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Abstract
Functional data, i.e., observations represented by curves or functions, frequently arise
in various fields. The theory and practice of statistical methods for such data is referred
to as functional data analysis (FDA) which is one of major research fields in statistics.
The practical use of FDAmethods ismade possible thanks to availability of specialized
and usually free software. In particular, a number of R packages is devoted to these
methods. In the paper, we introduce a new R package fdANOVA which provides an
access to a broad range of global analysis of variancemethods for univariate andmulti-
variate functional data. The implemented testing proceduresmainly for homoscedastic
case are briefly overviewed and illustrated by examples on a well known functional
data set. To reduce the computation time, parallel implementation is developed and
its efficiency is empirically evaluated. Since some of the implemented tests have not
been compared in terms of size control and power yet, appropriate simulations are also
conducted. Their results can help in choosing proper testing procedures in practice.

Keywords Analysis of variance · Functional data · fdANOVA · R

1 Introduction

In recent years considerable attention has been devoted to analysis of so called func-
tional data. The functional data are represented by functions or curves which are
observations of a random variable (or random variables) taken over a continuous inter-
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val or in large discretization of it. Sets of functional observations are peculiar examples
of the high-dimensional data where the number of variables significantly exceeds the
number of observations. Such data are often gathered automatically due to advances
in modern technology, including computing environments. The functional data are
naturally collected in agricultural sciences, behavioral sciences, chemometrics, eco-
nomics, medicine, meteorology, spectroscopy, and many others. The main purpose of
functional data analysis (FDA) is to provide tools for statistically describing and mod-
elling sets of functions or curves. The monographs by Ramsay and Silverman (2005),
Ferraty and Vieu (2006), Horváth and Kokoszka (2012) and Zhang (2013) present a
broad perspective of the FDA solutions. The following problems for functional data
are commonly studied (see also the review papers of Cuevas 2014 and Wang et al.
2016): analysis of variance (see Sect. 2), canonical correlation analysis, classification,
cluster analysis, outlier detection, principal component analysis, regression analysis,
repeated measures analysis, simultaneous confidence bands.

Many methods for functional data analysis have been already implemented in
the R software (R Core Team 2017). The packages fda (Ramsay et al. 2017) and
fda.usc (Febrero-Bande and Oviedo de la Fuente 2012) are the biggest and prob-
ably the most commonly used ones. The first package includes the techniques for
functional data in the Hilbert space L2(I ) of square integrable functions over an inter-
val I = [a, b]. On the other hand, in the second one,many of themethods implemented
do not need such assumption and use only the values of functions evaluated on a grid of
discretization points (also non-equally spaced). There is also a broad range of R pack-
ages containing solutions for more particular functional data problems. The review of
these packages is presented in the Supplementary Materials to save space.

Despite so many R packages for functional data analysis, a broad range of test for a
widely applicable analysis of variance problem for functional data was implemented
very recently in the package fdANOVA. Earlier, only the testing procedures of Cuevas
et al. (2004) and Cuesta-Albertos and Febrero-Bande (2010) were available in the
package fda.usc. The package fdANOVA is available from the Comprehensive
R Archive Network at http://CRAN.R-project.org/package=fdANOVA. It is the aim
of this package to provide a few functions implementing most of known analysis of
variance tests for univariate andmultivariate functional data,mainly for homoscedastic
case. Most of them are based on bootstrap, permutations or projections, which may be
time-consuming. For this reason, the package also contains parallel implementations
which enable to reduce the computation time significantly, which is shown in empirical
evaluation. Additionally, in this paper, some tests or their new versions are compared
in terms of size control and power by simulation studies. Those comparisons were not
presented anywhere else.

The rest of the paper is organized in the followingmanner. In Sect. 2, the problems of
the analysis of variance for univariate and multivariate functional data are introduced.
A review of most of the known solutions of these problems is also presented there.
Some of the testing procedures are slightly generalized. Since it was not easy task to
implement many different tests in a few functions, their usage may also be not easy
at first. Thus, Sect. 3 contains a detailed description of (eventual) preparation of data
and package functionality as well as a package demonstration on commonly used real
data set. A series of experiments evaluating efficiency of parallel implementation is
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presented in Sect. 4. Simulation studies comparing some of the implemented tests in
terms of size control and power are depicted in Sect. 5. Finally, Sect. 6 concludes
the paper and notes on future extensions of the fdANOVA package. Supplementary
Materials are described in Sect. 7.

2 Analysis of variance for functional data

In this section,webrieflydescribemost of the known testing procedures for the analysis
of variance problem for functional data in the univariate and multivariate cases. All of
them are implemented in the package fdANOVA.

2.1 Univariate case

We consider the l groups of independent random functions Xi j (t), i = 1, . . . , l, j =
1, . . . , ni defined over a closed and bounded interval I = [a, b]. Let n = n1+· · ·+nl .
These groups may differ in mean functions, i.e., we assume that Xi j (t), j = 1, . . . , ni
are stochastic processes with mean function μi (t), t ∈ I and covariance function
γ (s, t), s, t ∈ I , for i = 1, . . . , l. We also assume that Xi j ∈ L2(I ), i = 1, . . . , l, j =
1, . . . , ni , where L2(I ) is a Hilbert space consisting of square integrable functions
on I , equipped with the inner product of the form 〈 f , g〉 = ∫

I f (t)g(t)dt . This is a
common technical assumption. Of interest is to test the following null hypothesis

H0 : μ1(t) = · · · = μl(t), t ∈ I . (1)

The alternative is the negation of the null hypothesis. The problem of testing this
hypothesis is known as the one-way analysis of variance problem for functional data
(FANOVA).

Many of the tests for (1) are based on the pointwise F test statistic (Ramsay and
Silverman 2005) given by the formula

Fn(t) = SSRn(t)/(l − 1)

SSEn(t)/(n − l)
,

where

SSRn(t) =
l∑

i=1

ni (X̄i (t) − X̄(t))2, SSEn(t) =
l∑

i=1

ni∑

j=1

(Xi j (t) − X̄i (t))
2

are the pointwise between-subject and within-subject variations respectively, and
X̄(t) = (1/n)

∑l
i=1

∑ni
j=1 Xi j (t) and X̄i (t) = (1/ni )

∑ni
j=1 Xi j (t), i = 1, . . . , l,

are respectively the sample grand mean function and the sample group mean func-
tions.

Faraway (1997) and Zhang and Chen (2007) proposed to use only the pointwise
between-subject variation and considered the test statistic

∫
I SSRn(t)dt . Tests based
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on it are called the L2-norm-based tests. Under Gaussian samples or large number
of observations, the distribution of this test statistic can be approximated by that of
βχ2

(l−1)κ , where β = tr(γ ⊗2)/tr(γ ) and κ = tr2(γ )/tr(γ ⊗2) (tr(γ ) = ∫
I γ (t, t)dt ,

γ ⊗2(s, t) = ∫
I γ (s, u)γ (u, t)du) are obtained by comparing the first two moments of

these random variables (see, Smaga 2017, for recent application of this method). The
p-value is of the form P(χ2

(l−1)κ ≥ ∫
I SSRn(t)dt/β). The parameters β and κ were

estimated by the naive and biased-reduced methods (see, for instance, Zhang 2013, for
more detail). Thus we have the L2-norm-based tests with the naive and biased-reduced
methods of estimation of these parameters (the L2N and L2B tests for short). In case
of non-Gaussian samples or small sample sizes, the bootstrap L2-norm-based test is
also considered (the L2b tests for short).

