Skip to main content

Advertisement

Log in

Modified beta modified-Weibull distribution

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

We introduce a flexible modified beta modified-Weibull model, which can accommodate both monotonic and non-monotonic hazard rates such as a useful long bathtub shaped hazard rate in the middle. Several distributions can be obtained as special cases of the new model. We demonstrate that the new density function is a linear combination of modified-Weibull densities. We obtain the ordinary and central moments, generating function, conditional moments and mean deviations, residual life functions, reliability measures and mean and variance (reversed) residual life. The method of maximum likelihood and a Bayesian procedure are used for estimating the model parameters. We compare the fits of the new distribution and other competitive models to two real data sets. We prove empirically that the new distribution gives the best fit among these distributions based on several goodness-of-fit statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Cintra RJ, Rêgo LC, Cordeiro GM, Nascimento ADC (2014) Beta generalized normal distribution with an application for SAR image processing. Stat A J Theor Appl Stat 48:279–294

    MathSciNet  MATH  Google Scholar 

  • Cordeiro GM, Edwin Ortega MM, Lemonte AJ (2014) The exponential-Weibull lifetime distribution. J Stat Comput Simul 84:2592–2606

    Article  MathSciNet  Google Scholar 

  • Cordeiro GM, Gomes AE, Da-Silva CQ, Edwin Ortega MM (2013a) The beta exponentiated Weibull distribution. J Stat Comput Simul 83:114–138

    Article  MathSciNet  MATH  Google Scholar 

  • Cordeiro GM, Silva GO, Edwin Ortega MM (2013) The beta-Weibull geometric distribution. Stat A J Theor Appl Stat 47:817–834

    MathSciNet  MATH  Google Scholar 

  • Cheng J, Tellambura C, Beaulieu NC (2003) Performance analysis of digital modulations on Weibull fading channels. In: 2003 IEEE 58th vehicular technology conference, VTC 2003-fall, vol 1. 2003 October 6–9, pp 236–240

  • Cowles MK, Carlin BP (1996) Markov chain Monte Carlo convergence diagnostics: a comparative review. J Am Stat Assoc 91:133–169

    MathSciNet  MATH  Google Scholar 

  • Erdélyi A, Magnus W, Oberhettinger F, Tricomi FG (1995) Higher transcendental functions, vol 1. McGraw–Hill, New York

    MATH  Google Scholar 

  • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences (with discussion). Stat Sci 7:457–472

    Article  MATH  Google Scholar 

  • Gradshteyn IS, Ryzhik IM (2007) Table of integrals, series, and products. Academic Press, New York

    MATH  Google Scholar 

  • Gupta RC, Kirmani SNUA (2000) Residual coefficient of variation and some characterization results. J Stat Plan Inference 91:23–31

    Article  MathSciNet  MATH  Google Scholar 

  • Jones MC (2004) Families of distributions arising from distributions of order statistics. Test 13:1–43

    Article  MathSciNet  MATH  Google Scholar 

  • Khan MN (2015) The modified beta Weibull distribution. Hacet J Math Stat 44:1553–1568

    MathSciNet  MATH  Google Scholar 

  • Kang MS, Goo JH, Song I, Chun JA, Her YG, Hwang SW, Park SW (2013) Estimating design floods based on the critical storm duration for small watersheds. J Hydro-Environ Res 7:209–218

    Article  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, vol 204. North-Holland mathematical studies. Elsevier (North-Holland) Science Publishers, Amsterdam

    Book  MATH  Google Scholar 

  • Lee C, Famoye F, Olumolade O (2007) Beta-Weibull distribution: some properties and applications to censored data. J Modern Appl Stat Methods 6:173–86

    Article  Google Scholar 

  • Lee ET, Wang JW (2003) Statistical methods for survival data analysis, 3rd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Luke YL (1969) The special functions and their approximations. Academic Press, San Diego

    MATH  Google Scholar 

  • Mathai A, Saxena R (1978) The H-function with applications in statistics and other disciplines. Wiley Halsted, New York

    MATH  Google Scholar 

  • Meijer CS (1946) On the \(G\)-function I–VIII. Proc Kon Ned Akad Wet, 49:227–237, 344–356, 457–469, 632–641, 765–772, 936–943, 1063–1072, 1165–1175

  • Nadarajah S, Kotz S (2006) The beta exponential distribution. Reliab Eng Syst Saftey 91:689–697

    Article  Google Scholar 

  • Nadarajah S, Teimouri M, Shih SH (2014) Modified beta distributions. Sankhya Ser B 76:19–48

    Article  MathSciNet  MATH  Google Scholar 

  • Pham H, Lai CD (2007) On recent generalizations of the Weibull distribution. IEEE Trans Reliab 56:454–458

    Article  Google Scholar 

  • Prudnikov AP, Brychkov YA, Marichev OI (1986) Integrals and series, vol 1–4. Gordon and Breach Science Publishers, Amsterdam

    MATH  Google Scholar 

  • Pundir S, Arora S, Jain K (2005) Bonferroni curve and the related statistical inference. Stat Probab Lett 75:140–150

    Article  MathSciNet  MATH  Google Scholar 

  • Saboor A, Provost SB, Ahmad M (2012) The moment generating function of a bivariate gamma-type distribution. Appl Math Comput 218:11911–11921

    MathSciNet  MATH  Google Scholar 

  • Saboor A, Bakouch HS, Khan MN (2016) Beta Sarhan–Zaindin modified-Weibull distribution. Appl Math Model 40:6604–6621

