Skip to main content
Log in

Modeling functional data: a test procedure

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

The paper deals with a test procedure able to state the compatibility of observed data with a reference model, by using an estimate of the volumetric part in the small-ball probability factorization which plays the role of a real complexity index. As a preliminary by-product we state some asymptotics for a new estimator of the complexity index. A suitable test statistic is derived and, referring to the U-statistics theory, its asymptotic null distribution is obtained. A study of level and power of the test for finite sample sizes and a comparison with a competitor are carried out by Monte Carlo simulations. The test procedure is performed over a financial time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Data have been weekly downloaded by using the link: https://www.google.com/finance/getprices?i=60&p=200d&f=d,o,h,l,c,v&df=cpct&q=.INX.

References

  • Alt R (2005) Multiple hypothesis testing in linear regression model with applications to economics and finance. Verlag, Curvillier

    Google Scholar 

  • Aneiros G, Bongiorno EG, Cao R, Vieu P (2017) Functional statistics and related fields. Springer, Berlin

    Book  MATH  Google Scholar 

  • Bongiorno EG, Goia A (2016) Classification methods for hilbert data based on surrogate density. Comput Stat Data Anal 99:204–222

    Article  MathSciNet  MATH  Google Scholar 

  • Bongiorno EG, Goia A (2017) Some insights about the small ball probability factorization for Hilbert random elements. Stat Sin 27:1949–1965

    MathSciNet  MATH  Google Scholar 

  • Bongiorno EG, Goia A, Vieu P (2018) Evaluating the complexity of functional data. SORT 42(1) (in press)

  • Bosq D (2000) Linear processes in function spaces. Vol. 149 of Lecture Notes in Statistics. Springer, New York

  • Campbell JY, Lo AW-C, MacKinlay AC (2012) The econometrics of financial markets. Princeton University press, Princeton

    Book  MATH  Google Scholar 

  • Cuesta-Albertos JA, del Barrio E, Fraiman R, Matrán C (2007) The random projection method in goodness of fit for functional data. Comput Stat Data Anal 51(10):4814–4831

    Article  MathSciNet  MATH  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis. Springer, New York Springer Series in Statistics

    MATH  Google Scholar 

  • Ferraty F, Kudraszow N, Vieu P (2012) Nonparametric estimation of a surrogate density function in infinite-dimensional spaces. J Nonparametr Stat 24(2):447–464

    Article  MathSciNet  MATH  Google Scholar 

  • Fusai G, Roncoroni A (2007) Implementing models in quantitative finance: methods and cases. Springer, Berlin

    MATH  Google Scholar 

  • Goia A, Vieu P (2016) An introduction to recent advances in high/infinite dimensional statistics. J Multivar Anal 146:1–6

    Article  MathSciNet  MATH  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70

    MathSciNet  MATH  Google Scholar 

  • Horváth L, Kokoszka P (2012) Inference for functional data with applications. Springer, New York Springer Series in Statistics

    Book  MATH  Google Scholar 

  • Lee J (1990) U-statistics: theory and practice. Citeseer, University Park

    MATH  Google Scholar 

  • Lehmann EL (1999) Elements of large-sample theory. Springer, Berlin

    Book  MATH  Google Scholar 

  • Maesono Y (1995) On the normal approximations of Studentized \(U\)-statistic. J Jpn Stat Soc 25(1):19–33

    Article  MathSciNet  MATH  Google Scholar 

  • Maesono Y (1998) Asymptotic mean square errors of variance estimators for \(U\)-statistics and their Edgeworth expansions. J Jpn Stat Soc 28(1):1–19

    Article  MathSciNet  MATH  Google Scholar 

  • Marathe RR, Ryan SM (2005) On the validity of the geometric Brownian motion assumption. Eng Econ 50(2):159–192

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, New York Springer Series in Statistics