A bit different L2-norm-based test was proposed by Cuevas et al. (2004). Namely,
they considered

∑
1≤i< j≤l ni

∫
I (X̄i (t)− X̄ j (t))2dt as a test statistic and approximated

its null distribution by a parametric bootstrap method via re-sampling the Gaussian
processes involved in the limit random expression of their test statistic under H0, i.e.,∑

1≤i< j≤l

∫
I (Gi (t) − √

pi/p jG j (t))2dt, where Gi (t), i = 1, . . . , l are independent
Gaussian processeswithmean zero and covariance function γ (s, t), and ni/n → pi >

0 as n → ∞. Cuevas et al. (2004) investigated two testing procedures (the CH and
CS tests for short) under homoscedastic and heteroscedastic cases. In heteroscedastic
case, the processes Xi j (t) andGi (t), j = 1, . . . , ni have covariance functions γi (s, t),
s, t ∈ I , which are not necessarily equal, i = 1, . . . , l. In homoscedastic (resp.
heteroscedastic) case, the common covariance function γ (s, t) (resp. the covariance
function γi (s, t) in the i th sample) is estimated based on observations from all groups
(resp. the i th group).

Following test, which uses both the pointwise between-subject and within-subject
variations, is known as the F-type test. More precisely, the test statistic is of the form

∫
I SSRn(t)dt/(l − 1)

∫
I SSEn(t)dt/(n − l)

. (2)

Tests of this type were considered by Shen and Faraway (2004) and Zhang (2011).
UnderGaussian samples, the null distribution of the above test statistic is approximated
by F(l−1)κ,(n−l)κ -distribution, where κ is the same as for the L2-norm-based test. The
p-value is given by P(F(l−1)κ,(n−l)κ > Fn), where Fn denotes the test statistic (2).
Depending on themethod of estimation of parameter κ , the F-type tests based on naive
and biased-reduced methods of estimation are considered (the FN and FB tests for
short). For the same reasons as for L2-norm-based test, the Fb test is also investigated,
i.e., the bootstrap F-type test.

The next test, which also uses the test statistic (2), is the slightly modified procedure
based on basis function representation of Górecki and Smaga (2015).We represent the
functional observations by a finite number of basis functions ϕm ∈ L2(I ),m = 1, . . . ,
i.e.,

Xi j (t) ≈
K∑

m=1

ci jmϕm(t), t ∈ I , (3)
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where ci jm ,m = 1, . . . , K , are randomvariables, Var(ci jm) < ∞ and K is sufficiently
large. By Górecki et al. (2015), the commonly used least squares method seems to be
one of the best for estimation of ci jm , so we use only that method for this purpose. The
value of K can be selected for each Xi j (t) using an information criterion, e.g., BIC,
eBIC, AIC or AICc. From the values of K corresponding to all observations a modal,
minimum, maximum or mean value is selected as the common value for all Xi j (t).
By using (3) and easy modifications of the results of Górecki and Smaga (2015), we
proved that (2) is approximately equal to

(a − b)/(l − 1)

(c − a)/(n − l)
, (4)

where

a =
l∑

i=1

1

ni
1�
niC

�
i JϕCi1ni , b = 1

n

l∑

i=1

l∑

j=1

1�
niC

�
i JϕC j1n j , c =

l∑

i=1

trace(C�
i JϕCi ),

1a is the a × 1 vector of ones, Ci = (ci jm) j=1,...,ni ;m=1,...,K , i = 1, . . . , l, and
Jϕ := ∫

I ϕ(t)ϕ�(t)dt is the K × K cross product matrix corresponding to ϕ(t) =
(ϕ1(t), . . . , ϕK (t))�. The statistic (2) can be calculated based only on the coefficients
ci jm and the matrix Jϕ , which can be approximated by using the function inprod()
from the R package fda (For orthonormal basis, Jϕ is the identity matrix.). Moreover,
any permutation of the observations leaves b and c unchanged. For this reason, we
considered the permutation test based on (4), and refer to it as the FP test. This test
seems to have better finite sample properties than the F-type and L2-norm-based tests.
Moreover, for short functional data (i.e., observed on a short grid of design time points)
it may also be better than the GPF test described in the following paragraph.

In the above test statistics, SSRn(t) and SSEn(t) were integrated separately. How-
ever, by the simulation results ofGórecki and Smaga (2015), it follows that for example
integrating the whole quotient SSRn(t)/SSEn(t) is more powerful in many situations.
Such test statistic of the form

∫
I Fn(t)dt was considered by Zhang and Liang (2014).

They proposed the globalizing pointwise F test (the GPF test) based on this test statis-
tic. Under Gaussianity assumptions or large sample sizes, the null distribution of test
statistic can be approximated by that of βχ2

d similarly as for the L2-norm-based test,
where

β = (n − l − 2)tr
(
γ ⊗2∗

)

(l − 1)(n − l)(b − a)
, d = (l − 1)(n − l)2(b − a)2

(n − l − 2)2tr
(
γ ⊗2∗

)

and γ∗(s, t) = γ (s, t)/
√

γ (s, s)γ (t, t). Although integration seems to be a natural
operation on Fn(t) or its part, in some situations other using of Fn(t) may be better
in the sense of power, as was shown by Zhang et al. (2018). Instead of integral of
Fn(t), they used simply supt∈I Fn(t) as a test statistic and simulated the critical value
of the resulting Fmaxb test via bootstrapping. By intensive simulation studies, Zhang
et al. (2018) found that the Fmaxb (resp. GPF) test generally has higher power than
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the GPF (resp. Fmaxb) test when the functional data are moderately or highly (resp.
less) correlated.

A different approach to test (1) was proposed by Cuesta-Albertos and Febrero-
Bande (2010). Their tests are based on the analysis of randomly chosen projections.
Suppose that μi ∈ L2(I ), i = 1, . . . , l, and ξ is a Gaussian distribution on L2(I ) and
each of its one-dimensional projections is nondegenerate. Let h be a vector chosen
randomly from L2(I ) using the distribution ξ . When H0 holds, then for every h ∈
L2(I ), the following null hypothesis

Hh
0 : 〈μ1, h〉 = · · · = 〈μl , h〉 (5)

also holds. Moreover, Cuesta-Albertos and Febrero-Bande (2010) showed that for ξ -
almost every h, Hh

0 fails, in case of failing of H0. Thus, a test for Hh
0 can be used

to test H0. Cuesta-Albertos and Febrero-Bande (2010) propose the following testing
procedure, in which k random projections are used:

1. Choose, with Gaussian distribution, functions hr ∈ L2(I ), r = 1, . . . , k.
2. Compute the projections Pr

i j = ∫
I Xi j (t)hr (t)dt/

(∫
I h

2
r (t)dt

)1/2
for i = 1, . . . , l,

j = 1, . . . , ni , r = 1, . . . , k.
3. For each r ∈ {1, . . . , k}, apply the appropriate ANOVA test for Pr

i j , i = 1, . . . , l,
j = 1, . . . , ni . Let p1, . . . , pk denote the resulting p-values.