    Article  MathSciNet  Google Scholar 

  • Sarhan AM, Zaindin M (2009) Modified Weibull distribution. Appl Sci 11:123–136

    MathSciNet  MATH  Google Scholar 

  • Silva GO, Edwin Ortega MM, Cordeiro GM (2010) The beta modified Weibull distribution. Lifetime Data Anal 16:409–430

    Article  MathSciNet  MATH  Google Scholar 

  • Singla N, Jain K, Sharma SK (2012) The beta generalized Weibull distribution: properties and applications. Reliab Eng Syst Safety 102:5–15

    Article  Google Scholar 

Download references

Acknowledgements

The research of Abdus Saboor has been supported in part by the Higher Education Commission of Pakistan (Grant No. 3104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Nauman Khan.

Appendices

Appendix A. The unified Fox–Wright generalized hypergeometric function

Here,

$$\begin{aligned} {}_p\varPsi _q^*\Big [ \begin{array}{c} (a, A)_p\\ (b, B)_q \end{array} \Big |\, z\,\Big ] = \sum _{n=0}^\infty \frac{\prod _{j=1}^p (a_j)_{A_jn}}{\prod _{j=1}^q (b_j)_{B_jn}}\, \frac{z^n}{n!} \end{aligned}$$
(22)

stands for the unified variant of the Fox–Wright generalized hypergeometric function with p upper and q lower parameters; \((a,A)_p\) denotes the parameter p-tuple \((a_1, A_1), \ldots , (a_p, A_p)\) and \(a_j \in \mathbb C\), \(b_i \in \mathbb C\setminus \mathbb Z_0^-\), \(A_i, B_j>0\) for all \(j=\overline{1,p}, i=\overline{1,q}\). The power series converges for suitably bounded values of |z| when

$$\begin{aligned} \varDelta _{p,q} = 1 - \sum _{j=1}^pA_j + \sum _{j=1}^qB_j >0\, . \end{aligned}$$

In the case \(\varDelta = 0\), the convergence holds in the open disc \(|z|<\beta = \prod _{j=1}^qB_j^{B_j}\cdot \prod _{j=1}^pA_j^{-A_j}\).

The function \({}_1\varPsi _0^*\) is called confluent. The convergence condition \(\varDelta _{1,0} = 1-A_1>0\) is of special interest for us.

We point out that the original definition of the Fox–Wright function \({}_p\varPsi _q[z]\) (consult formula collection (Erdélyi et al. 1995) and the monographs (Kilbas et al. 2006; Mathai and Saxena 1978)) contains gamma functions instead of the generalized Pochhammer symbols used here. However, these two functions differ only up to constant multiplying factor, that is

$$\begin{aligned} {}_p\varPsi _q \Big [ \begin{array}{c} (a, A)_p\\ (b, B)_q \end{array} \Big |\, z\,\Big ] = \frac{\prod _{j=1}^p \varGamma (a_j)}{\prod _{j=1}^q\varGamma (b_j)}\, {}_p\varPsi _q^* \Big [ \begin{array}{c} (a, A)_p\\ (b, B)_q \end{array} \Big |\, z\,\Big ]\, . \end{aligned}$$

The unification’s motivation is clear - for \(A_1 = \cdots = A_p = B_1 = \cdots = B_q = 1\), the fucntion \({}_p\varPsi _q^*[z]\) reduces exactly to the well-known generalized hypergeometric function \({}_pF_q[z]\).

Appendix B. Meijer G-function

The symbol \(G_{p,q}^{m,n}( \cdot |\, \cdot )\) denotes Meijer’s G-function (Meijer 1946) defined in terms of the Mellin–Barnes integral as

$$\begin{aligned}&G_{p,q}^{m,n}\Big ( z \,\Big | \begin{array}{c} a_1, \ldots , a_p\\ b_1, \ldots , b_q \end{array}\Big ) = \frac{1}{2\pi {\mathrm i}}\oint _{\mathfrak C}\frac{\prod _{j=1}^{m}\varGamma (b_j-s) \prod _{j=1}^{n}\varGamma ( 1-a_j + s)}{\prod _{j=m+1}^q \varGamma ( 1-b_j + s) \prod _{j=n+1}^{p}\varGamma (a_j - s)} z^s \mathrm d s, \end{aligned}$$

where \(0\le m\le q,\, 0\le n\le p\) and the poles \(a_j, b_j\) are such that no pole of \(\varGamma (b_j - s), j=\overline{1,m}\) coincides with any pole of \(\varGamma (1-a_j+s), j=\overline{1,n}\); i.e. \(a_k-b_j \not \in \mathbb N\), while \(z \ne 0\). \(\mathfrak C\) is a suitable integration contour, see [p.143] Luke (1969) and Meijer (1946) for more details.

The G function’s Mathematica code reads\( \texttt {MeijerG[}\{\{a_1,\ldots ,a_n\}, \{a_{n+1},\ldots ,a_p\}\}, \{\{b_1,\ldots ,b_m\}, \{b_{m+1},\ldots ,b_q\}\}, z\texttt {]}.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saboor, A., Khan, M.N., Cordeiro, G.M. et al. Modified beta modified-Weibull distribution. Comput Stat 34, 173–199 (2019). https://doi.org/10.1007/s00180-018-0822-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-018-0822-y

Keywords

Navigation