Skip to main content
Log in

sppmix: Poisson point process modeling using normal mixture models

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

This paper describes the package sppmix for the statistical environment R. The sppmix package implements classes and methods for modeling spatial point patterns using inhomogeneous Poisson point processes, where the intensity surface is assumed to be a multiple of a finite additive mixture of normal components and the number of components is a finite, fixed or random integer. Extensions to the marked inhomogeneous Poisson point processes case are also presented. We provide an extensive suite of R functions that can be used to simulate, visualize and model point patterns, estimate the parameters of the models, assess convergence of the algorithms and perform model selection and checking in the proposed modeling context. In addition, several approaches have been implemented in order to handle the standard label switching issue which arises in any modeling approach involving mixture models. We adapt a hierarchical Bayesian framework in order to model the intensity surfaces and have implemented two major algorithms in order to estimate the parameters of the mixture models involved: the data augmentation and the birth–death Markov chain Monte Carlo (DAMCMC and BDMCMC). We used C++ (via the Rcpp package) in order to implement the most computationally intensive algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baddeley A, Turner R (2005) spatstat: an R package for analyzing spatial point patterns. J Stat Softw 12(6):1–42. http://www.jstatsoft.org/v12/i06/

  • Baddeley A, Rubak E, Turner R (2015) Spatial point patterns: methodology and applications with R. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Barndorff-Nielsen OE, Kendall WS, van Lieshout MNM (1999) Stochastic geometry, likelihood and computation. Chapman and Hall, London

    Google Scholar 

  • Benes V, Bodlak K, Møller J, Waagepetersen RP (2005) A case study on point process modelling in disease mapping. Image Anal Stereol 24:159–168

    MATH  Google Scholar 

  • Berliner L (1996) Hierarchical Bayesian time-series models. Fund Theor Phys 79:15–22

    MathSciNet  MATH  Google Scholar 

  • Bivand RS, Pebesma E, Gomez-Rubio V (2013) Applied spatial data analysis with R, 2nd edn. Springer, New York. http://www.asdar-book.org/

  • Cappé O, Robert CP, Rydén T (2003) Reversible jump, birth-and-death and more general continuous time Markov chain Monte Carlo samplers. J R Stat Soc B 65:679–700

    Article  MathSciNet  MATH  Google Scholar 

  • Chakraborty A, Gelfand AE (2010) Measurement error in spatial point patterns. Bayesian Anal 5:97–122

    Article  MathSciNet  MATH  Google Scholar 

  • Chiu SN, Stoyan D, Kendall WS, Mecke J (2013) Stochastic geometry and its applications, 3rd edn. Wiley, London

    Book  MATH  Google Scholar 

  • Celeux G, Hurn M, Robert CP (2000) Computational and inferential difficulties with mixture posterior distributions. J Am Stat Assoc 95(451):957–970

    Article  MathSciNet  MATH  Google Scholar 

  • Cressie N (1993) Statistics for spatial data, 2nd edn. Wiley, London

    MATH  Google Scholar 

  • Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, Hoboken

    MATH  Google Scholar 

  • Daley DJ, Vere-Jones D (2005) An introduction to the theory of point processes, volume I: elementary theory and methods, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Daley DJ, Vere-Jones D (2008) An introduction to the theory of point processes, volume II: general theory and structure, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Dellaportas P, Papageorgiou I (2006) Multivariate mixtures of normals with unknown number of components. Stat Comput 16:57–68

    Article  MathSciNet  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39:1–38

    MathSciNet  MATH  Google Scholar 

  • Diebolt J, Robert CP (1994) Estimation of finite mixture distributions by Bayesian sampling. J R Stat Soc B 56:363–375

    MATH  Google Scholar 

  • Diggle PJ (2013) Statistical analysis of spatial and spatio-temporal point patterns, 3rd edn. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Diggle PJ, Moraga P, Rowlingson B, Taylor BM (2013) Spatial and spatio-temporal log-gaussian cox processes: extending the geostatistical paradigm. Stat Sci 28(4):542–563

    Article  MathSciNet  MATH  Google Scholar 

  • Eddelbuettel D, Sanderson C (2014) RcppArmadillo: accelerating R with high-performance C++ linear algebra. Comput Stat Data Anal 71:1054–1063