4. Compute the final p-value for H0 by the formula inf{kp(r)/r , r = 1, . . . , k}, where
p(1) ≤ · · · ≤ p(k) are the ordered p-values obtained in step 3.

The tests based on the above procedure are referred to as the test based on random
projections. Cuesta-Albertos and Febrero-Bande (2010) suggested to use k near 30,
which was confirmed by the results of Górecki and Smaga (2017a). However, in the
case of unconvincing results of the test, we should use a higher number of projections.
We also have to choose a Gaussian distribution and ANOVA test appearing in steps
1 and 3 of the above procedure, respectively. We can do this in many ways and some
of them are implemented in the package fdANOVA (see Sect. 3). In step 4, we can
also use other final p-values instead of Benjamini and Hochberg procedure, as for
example Bonferroni correction. However, according to our experience, the test with
corrected p-value given in step 4 behaves best under finite samples, so we use only
it. The procedure by Cuesta-Albertos and Febrero-Bande (2010) can also handle the
heteroskedastic case. It only depends that such procedure exists for the projected
data.

Most of the above testing procedures were compared via simulations in the papers
of Górecki and Smaga (2015) and Zhang et al. (2018). As mentioned above, the GPF
and Fmaxb tests seem to perform best among the tests considered in these articles.
However, they were not compared with the testing procedure of Cuesta-Albertos and
Febrero-Bande (2010). Such comparison of the finite sample behavior of these tests
is given in Sect. 5. Different variants of the projection method proposed by Cuesta-
Albertos and Febrero-Bande (2010) are also investigated there. As we will see the
performance of this method usually depends on the choice of Gaussian distribution ξ

and on the choice of ANOVA test.
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2.2 Multivariate case

Now, we study the multivariate version of the ANOVA problem for functional data
as well as extensions of certain methods presented in the last section to this problem.
The results of this section were mainly obtained by Górecki and Smaga (2017a).

Instead of single functions, we consider independent vectors of random functions
Xi j (t) = (Xi j1(t), . . . , Xi jp(t))� ∈ SPp(μi ,�), i = 1, . . . , l, j = 1, . . . , ni defined
over the interval I , where SPp(μ,�) is a set of p-dimensional stochastic processes
withmean vectorμ(t), t ∈ I and covariance function�(s, t), s, t ∈ I .We also assume
thatXi j belong to L

p
2 (I )–aHilbert spaceof p-dimensional vectors of square integrable

functions on the interval I , equipped with the inner product: 〈x, y〉 = ∫
I x

�(t)y(t)dt .
In the multivariate analysis of variance problem for functional data (FMANOVA), we
have to test the null hypothesis as follows:

H0 : μ1(t) = · · · = μl(t), t ∈ I . (6)

The first tests are based on a basis function representation of the components of the
vectors Xi j (t), i = 1, . . . , l, j = 1, . . . , ni , similarly as in the FP test. We represent
the components of Xi j (t) in a similar way as in (3), i.e.,

Xi j (t) ≈
(
c�
i j1, . . . , c

�
i j p

)�
ϕ(t) = ci jϕ(t), (7)

where ci jm = (ci jm1, . . . , ci jmKm , 0, . . . , 0) ∈ RKM , ϕ(t) = (ϕ1(t), . . . , ϕKM (t))�,

t ∈ I and i = 1, . . . , l, j = 1, . . . , ni , m = 1, . . . , p, KM = max{K1, . . . , Kp}.
The coefficients in ci j and values of Km are estimated separately for each feature by
methods described in Sect. 2.1. Similarly toMANOVA(Anderson 2003), the following
matrices were used in constructing test statistics for (6):

E =
l∑

i=1

ni∑

j=1

∫

I

(
Xi j (t) − X̄i (t)

) (
Xi j (t) − X̄i (t)

)�
dt,

H =
l∑

i=1

ni

∫

I

(
X̄i (t) − X̄(t)

) (
X̄i (t) − X̄(t)

)�
dt,

where X̄i (t) = (1/ni )
∑ni

j=1Xi j (t), i = 1, . . . , l and X̄(t) = (1/n)
∑l

i=1
∑ni

j=1
Xi j (t), t ∈ I . Modifying the results of Górecki and Smaga (2017a), we showed that
these matrices can be designated only by the coefficient matrices ci j and appropriate
cross product matrix, i.e., E ≈ A − B and H ≈ B − C, where

A=
l∑

i=1

ni∑

j=1

ci jJϕc�
i j , B =

l∑

i=1

1

ni

ni∑

j=1

ni∑

m=1

ci jJϕc�
im, C= 1

n

l∑

i=1

ni∑

j=1

l∑

t=1

nt∑

u=1

ci jJϕc�
tu,

and Jϕ is the KM × KM cross product matrix corresponding to ϕ. The following test
statistics for (6) are constructed based on those appearing in MANOVA: the Wilk’s
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lambda W = det(E)/ det(E + H), the Lawley-Hotelling trace LH = trace(HE−1),
the Pillai trace P = trace(H(H + E)−1), the Roy’s maximum root R = λmax(HE−1),
where λmax(M) is the maximum eigenvalue of a matrix M. We consider the permu-
tation tests based on these statistics and refer to them as the W, LH, P and R tests,
respectively. Generally, we refer to them as the permutation tests based on a basis
function representation. A quite fast implementation of these tests was obtained by
observing that A and C are not changed by any permutation of the data.

The second group of tests for (6) is based on random projections similarly as in
the FANOVA test based on random projections. Let a distribution ξ be defined as in
Sect. 2.1. Assume thatμi j ∈ L2(I ), whereμi j are the components ofμi , i = 1, . . . , l,
j = 1, . . . , p. When (6) holds, then for every H = (h1, . . . , h p)

� ∈ L p
2 (I ),

HH
0 : (〈μ11, h1〉, . . . , 〈μ1p, h p〉)� = · · · = (〈μl1, h1〉, . . . , 〈μlp, h p〉)� (8)

also holds, while if H0 fails, for (ξ × · · · × ξ)-almost every H ∈ L p
2 (I ), HH

0 also
fails. Thus, a test for the MANOVA problem can be used to test the FMANOVA one
by using it to test (8). For this reason, Górecki and Smaga (2017a) investigated the
similar procedure based on k random projection as described in Sect. 2.1, which the
first three steps are now as follows:

1. Choose, with Gaussian distribution, functions hmr ∈ L2(I ), m = 1, . . . , p, r =
1, . . . , k.

2. Compute the projections Pr
i jm = ∫

I Xi jm(t)hmr (t)dt/
(∫

I h
2
mr (t)dt

)1/2
for i =

1, . . . , l, j = 1, . . . , ni , m = 1, . . . , p, r = 1, . . . , k.
3. For each r ∈ {1, . . . , k}, apply the appropriate MANOVA test for Pr

i j =
(Pr

i j1, . . . , P
r
i jp)

�, i = 1, . . . , l, j = 1, . . . , ni . Let p1, . . . , pk denote the result-
ing p-values.

In step 3 of this procedure, the well-known MANOVA tests were applied, namely
Wilk’s lambda test (Wp test), the Lawley-Hotelling trace test (LHp test), the Pillai
trace test (Pp test) and Roy’s maximum root test (Rp test). Their permutation versions
are also investigated.

