Skip to main content
Log in

Robust exponential squared loss-based estimation in semi-functional linear regression models

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this paper, we present a new robust estimation procedure for semi-functional linear regression models by using exponential squared loss. The outstanding advantage of the proposed method is the resulting estimators are more efficient than the least squares estimators in the presence of outliers or heavy-tail error distributions. The slope function and functional predictor variable are approximated by functional principal component basis functions. Under some regularity conditions, we obtain the optimal convergence rate of slope function, and the asymptotic normality of parameter vector and variance estimator. Finally, we investigate the finite sample performance of the proposed method through a simulation study and real data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aneiros-Pérez G, Ling N, Vieu P (2015) Error variance estimation in semi-functional partially linear regression models. J Nonparametr Stat 27(3):316–330

    Article  MathSciNet  MATH  Google Scholar 

  • Aneiros-Pérez G, Raña P, Vieu P, Vilar P (2017) Bootstrap in semi-functional partial linear regression under dependence. TEST 2017:1–21

    MATH  Google Scholar 

  • Aneiros-Pérez G, Vieu P (2006) Semi-functional partial linear regression. Stat Probab Lett 76(11):1102–1110

    Article  MathSciNet  MATH  Google Scholar 

  • Aneiros-Pérez G, Vieu P (2013) Testing linearity in semi-parametric functional data analysis. Comput Stat 28:413–434

    Article  MathSciNet  MATH  Google Scholar 

  • Aneiros-Pérez G, Vieu P (2015) Partial linear modelling with multi-functional covariates. Comput Stat 30(3):647–671

    Article  MathSciNet  MATH  Google Scholar 

  • Brunel É, Mas A, Roche A (2016) Non-asymptotic adaptive prediction in functional linear models. J Multivar Anal 143:208–232

    Article  MathSciNet  MATH  Google Scholar 

  • Cai T, Hall P (2006) Prediction in functional linear regression. Ann Stat 34(5):2159–2179

    Article  MathSciNet  MATH  Google Scholar 

  • Cai T, Yuan M (2012) Minimax and adaptive prediction for functional linear regression. J Am Stat Assoc 107(499):1201–1216

    Article  MathSciNet  MATH  Google Scholar 

  • Cardot H, Ferraty F, Sarda P (1999) Functional linear model. Stat Probab Lett 45(1):11–22

    Article  MathSciNet  MATH  Google Scholar 

  • Crambes C, Kneip A, Sarda P (2009) Smoothing splines estimators for functional linear regression. Ann Stat 37(1):35–72

    Article  MathSciNet  MATH  Google Scholar 

  • Ferraty F, Goia A, Salinelli E, Vieu P (2013) Functional projection pursuit regression. TEST 22(2):293–320

    Article  MathSciNet  MATH  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer, New York

    MATH  Google Scholar 

  • Goia A, Vieu P (2014) Some advances on semi-parametric functional data modelling. In: Contributions in infinite-dimensional statistics and related topics, Esculapio, Bologna

  • Goia A, Vieu P (2015) A partitioned single functional index model. Comput Stat 30(3):673–692

    Article  MathSciNet  MATH  Google Scholar 

  • Hall P, Hooker G (2016) Truncated linear models for functional data. J R Stati Soc Ser B (Stat Methodol) 78(3):637–653

    Article  MathSciNet  MATH  Google Scholar 

  • Hall P, Horowitz JL (2007) Methodology and convergence rates for functional linear regression. Ann Stat 35(1):70–91

    Article  MathSciNet  MATH  Google Scholar 

  • Horváth L, Kokoszka P (2012) Inference for functional data with applications. Springer, New York

    Book  MATH  Google Scholar 

  • Hsing T, Eubank R (2015) Theoretical foundations of functional data analysis, with an introduction to linear operators. Wiley, New York

    Book  MATH  Google Scholar 

  • Huber P (1981) Robust estimation. Wiley, New York

    MATH  Google Scholar 

  • Imaizumi M, Kato K (2018) PCA-based estimation for functional linear regression with functional responses. J Multivar Anal 163:15–36