    MATH  Google Scholar 

  • Yen G, Yen EC (1999) On the validity of the Wiener process assumption in option pricing models: contradictory evidence from Taiwan. Rev Quant Finance Acc 12(4):327–340

    Article  Google Scholar 

Download references

Acknowledgements

The Authors thank an Associate Editor and two anonymous referees for their valuable remarks and comments that allowed to improve the presentation of the paper. Special thanks go to Professor J. A. Cuesta Albertos, Universidad de Cantabria, who provided MatLab code for simulations in Sect. 5. E. Bongiorno and A. Goia are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The financial support of CRoNoS-COST Action IC1408 is acknowledged by the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enea G. Bongiorno.

A: Appendix—theoretical results

A: Appendix—theoretical results

1.1 A.1 Proof of Proposition 1 and some further details

The proof is based on similar arguments as in Corollary 5.1 in Ferraty et al. (2012).

1.1.1 Bias

Compute the mean of the estimator:

$$\begin{aligned} \mathbb {E}\left[ \widehat{\phi }_{n}\left( h\right) \right]= & {} \mathbb {E} \left[ \dfrac{1}{n\left( n-1\right) }\sum _{i=1}^{n}\sum _{j\ne i}\mathbb {I} _{\left\{ \left\| X_{i}-X_{j}\right\| \le h\right\} }\right] \\= & {} \dfrac{1}{n\left( n-1\right) }\sum _{i=1}^{n}\sum _{j\ne i}\mathbb {E}\left[ \mathbb {I}_{\left\{ \left\| X_{2}-X_{1}\right\| \le h\right\} }\right] \\= & {} \mathbb {E}\left[ \mathbb {I}_{\left\{ \left\| X_{2}-X_{1}\right\| \le h\right\} }\right] . \end{aligned}$$

Using the law of total expectation, one has

$$\begin{aligned} \mathbb {E}\left[ \mathbb {I}_{\left\{ \left\| X_{2}-X_{1}\right\| \le h\right\} }\right] =\mathbb {E}\left[ \ \mathbb {E}\left[ \mathbb {I}_{\left\{ \left\| X_{2}-X_{1}\right\| \le h\right\} }|X_{2}\right] \ \right] = \mathbb {E}\left[ \varphi _{X_{2}}\left( h\right) \right] . \end{aligned}$$

Thanks to (H2) and the constraint (2) it follows

$$\begin{aligned} \mathbb {E}\left[ \varphi _{X_{2}}\left( h\right) \right] =\left( \mathbb {E}\left[ f\left( X_{2}\right) \right] +o\left( 1\right) \right) \phi \left( h\right) =\phi \left( h\right) +o\left( \phi \left( h\right) \right) . \end{aligned}$$
(7)

Combining the results one gets

$$\begin{aligned} \mathbb {E}\left[ \widehat{\phi }_{n}\left( h\right) \right] =\phi \left( h\right) +o\left( \phi \left( h\right) \right) \end{aligned}$$
(8)

that allows to conclude that the estimator is unbiased when \(h\rightarrow 0\) and \(n\rightarrow \infty \).

1.1.2 Variance

By using classical results on U-statistics (see e.g. Lehmann 1999, Theorem 6.1.1) it follows

$$\begin{aligned} Var \left( \widehat{\phi }_{n}\left( h\right) \right) =\dfrac{4\left( n-2\right) }{n\left( n-1\right) }\sigma _{1}^{2}\left( h\right) +\dfrac{2}{ n\left( n-2\right) }\sigma _{2}^{2}\left( h\right) \end{aligned}$$

where

  • \(\sigma _{1}^{2}\left( h\right) = Var \left( \mathbb {E} \left[ \mathbb {I} _{\left\{ \left\| X_{2}-X_{1}\right\| \le h\right\} } |X_{2}\right] \right) = Var \left( \varphi _{X_{2}}\left( h\right) \right) \),

  • \(\sigma _{2}^{2}\left( h\right) = Var \left( \mathbb {I}_{\left\{ \left\| X_{2}-X_{1}\right\| \le h\right\} }\right) \).