Remark 1 In multivariate analysis, the invariance of a procedure under linear trans-
formations of the marginal distributions is usually important, since it is common, for
instance, to standardize the data. For functional data, this issue is also considered.
For example, Huang et al. (2008) investigated the functional principal components
analysis invariant under scale transformation of functional data. So, it is worth to
mention that the testing procedures under consideration for the FMANOVA problem
are also invariant under such transformation. More precisely, conditioned on the basis
representation and random permutations (resp. random projections and random per-
mutations, if they are used) chosen and independent from the data, the permutation
tests based on a basis function representation (resp. tests based on random projections)
are invariant under scale transformation Xi jm(t) → cm Xi jm(t), t ∈ I for any cm �= 0,
i = 1, . . . , l, j = 1, . . . , ni , m = 1, . . . , p. This property indicates that the tests can
also be applied, when the components of the functional data are measured in different
units.
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By the extensiveMonte Carlo simulation studies ofGórecki and Smaga (2017a), the
performance of the tests considered except the Rp test is very satisfactory under finite
samples. Unfortunately, the Rp test does not control the nominal type-I error level, and
hence it can not be recommended. The other tests do not perform equally well, and
there is no singlemethod performing best. As a supplement to those simulation studies,
the finite sample behavior of new variant of the tests based on random projections
implemented in the package fdANOVA (i.e., different Gaussian distribution ξ than
the Brownian motion considered in Górecki and Smaga 2017a) is investigated in
simulations of Sect. 5.

3 R implementation

In this section, we present the R package fdANOVA and illustrate the usage of it
step by step using certain real data set. First, however, we mention about the eventual
preparation of the functional data in the R program to use the functions of our package
properly.

3.1 Preparation of the data

In practice, functional samples are not continuously observed, i.e., each function
is usually observed on a grid of design time points. In our implementations of
FANOVA and FMANOVA tests in the R programming language, all functions are
observed on a common grid of design time points equally spaced in the inter-
val I = [a, b]. We notice that not all tests need to be applied to functional data
observed on design time points equally spaced in I . Nevertheless, since we assume
that the considered functional data are dense, we can require that the design time
points are equally spaced in I , which helps us in unifying the implementation of the
tests.

In the case where the design time points are different for different individual func-
tions or not equally spaced in I , we follow the methodology proposed by Zhang
(2013). First, we have to reconstruct the functional samples from the observed discrete
functional samples using smoothing technique such as regression splines, smoothing
splines, P-splines or local polynomial smoothing (see Zhang 2013, Chapters 2–3). For
this purpose, in R we can use the function smooth.spline() from the stats
package (R Core Team 2017) or functions given in the packages splines (R Core
Team 2017), bigsplines (Helwig 2016), pspline (S original by Jim Ramsey
R port by Brian Ripley 2015) and locpol (Ojeda Cabrera 2012). After that we
discretize each individual function of the reconstructed functional samples on a com-
mon grid of T time points equally spaced in I , and then the implementations of the
tests can be applied to discretized samples. Such reconstruction largely removes the
measurement errors from functional data, and hence may improve the finite sample
performance of the tests, as it was noted, for example, in Zhang (2013) and Zhang and
Liang (2014).
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3.2 Package functionality

Now, we describe the implementation of the tests for analysis of variance problem for
univariate and multivariate functional data in the R package fdANOVA. As we will see
many of the implemented tests may be performed with different values of parameters.
However, by simulation and real data examples presented in the present and previous
papers (see Sects. 2 and 5), satisfactory results are usually obtained by using the default
values of these parameters. Nevertheless, when the results are unconvincing (e.g., the
p-values are close to the significance level), we have the opportunity to use other
options provided by the functions of the package.

All tests for FANOVA problem presented in Sect. 2.1 are implemented in the func-
tion fanova.tests(), which is controlled by the following parameters:

– x = NULL – a T ×nmatrix of data, whose each column is a discretized version of
a function and rows correspond to design time points. Its default values is NULL,
since if the FP test is only used, we can give a basis representation of the data
instead of raw observations (see the list paramFP below). For any of the other
testing procedures, the raw data are needed.

– group.label – a vector containing group labels.
– test = "ALL"–akindof indicatorwhich establishes a choice ofFANOVAtests
to be performed. Its default value means that all testing procedures of Sect. 2.1
will be used. When we want to use only some tests, the parameter test is an
appropriate subvector of the following vector of tests’ labels (see Sect. 2.1):

c("FP", "CH", "CS", "L2N", "L2B", "L2b", "FN", "FB", "Fb",
"GPF", "Fmaxb", "TRP")

– params = NULL – a list of additional parameters for the FP, CH, CS, L2b, Fb,
Fmaxb tests and the test based on random projections. Its possible elements and
their default values are described below. The default value of this parameter means
that these tests are performed with their default values.

– parallel = FALSE – a logical indicating whether to use parallelization.
– nslaves = NULL – if parallel = TRUE, a number of slaves. Its default
value means that it will be equal to a number of logical processes of a computer
used.

The list params can contain all or a part of the elements paramFP, paramCH,
paramCS, paramL2b, paramFb, paramFmaxb and paramTRP for passing the
parameters for the FP, CH, CS, L2b, Fb, Fmaxb tests and the test based on random
projections, respectively, to the function fanova.tests(). They are described as
follows. The list paramFP contains the following parameters of the FP test and their
default values:

– int – a vector of two elements representing the interval I = [a, b]. When it is
not specified, it is determined by a number of design time points.

– B.FP = 1000 – a number of permutation replicates.
– basis = c("Fourier", "b-spline", "own") – a choice of basis of
functions used in the basis function representation of the data.
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– own.basis – if basis = "own", a K × n matrix with columns containing
the coefficients of the basis function representation of the observations.

– own.cross.prod.mat – if basis = "own", a K ×K cross product matrix
corresponding to a basis used to obtain the matrix own.basis.

– criterion = c("BIC", "eBIC", "AIC", "AICc", "NO")–a cho-
ice of information criterion for selecting the optimum value of K . criterion
= "NO" means that K is equal to the parameter maxK defined below.

– commonK = c("mode", "min", "max", "mean") – a choice of meth-
od for selecting the common value for all observations from the values of K
corresponding to all processes.

– minK = NULL (resp. maxK = NULL) – a minimum (resp. maximum) value of
K .

– norder = 4 – if basis = "b-spline", an integer specifying the order of
b-splines.

– gamma.eBIC = 0.5 – a γ ∈ [0, 1] parameter in the eBIC.

It should be noted that the AICc may choose the final model with a number K of
coefficients close to a number of observations n, when a maximum K considered is
greater than n. Such selection usually differs from choices suggested by other criterion,
but it seems that this does not have much impact on the results of testing.

For the CH and CS (resp. L2b, Fb and Fmaxb) tests, the parameters paramCH and
paramCS (resp. paramL2b, paramFb and paramFmaxb) denote the numbers
of discretized artificial trajectories for certain Gaussian processes (resp. bootstrap
samples) used to approximate the null distributions of their test statistics. The default
value of each of these parameters is 10,000. The parameters of the test based on random
projections and their default values are contained in a list paramTRP with elements:

– k = 30 – a vector of numbers of projections.
– projection = c("GAUSS", "BM") – a method of generating Gaussian
processes in step 1 of the testing procedure based on random projections presented
in Sect. 2. If projection = "GAUSS", the Gaussian white noise is generated
as in the function anova.RPm() from the R package fda.usc (Febrero-Bande
and Oviedo de la Fuente 2012). In the second case, the Brownian motion is gen-
erated.