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang Y, Ji Q, Xie B (2017) Robust estimation for the varying coefficient partially nonlinear models. J Comput Appl Math 326:31–43

    Article  MathSciNet  MATH  Google Scholar 

  • Kai B, Li R, Zou H (2011) New efficient estimation and variable selection methods for semiparametric varying-coefficient partially linear models. Ann Stat 39(1):305–332

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46:33–50

    Article  MathSciNet  MATH  Google Scholar 

  • Kokoszka P, Reimherr M (2017) Introduction to functional data analysis. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Kong D, Xue K, Yao F, Zhang H (2016) Partially functional linear regression in high dimensions. Biometrika 103(1):147–159

    Article  MathSciNet  MATH  Google Scholar 

  • Lin Z, Cao J, Wang L, Wang H (2017) Locally sparse estimator for functional linear regression models. J Comput Graph Stat 26(2):306–318

    Article  MathSciNet  Google Scholar 

  • Ling N, Aneiros G, Vieu P (2017) kNN estimation in functional partial linear modeling. Stat Pap 1–22

  • Lovric M (2011) International encyclopedia of statistical science. Springer, New York

    Book  MATH  Google Scholar 

  • Lu Y, Du J, Sun Z (2014) Functional partially linear quantile regression model. Metrika 77(2):317–332

    Article  MathSciNet  MATH  Google Scholar 

  • Lv J, Yang H, Guo C (2015) Robust smooth-threshold estimating equations for generalized varying-coefficient partially linear models based on exponential score function. J Comput Appl Math 280:125–140

    Article  MathSciNet  MATH  Google Scholar 

  • Müller HG, Stadtmüller U (2005) Generalized functional linear models. Ann Stat 32(2):774–805

    Article  MathSciNet  MATH  Google Scholar 

  • Peng QY, Zhou JJ, Tang NS (2016) Varying coefficient partially functional linear regression models. Stat Pap 57(3):827–841

    Article  MathSciNet  MATH  Google Scholar 

  • Ramsay JO, Dalzell CJ (1991) Some tools for functional data analysis. J R Stat Soc Ser B (Methodol) 53(3):539–572

    MathSciNet  MATH  Google Scholar 

  • Ramsay JO, Silverman BW (2002) Applied functional data analysis: methods and case studies. Springer, New York

    Book  MATH  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Shin H (2009) Partial functional linear regression. J Stat Plan Inference 139(10):3405–3418

    Article  MathSciNet  MATH  Google Scholar 

  • Song Y, Jian L, Lin L (2016) Robust exponential squared loss-based variable selection for high-dimensional single-index varying-coefficient model. J Comput Appl Math 308:330–345

    Article  MathSciNet  MATH  Google Scholar 

  • Wang K, Lin L (2016) Robust structure identification and variable selection in partial linear varying coefficient models. J Stat Plan Inference 174:153–168

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Jiang Y, Huang M, Zhang H (2013) Robust variable selection with exponential squared loss. J Am Stat Assoc 108(502):632–643

    Article  MathSciNet  MATH  Google Scholar 

  • Yao F, Müller HG, Wang JL (2005) Functional linear regression analysis for longitudinal data. Ann Stat 33(6):2873–2903

    Article  MathSciNet  MATH  Google Scholar 

  • Yu P, Zhang Z, Du J (2016) A test of linearity in partial functional linear regression. Metrika 79(8):953–969

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou J, Chen Z, Peng Q (2016) Polynomial spline estimation for partial functional linear regression models. Comput Stat 31(3):1107–1129

    Article  MathSciNet  MATH  Google Scholar 

  • Zou H, Yuan M (2008) Composite quantile regression and the oracle model selection theory. Ann Stat 36(3):1108–1126

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyi Zhu.

Additional information

Zhu’s work is supported by the National Natural Science Foundation of China (Nos. 11671096, 11690013), Zhang’s work is supported by the National Natural Science Foundation of China (No. 11271039).