  • Eddelbuettel D, François R, Allaire J, Chambers J, Bates D, Ushey K (2011) Rcpp: seamless R and C++ integration. J Stat Softw 40(8):1–18

  • Escobar M, West M (1995) Bayesian density estimation and inference using mixtures. J Am Stat Assoc 90:577–588

    Article  MathSciNet  MATH  Google Scholar 

  • Frühwirth-Schnatter S (2006) Finite mixture and Markov switching models. Springer, Berlin

    MATH  Google Scholar 

  • Gelfand AE, Diggle PJ, Fuentes M, Guttorp P (eds) (2010) Handbook of spatial statistics. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:711–732

    Article  MathSciNet  MATH  Google Scholar 

  • Hossain MM, Lawson AB (2009) Approximate methods in Bayesian point process spatial models. Comput Stat Data Anal 53:2831–2842

    Article  MathSciNet  MATH  Google Scholar 

  • Jasra A, Holmes CC, Stephens DA (2005) Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture. Stat Sci 20:50–67

    Article  MathSciNet  MATH  Google Scholar 

  • Ji C, Merly D, Keplerz TB, West M (2009) Spatial mixture modelling for unobserved point processes: examples in immunofluorescence histology. Bayesian Anal 4:297–316

    Article  MathSciNet  MATH  Google Scholar 

  • Illian JB, Hendrichsen DK (2009) Gibbs point process models with mixed effects. Environmetrics. https://doi.org/10.1002/env.1008

    Google Scholar 

  • Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modelling of spatial point patterns. Wiley, Chichester

    MATH  Google Scholar 

  • Illian J, Sørbye S, Rue H (2012) A toolbox for fitting complex spatial point process models using integrated nested Laplace approximation (INLA). Ann Appl Stat 6(4):1499–1530

    Article  MathSciNet  MATH  Google Scholar 

  • Keribin C, Brault V, Celeux G, Govaert G (2015) Estimation and selection for the latent block model on categorical data. Stat Comput 25(6):1201–1216

    Article  MathSciNet  MATH  Google Scholar 

  • Kottas A, Sanso B (2007) Bayesian mixture modeling for spatial Poisson process intensities, with applications to extreme value analysis. J Stat Plan Inference 137:3151–3163 (Special issue on Bayesian inference for stochastic processes)

    Article  MathSciNet  MATH  Google Scholar 

  • Liang S, Carlin BP, Gelfand AE (2009) Analysis of Minnesota colon and rectum cancer point patterns with spatial and nonspatial covariate information. Ann Appl Stat 3:943–962

    Article  MathSciNet  MATH  Google Scholar 

  • Lindgren F, Rue H, Lindström J (2011) An explicit link between Gaussian fields and Gaussian Markov random fields: the SPDE approach. J R Stat Soc Ser B. https://doi.org/10.1111/j.1467-9868.2011.00777.x

    MATH  Google Scholar 

  • Marin J-M, Mengersen K, Robert CP (2005) Bayesian modeling and inference on mixtures of distributions. Handb Stat 25:459–507

    Article  Google Scholar 

  • McLachlan G, Peel D (2000) Finite mixture models. Wiley-Interscience, New York

    Book  MATH  Google Scholar 

  • Micheas AC, Wikle CK, Larsen DR (2012) Random set modelling of three dimensional objects in a hierarchical Bayesian context. J Stat Comput Simul. https://doi.org/10.1080/00949655.2012.696647

    Google Scholar 

  • Micheas AC (2014) Hierarchical Bayesian modeling of marked non-homogeneous Poisson processes with finite mixtures and inclusion of covariate information. J Appl Stat 41(12):2596–2615

    Article  MathSciNet  Google Scholar 

  • Møller J, Waagepetersen RP (2004) Statistical inference and simulation for spatial point processes. Chapman and Hall, Boca Raton

    MATH  Google Scholar 

  • Møller J, Waagepetersen RP (2007) Modern statistics for spatial point processes. Scand J Stat. https://doi.org/10.1111/j.1467-9469.2007.00569.x

    MathSciNet  MATH  Google Scholar 

  • Møller J, Helisova K (2010) Likelihood inference for unions of interacting discs. Scand J Stat 37:365–381