– permutation = FALSE – a logical indicating whether to compute p-values
by permutation method.

– B.TRP = 10000 – a number of permutation replicates.
– independent.projection.tests = TRUE – a logical indicating whe-
ther to generate the random projections independently or dependently for different
elements of vector k. In the first case, the random projections for each element of
vector k are generated separately, while in the second one, they are generated as
chained subsets, e.g., for k = c(5, 10), the first 5 projections are a subset of
the last 10. The second way of generating random projections is faster than the
first one.

A Brownian process in [a, b] has small variances near a and higher variances close
to b. This means that the tests based on random projections and the Brownian motion
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may be more able to detect differences among mean groups, when those differences
are much closer to b than to a.

To perform step 3 of the procedure based on randomprojections given in Sect. 2.1, in
thepackage,weusefive testingprocedures: the standard (paramTRP$permutation
= FALSE) and permutation (paramTRP$permutation = TRUE) tests based on
ANOVA F test statistic and ANOVA-type statistic (ATS) proposed by Brunner et al.
(1997), as well as the testing procedure based on Wald-type permutation statistic
(WTPS) of Pauly et al. (2015).

The function fanova.tests() returns a list of the class fanovatests. This
list contains the values of the test statistics, the p-values and the parameters used.
The results for a given test are given in a list (being an element of output list) named
the same as the indicator of a test in the vector test. Additional outputs as the cho-
sen optimal length of basis expansion (the FP test), the values of estimators used in
approximations of null distributions of test statistics (the L2N, L2B, FN, FB, GPF
tests) and projections of the data (the test based on random projections) are contained
in appropriate lists. If independent.projection.tests = TRUE, the pro-
jections of the data are contained in a list of the length equal to length of vector k,
whose i-th element is an n × k[i] matrix with columns being projections of the
data. When independent.projection.tests = FALSE, the projections of
the data are contained in an n ×max(k) matrix with columns being projections of the
data.

The permutation tests based on a basis function representation for the FMANOVA
problem, i.e., the W, LH, P and R tests are implemented in the function fmanova.
ptbfr() with parameters x, group.label, int, B, parallel, nslaves,
basis, own.basis, own.cross.prod.mat, criterion, commonK, minK,
maxK, norder and gamma.eBIC. These parameters, which have a different mean-
ing than in the function fanova.tests() (B corresponds to B.FP), are described
as follows:

– x = NULL – a list of T × n matrices of data, whose each column is a discretized
version of a function and rows correspond to design time points. The mth element
of this list contains the data of mth feature, m = 1, . . . , p. Its default values
is NULL, because a basis representation of the data can be given instead of raw
observations (see the parameter own.basis below).

– own.basis – if basis = "own", a list of length p, whose elements are
Km × n matrices (m = 1, . . . , p) with columns containing the coefficients of the
basis function representation of the observations.

– own.cross.prod.mat – if basis = "own", a KM × KM cross product
matrix corresponding to a basis used to obtain the list own.basis.

– criterion = c("BIC", "eBIC", "AIC", "AICc", "NO") – a
choice of information criterion for selecting the optimum value of Km , m =
1, . . . , p.criterion = "NO"means that Km are equal to the parameter maxK
defined below.

– commonK = c("mode", "min", "max", "mean")–a choice ofmethod
for selecting the common value for all observations from the values of Km corre-
sponding to all processes.
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– minK = NULL (resp. maxK = NULL) – a minimum (resp. maximum) value of
Km .

The function fmanova.ptbfr() returns a list of the class fmanovaptbfr
containing the values of the test statistics (W, LH, P, R), the p-values (pvalueW,
pvalueLH, pvalueP, pvalueR), chosen optimal values of Km and the parameters
used.

The function fmanova.trp() performs the testing procedures based on
random projections for FMANOVA problem (the Wp, LHp, Pp and Rp tests).
Its parameters are x, group.label, k, projection, permutation, B,
independent.projection.tests, parallel and nslaves. The first two
parameters of this function as well as the arguments parallel, nslaves are
the same as in the function fmanova.ptbfr(). The other ones have the same
meaning as in the parameter list paramTRP of the function fanova.tests()
(B corresponds to B.TRP). The function fmanova.trp() returns a list of class
fmanovatrp containing the parameters and the following elements (|k| denotes
the length of vector k): pvalues – a 4 × |k| matrix of p-values of the tests;
data.projections – if independent.projection.tests = TRUE, a
list of length |k|, whose elements are lists of n× pmatrices of projections of the obser-
vations, while when independent.projection.tests = FALSE, a list of
length max(k), whose elements are n× p matrices of projections of the observations.

The executions of selecting the optimum length of basis expansion by some
information criterion, the bootstrap, permutation and projection loops are the most
time-consuming steps of the testing procedures under consideration. To reduce the
computational cost of the procedures, they are parallelized, when the parameter
parallel is set to TRUE. The parallel execution is handled by doParallel
package (Revolution Analytics and Weston 2015). Some details of the parallel imple-
mentation and its efficiency are discussed in Sect. 4.

In the package, the number of auxiliary functions are also contained. The p-values of
the tests based on randomprojections for FANOVAproblem against the number of pro-
jections are visualized by the function plot.fanovatests() using the package
ggplot2 (Wickham 2009), which is controlled by the following parameters: x – an
fanovatests object, more precisely, a result of the function fanova.tests()
for the standard tests based on random projections; y – an fanovatests object,
more precisely, a result of the function fanova.tests() for the permutation tests
based on random projections. Similarly, the p-values of the Wp, LHp, Pp and Rp tests
are plotted by the function plot.fmanovatrp(). The arguments of this function
are as follows: x – an fmanovatrp object, more precisely, a result of the function
fmanova.trp() for the standard tests;y– anfmanovatrpobject,more precisely,
a result of the function fmanova.trp() for the permutation tests; withoutRoy
– a logical indicating whether to plot the p-values of the Rp test. We can use only one
of the arguments x and y, or both simultaneously.

Using the package ggplot2 (Wickham 2009), the function plotFANOVA()
produces a plot showing univariate functional observations with or without indication
of groups as well as mean functions of samples. The following parameters control this
function:
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– x – a T ×nmatrix of data, whose each column is a discretized version of a function
and rows correspond to design time points.

– group.label = NULL – a character vector containing group labels. Its default
valuemeans that all functional observations are drawnwithout division into groups.

– int = NULL– this parameter is the same as in the functionfanova.tests().
– separately = FALSE – a logical indicating how groups are drawn. When
separately = FALSE, groups are drawn on one plot by different colors. If
separately = TRUE, they are depicted in different panels.

– means = FALSE – a logical indicating whether to plot only group mean func-
tions.

– smooth = FALSE – a logical indicating whether to plot reconstructed data via
smoothing splines instead of raw data.