Appendix A: Technical proofs

Appendix A: Technical proofs

Proof of Theorem 1

Let \(\delta _n=n^{-\frac{2b-1}{2(a+2b)}}\), \(\varvec{\alpha }=\varvec{\alpha }_0+\delta _n\varvec{u}_1\), \(\varvec{\gamma }=\varvec{\gamma }_0+\delta _n\varvec{u}_2\), \(\varvec{u}=\big (\varvec{u}_1^T,\varvec{u}_2^T\big )^T\), \(R_i=\int _{0}^{1}\beta _0(t)X_i(t)dt-\varvec{U}_i^T\varvec{\gamma }_0\). We next show that, for any given \(\eta >0\), there exists a sufficient large constant L such that

$$\begin{aligned} {\lim \inf }_{n} P\left\{ \sup _{\Vert \varvec{u}\Vert =L}Q_n(\varvec{\alpha }, \varvec{\gamma })<Q_n(\varvec{\alpha }_0, \varvec{\gamma }_0)\right\} \ge 1-\eta . \end{aligned}$$
(A.1)

This implies with the probability at least \(1-\eta \) that there exists a local maximizer \(\varvec{\hat{\alpha }}\) and \(\varvec{\hat{\gamma }}\) in the ball \(\Big \{(\varvec{\alpha }_0^T,\varvec{\gamma }_0^T)^T+\delta _n\varvec{u}:\big \Vert \varvec{u}\big \Vert \le L\Big \}\) such that \(\Vert \varvec{\hat{\alpha }}-\varvec{\alpha }_0\Vert =O_p(\delta _n)\) and \(\Vert \varvec{\hat{\gamma }}-\varvec{\gamma }_0\Vert =O_p(\delta _n)\), which is exactly what we want to show.

Note that \( \Vert v_j-\hat{v}_j\Vert ^2=O_p(n^{-1}j^2)\) (see, e.g., Shin 2009; Yu et al. 2016), one has

$$\begin{aligned} \begin{aligned} |R_i|^2&=\Big |\int _{0}^{1}\beta _0(t)X_i(t)dt-\varvec{U}_i^T\varvec{\gamma }_0\Big |^2\\&\le 2 \Big |\sum _{j=1}^{m}\langle X_i,\hat{v}_j-{v}_j\rangle \gamma _{0j}\Big |^2+2\Big |\sum _{j=m+1}^{ \infty }\langle X_i,v_j\rangle \gamma _{0j}\Big |^2\\&\triangleq 2\text {A}_1+2\text {A}_2. \end{aligned} \end{aligned}$$

For \(\text {A}_1\), by condition C1 and the Hölder inequality, it is obtained

$$\begin{aligned} \begin{aligned} \text {A}_1&=\Big |\sum _{j=1}^{m}\langle X_i,{v}_j-\hat{v}_j\rangle \gamma _{0j}\Big |^2 \le cm\sum _{j=1}^{m}\Vert {v}_j-\hat{v}_j\Vert ^2|\gamma _{0j}|^2\\&\le cm\sum _{j=1}^{m}O_p\left( n^{-1}j^{2-2b}\right) =O_p\left( n^{-\frac{a+4b-4}{a+2b}}\right) =o_p\left( \delta _n^2\right) . \end{aligned} \end{aligned}$$

As for \(\text {A}_2\), due to

$$\begin{aligned} \begin{aligned}&E\left\{ \sum _{j=m+1}^{ \infty }\langle X_i,v_j\rangle \gamma _{0j}\right\} =0,\\&\text {Var}\left\{ \sum _{j=m+1}^{ \infty }\langle X_i,{v}_j\rangle \gamma _{0j}\right\} =\sum _{j=m+1}^{ \infty }\lambda _j{\gamma _{0j}}^2 \le C \sum _{j=m+1}^{ \infty }j^{-(a+2b)} =O\left( n^{-\frac{a+2b-1}{a+2b}}\right) , \end{aligned} \end{aligned}$$

one has

$$\begin{aligned} A_2=O_p\left( n^{-\frac{a+2b-1}{a+2b}}\right) =o_p\left( \delta _n^2\right) . \end{aligned}$$