Consider the second term \(\sigma _{2}^{2}\left( h\right) \), one has

$$\begin{aligned} Var \left( \mathbb {I}_{\left\{ \left\| X_{2}-X_{1}\right\| \le h\right\} }\right) =\mathbb {E}\left[ \mathbb {I}_{\left\{ \left\| X_{2}-X_{1}\right\| \le h\right\} }\right] \left( 1-\mathbb {E}\left[ \mathbb {I}_{\left\{ \left\| X_{2}-X_{1}\right\| \le h\right\} }\right] \right) . \end{aligned}$$

Since (see Eq. (7))

$$\begin{aligned} \mathbb {E}\left[ \mathbb {I}_{\left\{ \left\| X_{2}-X_{1}\right\| \le h\right\} }\right] =\mathbb {E}\left[ \mathbb {E}\left[ \mathbb {I}_{\left\{ \left\| X_{2}-X_{1}\right\| \le h\right\} }|X_{2}\right] \right] = \mathbb {E}\left[ \varphi _{X_{2}}\left( h\right) \right] =\phi \left( h\right) +o\left( \phi \left( h\right) \right) \end{aligned}$$

it follows

$$\begin{aligned} \sigma _{2}^{2}\left( h\right) =\left( \phi \left( h\right) +o\left( \phi \left( h\right) \right) \right) \left( 1-\phi \left( h\right) -o\left( \phi \left( h\right) \right) \right) =\phi \left( h\right) +o\left( \phi \left( h\right) \right) . \end{aligned}$$

About the first term \(\sigma _{1}^{2}\left( h\right) \), one has

$$\begin{aligned} Var \left( \varphi _{X_{2}}\left( h\right) \right) =\mathbb {E}\left[ \varphi _{X_{2}}^{2}\left( h\right) \right] -\mathbb {E}^{2}\left[ \varphi _{X_{2}}\left( h\right) \right] \end{aligned}$$

where

$$\begin{aligned} \mathbb {E}^{2}\left[ \varphi _{X_{2}}\left( h\right) \right] =\phi ^{2}\left( h\right) +o\left( \phi ^{2}\left( h\right) \right) . \end{aligned}$$

Since

$$\begin{aligned} \varphi _{X_{2}}^{2}\left( h\right)= & {} \mathbb {E}^{2}\left[ \mathbb {I} _{\left\{ \left\| X_{2}-X_{1}\right\| \le h\right\} }|X_{2}\right] \le \mathbb {E}\left[ \mathbb {I}_{\left\{ \left\| X_{2}-X_{1}\right\| \le h\right\} }^{2}|X_{2}\right] \\= & {} \mathbb {E}\left[ \mathbb {I}_{\left\{ \left\| X_{2}-X_{1}\right\| \le h\right\} }|X_{2}\right] =\varphi _{X_{2}}\left( h\right) \end{aligned}$$

then

$$\begin{aligned} \mathbb {E}\left[ \varphi _{X_{2}}^{2}\left( h\right) \right] \le \mathbb {E} \left[ \varphi _{X_{2}}\left( h\right) \right] =\phi \left( h\right) +o\left( \phi \left( h\right) \right) . \end{aligned}$$

Concluding, there exist two finite positive constants \(c_{1}\) and \(c_{2}\) depending on h, such that

$$\begin{aligned} Var \left( \widehat{\phi }_{n}\left( h\right) \right) \le \dfrac{4\left( n-2\right) }{n\left( n-1\right) }c_{1}\left( h\right) +\dfrac{2}{n\left( n-2\right) }c_{2}\left( h\right) \end{aligned}$$

and then

$$\begin{aligned} Var \left( \widehat{\phi }_{n}\left( h\right) \right) =O\left( \dfrac{1}{n} \right) . \end{aligned}$$
(9)