The p-values and values of the test statistics for the implemented tests are printed
by the functions print.fanovatests(), print.fmanovaptbfr() and
print.fmanovatrp().Additionally,summary.fanovatests(),summary.
fmanovaptbfr() and summary.fmanovatrp() are functions for printing out
information about the data and parameters of the methods.

When calling the functions of the fdANOVA package, the software will check for
presence of the doBy, doParallel, ggplot2, fda, foreach, magic, MASS
and parallel packages if necessary (Hojsgaard and Halekoh 2016; Revolution
Analytics and Weston 2015; Wickham 2009; Ramsay et al. 2017; Hankin 2005; Ven-
ables and Ripley 2002). If the required packages are not installed, an error message
will be displayed.

3.3 Package demonstration on real data example

In this section, we provide examples that illustrate how the functions of the R package
fdANOVA can be used to analyze real data. For this purpose, we use the popular gait
data set available in the fda package. This data set consists of the angles formed by
the hip and knee of each of 39 children over each child’s gait cycle. The simultaneous
variations of the hip and knee angles for children are observed at 20 equally spaced
time points in [0.025, 0.975]. So, in this data set, we have two functional features,
which we put in the list x.gait of length two, as presented below.

R> library("fda")
R> gait.data.frame <- as.data.frame(gait)
R> x.gait <- vector("list", 2)
R> x.gait[[1]] <- as.matrix(gait.data.frame[, 1:39])
R> x.gait[[2]] <- as.matrix(gait.data.frame[, 40:78])

Similarly toGórecki andSmaga (2017a), for illustrative purposes, the functional obser-
vations are divided into three samples.Namely, thefirst sample consists of the functions
for the first 13 children, the second sample of the functions for the next 13 children,
and the third sample of the functions for the remaining children. The sample labels
are contained in the vector group.label.gait:

R> group.label.gait <- rep(1:3, each = 13)
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Fig. 1 The first functional feature of the gait data without (Panel a) and with indication of the samples
(Panels b and c). Panel d depicts the group mean functions

We can plot the functional data by using the function plotFANOVA(). For example,
we plot the observations for the first functional feature without (Fig. 1a) and with
indication of the samples (Fig. 1b, c) as well as the group mean functions (Fig. 1d).

R> library("fdANOVA")
R> plotFANOVA(x = x.gait[[1]], int = c(0.025, 0.975))
R> plotFANOVA(x = x.gait[[1]],

group.label = as.character(group.label.gait),
int = c(0.025, 0.975))

R> plotFANOVA(x = x.gait[[1]],
group.label = as.character(group.label.gait),
int = c(0.025, 0.975), separately = TRUE)

R> plotFANOVA(x = x.gait[[1]],
group.label = as.character(group.label.gait),
int = c(0.025, 0.975), means = TRUE)

From Fig. 1, it seems that the mean functions of the three samples do not differ
significantly. To confirm this statistically, we use the FANOVA tests implemented in
the fanova.tests() function. First, we use default values of the parameters of
this function:

R> set.seed(123)
R> (fanova <- fanova.tests(x = x.gait[[1]],

group.label = group.label.gait))

Analysis of Variance for Functional Data

FP test - permutation test based on a basis function
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representation
Test statistic = 1.468218 p-value = 0.198
CH test - L2-norm-based parametric bootstrap test for

homoscedastic samples
Test statistic = 7911.385 p-value = 0.2247
CS test - L2-norm-based parametric bootstrap test for

heteroscedastic samples
Test statistic = 7911.385 p-value = 0.1944
L2N test - L2-norm-based test with naive method of estimation
Test statistic = 2637.128 p-value = 0.2106562
L2B test - L2-norm-based test with bias-reduced method of

estimation
Test statistic = 2637.128 p-value = 0.1957646
L2b test - L2-norm-based bootstrap test
Test statistic = 2637.128 p-value = 0.2169
FN test - F-type test with naive method of estimation
Test statistic = 1.46698 p-value = 0.2226683
FB test - F-type test with bias-reduced method of estimation
Test statistic = 1.46698 p-value = 0.2198691
Fb test - F-type bootstrap test
Test statistic = 1.46698 p-value = 0.2704
GPF test - globalizing the pointwise F-test
Test statistic = 1.363179 p-value = 0.2691363
Fmaxb test - Fmax bootstrap test
Test statistic = 3.752671 p-value = 0.1815
TRP - tests based on k = 30 random projections
p-value ANOVA = 0.4026718
p-value ATS = 0.3422311
p-value WTPS = 0.509

Besides of the p-values displayed above, the list of matrices of projections of the
data may be of practical interest for the test based on random projections users. The
reason for this is that we can check the assumptions of the tests used in step 3 of the
procedure based on random projections (see Sect. 2.1), e.g., the normality assumptions
of ANOVA F test. Such inspection may result in choosing the appropriate test used
in this step. This is especially important when the tests based on random projections
differ in their decisions.

R> fanova$TRP$data.projections
[[1]]

[,1] [,2] [,3] [,4] [,30]
[1,] 56.27204 42.95853 4.717162 2.128967 ... -6.055347
...
[39,] 82.65391 65.15959 12.971629 7.695403 ... -7.070380

As expected, neither FANOVA test rejects the null hypothesis. Now, we show how
particular tests can be chosen and how the parameters of these tests can be changed.
For the FP test, we use the predefined basis function representation of the data. For this
purpose, we expand the data in the b-spline basis by using the functions from the fda
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package. They return the coefficients of expansion as well as the cross product matrix
corresponding to the basis functions. For control, we choose the GPF test, which does
not need any additional parameters. The Fmaxb test is performed by 1000 bootstrap
samples. For the tests based on randomprojections, 10 and 15 projections are generated
by using the Brownianmotion, and p-values are computed by the permutationmethod.

R> fbasis <- create.bspline.basis(rangeval = c(0.025, 0.975), 19)
R> own.basis <- Data2fd(seq(0.025, 0.975, len = 20), x.gait[[1]],

fbasis)$coefs
R> own.cross.prod.mat <- inprod(fbasis, fbasis)
R> set.seed(123)
R> fanova.tests(x.gait[[1]], group.label.gait,

test = c("FP", "GPF", "Fmaxb", "TRP"),
params = list(paramFP = list(B.FP = 1000,

basis = "own",
own.basis = own.basis,
own.cross.prod.mat =

own.cross.prod.mat),
paramFmaxb = 1000,
paramTRP = list(k = c(10, 15),

projection = "BM",
permutation = TRUE,
B.TRP = 1000)))

Analysis of Variance for Functional Data

FP test - permutation test based on a basis function representation
Test statistic = 1.468105 p-value = 0.193
GPF test - globalizing the pointwise F-test
Test statistic = 1.363179 p-value = 0.2691363
Fmaxb test - Fmax bootstrap test
Test statistic = 3.752671 p-value = 0.177
TRP - tests based on k = 10 random projections
p-value ANOVA = 0.3583333
p-value ATS = 0.3871429
p-value WTPS = 0.465
TRP - tests based on k = 15 random projections
p-value ANOVA = 0.504
p-value ATS = 0.507
p-value WTPS = 0.345