Taking these together, we have

$$\begin{aligned} |R_i|^2=o_p\left( \delta _n^2\right) . \end{aligned}$$
(A.2)

Invoking Taylor expansion and a simple calculation, we have

$$\begin{aligned} \begin{aligned} Q_n(\varvec{\alpha }, \varvec{\gamma })-Q(\varvec{\alpha }_0, \varvec{\gamma }_0) =\,&\delta _n\sum _{i=1}^{n}\varphi '_h(\epsilon _i+R_i)\left( \varvec{z}_i^T\varvec{u}_1+\varvec{U}_i^T\varvec{u}_2\right) \\&\quad +\frac{\delta _n^2}{2}\varphi ''_h(\epsilon _i+R_i)\left( \varvec{z}_i^T\varvec{u}_1+\varvec{U}_i^T\varvec{u}_2\right) ^2\\&\quad +\frac{\delta _n^3}{6}\varphi '''_h(\epsilon '_i+R_i)\left( \varvec{z}_i^T\varvec{u}_1+\varvec{U}_i^T\varvec{u}_2\right) ^3\\&\triangleq B_1+B_2+B_3, \end{aligned} \end{aligned}$$
(A.3)

where \(\epsilon '_i\) is between \(\epsilon _i+R_i\) and \(\epsilon _i+R_i-\delta _n(\varvec{z}_i^T\varvec{u}_1+\varvec{U}_i^T\varvec{u}_2)\). Furthermore, we have

$$\begin{aligned} \begin{aligned}&\sum _{i=1}^{n}\varphi '_h(\epsilon _i+R_i)\Big (\varvec{z}_i^T\varvec{u}_1+\varvec{U}_i^T\varvec{u}_2\Big )\\&\qquad =\sum _{i=1}^{n}\Big \{\varphi '_h(\epsilon _i)+\varphi ''_h(\epsilon _i)R_i+\frac{1}{2}\varphi '''_h(\tilde{\epsilon }_i)R_i^2\Big \}\Big (\varvec{z}_i^T\varvec{u}_1+\varvec{U}_i^T\varvec{u}_2\Big ), \end{aligned} \end{aligned}$$
(A.4)

where \(\tilde{\epsilon }_i\) is between \(\epsilon _i\) and \(\epsilon _i+R_i\). Then, by condition C1, Eq. (A.4) and a simple calculation, we can prove that

$$\begin{aligned} B_1=O_p(n\delta _n\Vert \varvec{u}\Vert ). \end{aligned}$$
(A.5)

Similarly, we can obtain

$$\begin{aligned} B_2=O_p(n\delta _n^2\Vert \varvec{u}\Vert ^2), \quad B_3=O_p(n\delta _n^3\Vert \varvec{u}\Vert ^3). \end{aligned}$$
(A.6)

Therefore, by choosing a sufficiently large L, both \(B_1\) and \(B_3\) are dominated by \(B_2\) uniformly in \(\Vert \varvec{u}\Vert =L\). Hence, Eq. (A.1) holds with probability tending to one, and there exists local maximizer \(\hat{\varvec{\gamma }}\) such that

$$\begin{aligned} \Vert \varvec{\hat{\gamma }}-\varvec{\gamma }_0\Vert =O_p(\delta _n). \end{aligned}$$
(A.7)