1.1.3 Asymptotic distribution

Using classical asymptotic results on U-statistics (see e.g. Lehmann 1999, theorems 3.3.1 and 6.1.2) since \(0<\sigma _{1}^{2}\left( h\right) <\infty \) and \( 0<\sigma _{2}^{2}\left( h\right) <\infty \) (thanks to (H3) and results above), one gets, for \(h\rightarrow 0\), and \(n\rightarrow \infty \),

$$\begin{aligned} \dfrac{\widehat{\phi }_{n}\left( h\right) -\mathbb {E}\left[ \widehat{\phi }_{n} \left( h\right) \right] }{\sqrt{ Var \left( \widehat{\phi }_{n}\left( h\right) \right) }}\overset{d}{\longrightarrow }\mathcal {N}\left( 0,1\right) . \end{aligned}$$
(10)

It is worth to noting that combining (10) with (8) we get, as \(n\rightarrow \infty \),

$$\begin{aligned} \dfrac{\widehat{\phi }_{n}\left( h\right) -\phi \left( h\right) }{\sqrt{ Var \left( \widehat{\phi }_{n}\left( h\right) \right) }}\overset{d}{\longrightarrow }\mathcal {N}\left( 0,1\right) . \end{aligned}$$
(11)

1.2 A.2 Proof of Propositions 2, 4, 5 and 6

For what concerns Proposition 2, the result is a consequence of asymptotic normality of the estimator \(\widehat{\phi }_{n}\) and its unbiasness (8). In particular, for any \(k=1,\dots ,m\), under the marginal null hypothesis \(H_{0}^{k}\), when \( h\rightarrow 0\) from (11) it follows:

$$\begin{aligned} \dfrac{\left( \widehat{\phi }_{n}\left( h\right) -\phi _{0}\left( h\right) \right) ^{2}}{ Var \left( \widehat{\phi }_{n}\left( h\right) \right) }\overset{ d}{\longrightarrow }\mathcal {\chi }^{2}\left( 1\right) \ \ \ \ \ \text { as } n\rightarrow \infty . \end{aligned}$$

About the statements in Propositions 4, 5 and 6, the estimators consistency, their asymptotic unbiasness and normality, together with consistency of the jackknife variance estimators allow to invoke Slustky’s Theorem and lead to the results (see e.g. Maesono 1995).

1.3 Proof of Proposition 3

Recalling that a multiple test is consistent w.r.t. the marginal alternatives \(H_{1}^{1},\dots ,H_{1}^{m}\) if each marginal test is consistent (see e.g. Alt 2005), then we have to prove that, under each \( H_{1}^{k}\) one has

$$\begin{aligned} D_{k}^{2}\longrightarrow +\infty \ \ \ \ \ \text { in probability as } n\rightarrow \infty . \end{aligned}$$

Observe that for any k,

$$\begin{aligned} D_{k}^{2}=\left( \dfrac{\widehat{\phi }_{n}\left( h\right) -\phi _{1}\left( h\right) }{ Var \left( \widehat{\phi }_{n}\left( h\right) \right) }+\dfrac{\phi _{1}\left( h\right) -\phi _{0}\left( h\right) }{ Var \left( \widehat{\phi } _{n}\left( h\right) \right) }\right) ^{2}=\left( A_{n}+B_{n}\right) ^{2}. \end{aligned}$$

On the one hand, under each \(H_{1}^{k}\), thanks to (11), the sequence of random variables \(A_{n}\) is bounded in probability. On the other hand, under each \(H_{1}^{k}\), thanks to (9), the deterministic sequence \(B_{n}\) diverges with n. The conclusion follows immediately.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bongiorno, E.G., Goia, A. & Vieu, P. Modeling functional data: a test procedure. Comput Stat 34, 451–468 (2019). https://doi.org/10.1007/s00180-018-0816-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-018-0816-9

Keywords

Navigation