The above examples concern only the first functional feature of the gait data set.
Similar analysis can be performed for the second one. However, both features can
be simultaneously investigated by using the FMANOVA tests described in Sect. 2.2.
First, we consider the permutation tests based on a basis function representation imple-
mented in the function fmanova.ptbfr(). We apply this function to the whole
data set specifying non-default values of most of parameters. Here, we also show how
use the function summary.fmanovaptbfr() to additionally obtain a summary of
the data and test parameters. Observe that the results are consistent with these obtained
by FANOVA tests.
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R> set.seed(123)
R> fmanova <- fmanova.ptbfr(x.gait, group.label.gait,

int = c(0.025, 0.975), B = 5000,
basis = "b-spline", criterion = "eBIC",
commonK = "mean", minK = 5, maxK = 20,
norder = 4, gamma.eBIC = 0.7)

R> summary(fmanova)

FMANOVA - Permutation Tests based on a Basis Function
Representation

Data summary

Number of observations = 39
Number of features = 2
Number of time points = 20
Number of groups = 3
Group labels: 1 2 3
Group sizes: 13 13 13
Range of data = [0.025 , 0.975]

Testing results

W = 0.9077424 p-value = 0.5322
LH = 0.1003732 p-value = 0.5286
P = 0.09340229 p-value = 0.5366
R = 0.08565056 p-value = 0.3852

Parameters of test

Number of permutations = 5000
Basis: b-spline (norder = 4)
Criterion: eBIC (gamma.eBIC = 0.7)
CommonK: mean
Km = 20 20 KM = 20 minK = 5 maxK = 20

Finally, we apply the tests based on randomprojections for the FMANOVAproblem
in the gait data set. In the following, these tests are performedwith k = 1, 5, 10, 15, 20
projections, standard and permutation methods as well as the random projections
generated in independent and dependent ways. The resulting p-values are visualized
by the plot.fmanovatrp() function:

R> set.seed(123)
R> fmanova1 <- fmanova.trp(x.gait, group.label.gait,

k = c(1, 5, 10, 15, 20))
R> fmanova2 <- fmanova.trp(x.gait, group.label.gait,

k = c(1, 5, 10, 15, 20),
permutation = TRUE)

R> plot(x = fmanova1, y = fmanova2)
R> plot(x = fmanova1, y = fmanova2, withoutRoy = TRUE)
R> set.seed(123)
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Fig. 2 P-values of the tests based on random projections for the FMANOVA problem in the gait data set.
The Wpp, LHpp, Ppp and Rpp tests are the permutation versions of the Wp, LHp, Pp and Rp tests. In the
first (resp. second) row, the random projections were generated in independent (resp. dependent) way

R> fmanova3 <- fmanova.trp(x.gait, group.label.gait,
k = c(1, 5, 10, 15, 20),
independent.projection.tests

= FALSE)
R> fmanova4 <- fmanova.trp(x.gait, group.label.gait,

k = c(1, 5, 10, 15, 20),
permutation = TRUE,
independent.projection.tests

= FALSE)
R> plot(x = fmanova3, y = fmanova4)
R> plot(x = fmanova3, y = fmanova4, withoutRoy = TRUE)

The obtained plots are shown in Figure 2. Aswe can observe, except the standardRp
test, all testing procedures behave similarly and do not reject the null hypothesis. The
standard Rp test does not keep the pre-assigned type-I error rate as Górecki and Smaga
(2017a) shown in simulations. More precisely, this test is usually too liberal, which
explains that its p-values are much smaller than these of the other testing procedures.
That is why the function has option not to plot the p-values of this test.

4 Efficiency of the parallel implementation

As we mentioned in Sect. 3.2, the functions of the fdANOVA package provide the
option of parallelization of the execution of the most time-consuming steps of per-
forming the testing procedures, i.e., selection of optimal K in basis representation (3)
by information criterion, permutation, bootstrap and projection methods. By default
the parameter parallel is set to FALSE, which corresponds to sequential version.
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This option should be used when the data set is not too large or we have a single pro-
cessor machine with one core, since the parallelization is very inefficient in such cases.
When it is possible or needed, we specify parallel = TRUE to perform parallel
computations using process forking based on the commonly used doParallel pack-
age (Revolution Analytics and Weston 2015). This parallel method can be performed
on a single logical machine only.

The doParallel package uses the built-in parallel package (R Core Team
2017) and is supported on both Linux and Windows in contrast to other packages for
parallelization, e.g., doMC for Linux and MAC OS (Revolution Analytics 2013) and
doSNOW forWindows (Microsoft Corporation andWeston 2017). The doParallel
package is essentially a merger of these two packages, and automatically uses the
appropriate tool for system. The applied method of parallelization works by starting
a specified number of regular R processes run on the available cores. The original
R process controls the launch and stop of the those processes and the assignment of
parallel tasks. The assignment of those processes to the cores is controlled by the OS.

In the fdANOVA package, we have possibility of controlling a number of parallel
tasks by setting the parameter nslaves. This parameter is set to a number of logical
processes of used computer by default, which is an optimal choice. Further information
about parallel computing in R and its usage can be found for example in Schmidberger
et al. (2009) and Teisseyre et al. (2016).

In the remainder of this section, we discuss the results of experiments evaluating
efficiency of parallel implementation in the fdANOVA package. They were performed
for one physical computer with 14 cores (processor Intel(R) Xeon(R) E5-2690 v4
@ 2.6 GHz, 3.5 GHz all-core turbo), 64 GB RAM, Windows 7 64-bit, R 3.3.3. We
compared the execution time and speedup of the sequential and parallel versions. The
number of slaves was set to 2, 4, 8 and 14. The experiments were performed by using
the Graz and uWaveGestureLibrary data sets available in the mfds package (Górecki
and Smaga 2017b). We present and discuss the results of the experiments based on
these data sets and the FANOVA tests implemented via parallel method in the function
fanova.tests(), i.e., the FP, CH, CS, L2b, Fb, Fmaxb tests and the permutation
test based on random projections. These tests were applied to the first features of
these data sets by using default values of parameters, i.e., 1000, 10,000 permutation
replicates for the FP test and the tests based on random projections, respectively,
10,000 bootstrap samples and 30 projections. In the other settings, similar results have
been obtained, and therefore, they are omitted for space saving.

In the first experiment, the first feature of theGraz data set was considered. This data
set contains n = 140 three-dimensional functional observations,whichweremeasured
in T = 1152 design time points and divided into two groups each of 70 observations.
In this experiment, we studied how the computational time and speedup depend on the
number of design time points, i.e., we applied the tests to the truncated Graz data sets
with T = 100, 400, 800, 1152 design time points. The second experiment is based
on the first feature of the uWaveGestureLibrary data set, which contains n = 4478
three-dimensional functional observations measured in T = 315 design time points
and divided into eight samples of 559 or 560 observations. In this case, we investigated
how the computational time and speedup depend on the number of observations. For
this purpose,we considered the subsets of the uWaveGestureLibrary data set consisting
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Fig. 3 Execution time and speedup versus the number of slaves and the number of design time points T
obtained for the Graz data set (one slave refers to the sequential version)

of n = 100, 400, 700, 1000 observations. Figures 3 and 4 depict the results of both
experiments.

