterion Q0 (72.69% versus 75.58%). However the boxplots corresponding to

partition P5ter given in Figure 7 (right column) are very similar to those of partition P5bis.

These two partitions have thus very close interpretations.

5 Concluding remarks

In this paper, a Ward-like hierarchical clustering algorithm including soft spacial constraints

has been introduced and illustrated on a real dataset. The corresponding approach has been

implemented in the R package ClustGeo available on the CRAN. When the observations

correspond to geographical units (such as a city or a region), it is then possible to repre-

sent the clustering obtained on a map regarding the considered spatial constraints. This

Ward-like hierarchical clustering method can also be used in many other contexts where the

observations do not correspond to geographical units. In that case, the dissimilarity matrix

D1 associated with the “constraint space” does not correspond to spatial constraints in its

current form.

For instance, the user may have at his/her disposal a first set of data of p0 variables (e.g.

socio-economic items) measured on n individuals on which he/she has made a clustering from

the associated dissimilarity (or distance) matrix. This user also has a second data set of p1
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Figure 7: Comparison of the final partitions P5, P5bis and P5ter in terms of variables

x1=employ.rate.city, x2=graduate.rate, x3=housing.appart and x4=agri.land.
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new variables (e.g. environmental items) measured on these same n individuals, on which a

dissimilarity matrix D1 can be calculated. Using the ClusGeo approach, it is possible to take

this new information into account to refine the initial clustering without basically disrupting

it.
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