Observe that

$$\begin{aligned}\begin{aligned} \Vert \hat{\beta }(t)-\beta _0(t)\Vert ^2&=\bigg \Vert \sum _{j=1}^{m}\hat{\gamma }_{j}\hat{v}_j-\sum _{j=1}^{\infty }{\gamma }_{0j}{v}_j\bigg \Vert ^2\\&\le 2\bigg \Vert \sum _{j=1}^{m}\hat{\gamma }_{j}\hat{v}_j-\sum _{j=1}^{m}{\gamma }_{0j}{v}_j\bigg \Vert ^2+ 2\bigg \Vert \sum _{j=m+1}^{\infty }{\gamma }_{0j}{v}_j\bigg \Vert ^2\\&\le 4\bigg \Vert \sum _{j=1}^{m}(\hat{\gamma }_j-\gamma _{0j})\hat{v}_j\bigg \Vert ^2+ 4\bigg \Vert \sum _{j=1}^{m}{\gamma }_{0j}(\hat{v}_j-v_j)\bigg \Vert ^2+2\sum _{j=m+1}^{\infty }{\gamma }_{0j}^2\\&\triangleq 4D_1+4D_2+2D_3. \end{aligned}\end{aligned}$$

Invoking Eq. (A.7), condition C2, the orthogonality of \(\{\hat{v}_j\}\) and \( \Vert v_j-\hat{v}_j\Vert ^2=O_p(n^{-1}j^2)\), one has

$$\begin{aligned} D_1= & {} \bigg \Vert \sum _{j=1}^{m}(\hat{\gamma }_j-\gamma _{0j})\hat{v}_j\bigg \Vert ^2 \le \sum _{j=1}^{m}\big |\hat{\gamma }_j-\gamma _{0j}\big |^2\nonumber \\= & {} \Vert \hat{\varvec{\gamma }}-\varvec{\gamma }_0\Vert ^2= O_p(\delta _n^2).\end{aligned}$$
(A.8)
$$\begin{aligned} D_2= & {} \bigg \Vert \sum _{j=1}^{m}{\gamma }_{0j}(\hat{v}_j-v_j)\bigg \Vert ^2\le m\sum _{j=1}^{m}\parallel \hat{v}_j-v_j\parallel ^2{\gamma }_{0j}^2\le \frac{m}{n}O_p\big (\sum _{j=1}^{m}j^2{\gamma }_{0j}^2\big )\nonumber \\= & {} O_p\Big (n^{-1}m\sum _{j=1}^{m}j^{2-2b}\Big )=O_p(n^{-1}m)=o_p(n^{-\frac{2b-1}{a+2b}})=o_p(\delta _n^2). \end{aligned}$$
(A.9)
$$\begin{aligned} D_3= & {} \sum _{j=m+1}^{\infty }\gamma _{0j}^2\le C\sum _{j=m+1}^{\infty }j^{-2b}=O(n^{-\frac{2b-1}{a+2b}})=O(\delta _n^2). \end{aligned}$$
(A.10)

Then, combining Eqs. (A.8)–(A.10) yields Theorem 1. \(\square \)

Proof of Theorem 2

According to Theorem 1, we know that, as \(n\rightarrow \infty \), with probability tending to 1, \(Q_n(\varvec{\alpha }, \varvec{\gamma })\) attains the maximal value at \((\hat{\varvec{\alpha }}^T,\hat{\varvec{\gamma }}^T)^T\). Then, we have

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}\varvec{z}_i \varphi '_h\big (Y_i-\varvec{z}_i^T \varvec{\hat{\alpha }}-\varvec{U}_i^T\varvec{\hat{\gamma }}\big )=0, \end{aligned}$$
(A.11)

and

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}\varvec{U}_i \varphi '_h\big (Y_i-\varvec{z}_i^T \varvec{\hat{\alpha }}-\varvec{U}_i^T\varvec{\hat{\gamma }}\big )=0. \end{aligned}$$
(A.12)