    Article  MathSciNet  MATH  Google Scholar 

  • Nychka D, Furrer R, Paige J, Sain S (2015) Fields: tools for spatial data. R package version 9.0. https://doi.org/10.5065/D6W957CT, www.image.ucar.edu/fields

  • Pebesma EJ, Bivand RS (2005) Classes and methods for spatial data in R. R News 5(2). https://cran.r-project.org/doc/Rnews/

  • R Core Team (2016). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Rathbun SL, Shiffman S, Gwaltney CJ (2007) Modelling the effects of partially observed covariates on Poisson process intensity. Biometrika. https://doi.org/10.1093/biomet/asm009

    MathSciNet  MATH  Google Scholar 

  • Richardson S, Green PJ (1997) On Bayesian analysis of mixtures with an unknown number of components (with discussion). J R Stat Soc Ser B 59:731–792

    Article  MATH  Google Scholar 

  • Robert CP, Casella G (2004) Monte Carlo statistical methods, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion). J R Stat Soc B 71:319–392

    Article  MathSciNet  MATH  Google Scholar 

  • Sethuraman J (1994) A constructive definition of Dirichlet priors. Stat Sin 4:639–650

    MathSciNet  MATH  Google Scholar 

  • Scricciolo C (2006) Convergence rates for Bayesian density estimation of infinite-dimensional exponential families. Ann Stat 34:2897–2920. https://doi.org/10.1214/009053606000000911

    Article  MathSciNet  MATH  Google Scholar 

  • Spodarev E (2013) Stochastic geometry, spatial statistics and random fields. Springer, Berlin

    Book  MATH  Google Scholar 

  • Stephens M (1997) Bayesian methods for mixtures of normal distributions. Ph.D. thesis, University of Oxford

  • Stephens M (2000) Bayesian analysis of mixture models with an unknown number of components—an alternative to reversible jump methods. Ann Stat 28:40–74

    Article  MathSciNet  MATH  Google Scholar 

  • Tanner M, Wong W (1987) The calculation of posterior distributions by data augmentation. J Am Stat Assoc 82:528–550

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor BM, Diggle PJ (2014) INLA or MCMC? A tutorial and comparative evaluation for spatial prediction in log-Gaussian Cox processes. J Stat Comput Simul 84(10):2266–2284

    Article  MathSciNet  Google Scholar 

  • Taylor BM, Davies TM, Rowlingson BS, Diggle PJ (2013) lgcp: Inference with spatial and spatio-temporal log-Gaussian Cox processes in R. J Stat Softw 52(4). http://www.jstatsoft.org/v52/i04

  • Taylor BM, Davies TM, Rowlingson BS, Diggle PJ (2015) Bayesian inference and data augmentation schemes for spatial, spatiotemporal and multivariate log-Gaussian Cox processes in R. J Stat Softw 63(7):1–48. http://www.jstatsoft.org/v63/i07/

  • Wickham H (2009) ggplot2: Elegant graphics for data analysis. Springer, New York

    Book  MATH  Google Scholar 

  • Wikle CK, Berliner L, Cressie N (1998) Hierarchical Bayesian space-time models. Environ Ecol Stat 5(2):117–154

    Article  Google Scholar 

  • Wikle CK, Anderson CJ (2003) Climatological analysis of tornado report counts using a hierarchical Bayesian spatiotemporal model. J Geophys Res 108(24):9005. https://doi.org/10.1029/2002JD002806

    Google Scholar 

  • Wolpert R, Ickstadt K (1998) Poisson/gamma random field models for spatial statistics. Biometrika 85:251–267

    Article  MathSciNet  MATH  Google Scholar 

  • Yao W (2012) Model based labeling for mixture models. Stat Comput 22:337–347. https://doi.org/10.1007/s11222-010-9226-8

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou Z, Matteson DS, Woodard DB, Henderson SG, Micheas AC (2015) A spatio-temporal point process model for ambulance demand. J Am Stat Assoc 110(509):6–15

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to three reviewers for their constructive comments and suggestions, and an Associate Editor and the two Editors, Drs. Sakamoto and Symanzik.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios C. Micheas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 10043 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Micheas, A.C., Chen, J. sppmix: Poisson point process modeling using normal mixture models. Comput Stat 33, 1767–1798 (2018). https://doi.org/10.1007/s00180-018-0805-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-018-0805-z

Keywords

Navigation