Invoking Taylor expansion and Eq. (A.11), some simple calculation yields

$$\begin{aligned} \begin{aligned}&\frac{1}{n}\sum _{i=1}^{n}\varvec{z}_i \bigg \{\varphi '_h(\epsilon _i)+\varphi ''_h(\epsilon _i)\big [R_i-\varvec{z}_i^T (\varvec{\hat{\alpha }}-\varvec{\alpha }_0)-\varvec{U}_i^T(\varvec{\hat{\gamma }}-\varvec{\gamma }_0)\big ]\\&\qquad \qquad \qquad +\frac{1}{2}\varphi '''_h(\epsilon _i^*)\big [R_i-\varvec{z}_i^T (\varvec{\hat{\alpha }}-\varvec{\alpha }_0)-\varvec{U}_i^T(\varvec{\hat{\gamma }}-\varvec{\gamma }_0)\big ]^2\bigg \}=0. \end{aligned}\end{aligned}$$
(A.13)

where \(\epsilon _i^*\) is between \(\epsilon _i\) and \(Y_i-\varvec{z}_i^T \varvec{\hat{\alpha }}-\varvec{U}_i^T\varvec{\hat{\gamma }}\). Similarly, by Eq. (A.12) we can get

$$\begin{aligned} \begin{aligned}&\frac{1}{n}\sum _{i=1}^{n}\varvec{U}_i \bigg \{\varphi '_h(\epsilon _i)+\varphi ''_h(\epsilon _i)\big [R_i-\varvec{z}_i^T (\varvec{\hat{\alpha }}-\varvec{\alpha }_0)-\varvec{U}_i^T(\varvec{\hat{\gamma }}-\varvec{\gamma }_0)\big ]\\&\qquad \qquad \qquad +\frac{1}{2}\varphi '''_h(\epsilon _i^{**})\big [R_i-\varvec{z}_i^T (\varvec{\hat{\alpha }}-\varvec{\alpha }_0)-\varvec{U}_i^T(\varvec{\hat{\gamma }}-\varvec{\gamma }_0)\big ]^2\bigg \}=0. \end{aligned}\end{aligned}$$
(A.14)

where \(\epsilon _i^{**}\) is between \(\epsilon _i\) and \(Y_i-\varvec{z}_i^T \varvec{\hat{\alpha }}-\varvec{U}_i^T\varvec{\hat{\gamma }}\).

Let \(\Phi _n=\frac{1}{n}\sum _{i=1}^{n}\varphi ''_h(\epsilon _i)\varvec{U}_i\varvec{U}^T_i\), \(\Psi _n=\frac{1}{n}\sum _{i=1}^{n}\varphi ''_h(\epsilon _i)\varvec{U}_i\varvec{z}_i^T\), \(\Lambda _n=\frac{1}{n}\sum _{i=1}^{n}\varvec{U}_i(\varphi '_h(\epsilon _i)+\varphi ''_h(\epsilon _i)R_i)\). Then, by Eq. (A.14), we have

$$\begin{aligned} \hat{\varvec{\gamma }}-\varvec{\gamma }_0=\big (\Phi _n+o_p(1)\big )^{-1}\big [\Lambda _n+\Psi _n(\varvec{\gamma }_0-\varvec{\hat{\gamma }}_0)\big ]. \end{aligned}$$
(A.15)

Substituting Eq. (A.15) into Eq. (A.13), we can obtain that

$$\begin{aligned} \begin{aligned}&\frac{1}{n}\sum _{i=1}^{n}\varphi ''_h(\epsilon _i)\varvec{z}_i[\varvec{z}_i-\Psi _n^T\Phi _n^{-1}\varvec{U}_i]^T(\varvec{\hat{\alpha }}-\varvec{\alpha }_0)+o_p(\varvec{\hat{\alpha }}-\varvec{\alpha }_0)\\&\quad =\frac{1}{n}\sum _{i=1}^{n}\varvec{z}_i\Big (\varphi '_h(\epsilon _i)+\varphi ''_h(\epsilon _i)R_i-\varphi ''_h(\epsilon _i)\varvec{U}_i^T\Phi _n^{-1}\Lambda _n\Big ). \end{aligned}\end{aligned}$$
(A.16)

Note that

$$\begin{aligned}&\frac{1}{n}\sum _{i=1}^{n}\varphi ''_h(\epsilon _i){\Psi }_n^T\Phi _n^{-1}\varvec{U}_i[\varvec{z}_i-\Psi _n^T\Phi _n^{-1}\varvec{U}_i]^T=0,\qquad \quad \end{aligned}$$
(A.17)
$$\begin{aligned}&\frac{1}{n}\sum _{i=1}^{n}{\Psi }_n^T\Phi _n^{-1}\varvec{U}_i\big [\varphi '_h(\epsilon _i)+\varphi ''_h(\epsilon _i)R_{i}-\varvec{U}_i^\tau \Phi _n^{-1}\Lambda _n\big ]=0. \end{aligned}$$
(A.18)

Then, by Eqs. (A.16)–(A.18), it is easy to show that

$$\begin{aligned} \left( \frac{1}{n}\sum _{i=1}^{n}\varphi ''_h(\epsilon _i)\widetilde{\varvec{z}}_i\widetilde{\varvec{z}}_i^T\right) \sqrt{n} (\hat{\varvec{\alpha }}-{\varvec{\alpha }}_0) =\frac{1}{\sqrt{n}}\sum _{i=1}^{n}\varphi '_h(\epsilon _i)\widetilde{\varvec{z}}_i+o_p(1), \end{aligned}$$
(A.19)

where \(\widetilde{\varvec{z}}_i={\varvec{z}}_i-{\Psi }_n^T\Phi _n^{-1}\varvec{U}_i\). Furthermore, invoking Lemma 1 in Yu et al. (2016) and condition C6, a simple calculation yields

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}\widetilde{\varvec{z}}_i\widetilde{\varvec{z}}_i^T=\hat{\varvec{\Sigma }}\overset{p}{\longrightarrow }\varvec{\Sigma }. \end{aligned}$$
(A.20)

Using the central limits Theorem, we have

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum _{i=1}^{n}\varphi '_h(\epsilon _i)\widetilde{\varvec{z}}_i\overset{d}{\longrightarrow }N\big (0,g(h)\varvec{\Sigma }\big ). \end{aligned}$$
(A.21)

Moreover, by the law of large numbers, we can obtain

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}\varphi ''_h(\epsilon _i)\widetilde{\varvec{z}}_i\widetilde{\varvec{z}}_i^T\overset{p}{\longrightarrow }H(h)\varvec{\Sigma }. \end{aligned}$$
(A.22)

Then, invoking Eqs. (A.19)–(A.22), and the Slutsky’s theorem, we can complete the proof of Theorem 2. \(\square \)

Proof of Theorem 3

The proof can be obtained by used an argument analogous to Theorem 3 in Zhou et al. (2016), we omit the detail for saving space. \(\square \)

Proof of Corollary 2

By Theorem 2, we have

$$\begin{aligned} \sqrt{n}\varvec{\Xi }^{-\frac{1}{2}}(\hat{\varvec{\alpha }}-\varvec{\alpha }_0)\overset{d}{\longrightarrow }N\big (0,\varvec{I}_p). \end{aligned}$$
(23)

Note that

$$\begin{aligned} \epsilon _i-\hat{\epsilon }_i=\varvec{z}_i^T(\hat{\varvec{\alpha }}-\varvec{\alpha })+\varvec{U}_i^T(\hat{\varvec{\gamma }}-\varvec{\gamma }_0)-R_i. \end{aligned}$$

By Theorem 1,Theorem 2 and Eq. (A.2), we can get

$$\begin{aligned} \epsilon _i-\hat{\epsilon }_i=O_p(n^{-{\frac{2b-1}{2(a+2b)}}})=o_p(1). \end{aligned}$$

Moreover, according to Lemma 1 in Yu et al. (2016), we have

$$\begin{aligned} \hat{\varvec{\Sigma }}\overset{p}{\longrightarrow }\varvec{\Sigma }. \end{aligned}$$

Thus, invoking the Slutsky’s theorem and the definition of \(\varvec{\Xi }\) we complete the proof of Corollary 2. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, P., Zhu, Z. & Zhang, Z. Robust exponential squared loss-based estimation in semi-functional linear regression models. Comput Stat 34, 503–525 (2019). https://doi.org/10.1007/s00180-018-0810-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-018-0810-2

Keywords

Navigation