Observe that the parallel implementation results in satisfactory shortening the com-
putational time. The usage of two slaves has already made calculations much faster.
The execution time strictly decreases with increase of the number of slaves. The
behavior of speedup also seems to be satisfactory, although it is not linear as there
are other sequentially executed tasks in the functions. Nevertheless, for two and four
slaves, the speedup is almost linear in both experiments, i.e., it is close to the numbers
of parallel tasks. From the first experiment, however, it follows that the speedup for
greater number of slaves may decrease with increase of the number of design time
points (Fig. 3). Fortunately, the opposite usually holds when the number of observa-
tions increases as in the second experiment (Fig. 4). This can perhaps be explained
by that the parallel tasks are more concerned in functional observations than their
values in particular design time points. The implementation of the permutation tests
based on random projections seems to be the most time-consuming. When one wants
to perform this tests, it is recommended to use the parallel method even for not very
large data sets. However, when we only choose other testing procedures for analysis,
the parallelization should be used for larger data sets. Otherwise it may not make
sense. Summarizing, the parallel implementation enables to reduce the computation
time significantly, when it is used appropriately.

5 Simulation study

In this section, we consider simulation studies to compare the GPF, Fmaxb tests and
the tests based on random projections. For the last one, two methods of generating
Gaussian processes implemented in the fdANOVA package are considered. As a result,
simulations indicate the recommended tests for different scenarios.
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Fig. 4 Execution time and speedup versus the number of slaves and the number of observations n obtained
for the uWaveGestureLibrary data set (one slave refers to the sequential version)

The simulations scenarios were inspired by a Monte Carlo study in Zhang and
Liang (2014) and Zhang et al. (2018).

5.1 Simulation for FMANOVA tests

To compare the FMANOVA tests based on random projections with different meth-
ods of generating Gaussian processes, we consider three groups of two-dimensional
functional data and two vectors n = (n1, n2, n3) of sample sizes n1 = (10, 10, 10)
and n2 = (10, 20, 15). Discrete functional samples are generated by using the model
xprs(t) = ηpr (t) + vprs(t), t ∈ [0, 1], p = 1, 2, r = 1, 2, 3, s = 1, . . . , nr . The
functions xprs(t) are assumed to be observed at T = 50 design time points q/51,
q = 1, . . . , 50.

The mean group functions are as follows: η1r (t) = c�
1 (1, t, t2, t3)� for r = 1, 2,

η13(t) = (c1 + 2δu)�(1, t, t2, t3)� and η2r (t) = c�
2 (1, t, t2, t3)� for r = 1, 2, 3,

where c1 = (1, 2.3, 3.4, 1.5)�, c2 = (2.2, 1.6, 1, 2.9)�. Thus, the differences
between appropriate group mean functions is controlled by δ, whose values are con-
tained in the tables of simulation results. Moreover, the direction of these differences
is specified by u = (1, 2, 3, 4)�/

√
30.

For i.i.d. vprs(t) ∼ SP(0, γ ), we take vprs(t) = b�
prsΨ (t), bprs = (bprs,1,

. . . , bprs,11)�, bprs,w
d= √

λw yprs,w, w = 1, . . . , 11, where Ψ (t) = (ψ1(t), . . . ,
ψ11(t))� is the orthonormal basis vector such that ψ1(t) = 1, ψ2ω(t) =√
2 sin(2πωt) and ψ2ω+1(t) = √

2 cos(2πωt), ω = 1, . . . , 5, λw = 1.5ρw, ρ =
0.1, 0.3, 0.5, 0.7, 0.9, and yprs,w are independent random variables, E(yprs,w) = 0,
Var(yprs,w) = 1. The Gaussian (resp. non-Gaussian) functional observations are
obtained by considering yprs,w ∼ N (0, 1) (resp. yprs,w ∼ t4/

√
2). Notice that γ (s, t)

is of the formΨ (s)�diag(λ1, . . . , λ11)Ψ (t) and the correlation increaseswith decreas-
ing ρ.
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For δ = 0 (resp. δ �= 0), the null hypothesis is true (resp. false) and we investigate
the size control (resp. power) of the tests. This model will be referred to as FMANOVA
model, and the simulation results obtained under it are depicted in Table 1 under Gaus-
sian distribution and balanced design, while in Tables 1 and 2 in the Supplementary
Materials, all results are presented.

All testing procedures based on random projections for FMANOVA except the Rp
test control the nominal type-I error rate. They show a tendency of conservativity in
most scenarios, but this is natural for tests based on random projection as indicated
by Cuesta-Albertos and Febrero-Bande (2010) and Górecki and Smaga (2017a). The
Pp (resp. LHp) test has the most conservative (resp. liberal) character. The standard
version of theRp test tends to be highly liberal for bothmethods of generatingGaussian
processes. So, it is not comparable with the other tests. The permutation versions of
all tests seem to behave better than the standard ones when the null hypothesis holds
true, especially in the case of t-distribution.

Since the standard Rp tests do not maintain the pre-assigned type-I error rate, we
do not compare their empirical powers with those of the other testing procedures. For
completeness, however, they are presented in tables containing the simulation results.
With increasing sample sizes, the empirical powers of the tests generally increase.
Usually the LHp tests are more powerful than the Wp tests, which outperform the Pp
ones. The permutation version of the LHp (resp. Wp or Pp) test has generally slightly
smaller (resp. greater) empirical powers than the standard one. In terms of power, the
permutation Rp testing procedure behaves similarly to the permutation Wp and LHp
tests.

We also observe that the tests based on random projections using Brownian motion
have higher (resp. lower) empirical powers than those using Gaussian white noise
when the functional data are less (resp. highly) correlated, i.e., ρ = 0.7, 0.9 (resp.
ρ = 0.1, 0.3). For moderately correlated functional data (ρ = 0.5), both methods of
generating Gaussian processes behave very similarly.

5.2 Simulation for FANOVA tests

The comparisonof theGPF, Fmaxb tests and the tests basedon randomprojectionswith
two methods of generating Gaussian processes is made by generating three discrete
functional samples by using the model xrs(t) = ηr (t)+ vrs(t), t ∈ [0, 1], r = 1, 2, 3,
s = 1, . . . , nr , where the sample sizes are as in FMANOVA model and subject-
effect functions vrs(t) are defined in the analogous way as in that model. We consider
ηr (t) = c�

1 (1, t, t2, t3)� for r = 1, 2 andη3(t) = (c1+2δu)�(1, t, t2, t3)�, where c1,
δ and u are as in FMANOVAmodel. Thismodel will be referred to as FANOVAmodel.
The simulation results are given in Table 2 under Gaussian distribution and balanced
design, while in Table 3 in the Supplementary Materials, all results are depicted.

The GPF and Fmaxb tests keep the pre-assigned type-I error rate quite well, but
the first one may be slightly liberal. The empirical sizes of the tests based on random
projections are generally much lower than the nominal significance level. The tests
based on ANOVA F test statistic are usually more conservative than the other testing
procedures based on random projections. Observe also that the tests based on random
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Table 1 Empirical sizes (δ = 0) and powers (δ �= 0), as percentages, of the tests based on k = 30
random projections obtained under FMANOVA model and Gaussian distribution versus different methods
of generating Gaussian processes (GAUSS and BM)

ρ δ V GAUSS BM

Wp LHp Pp Rp Wp LHp Pp Rp

0.1 0 s 2.6 3.1 1.8 12.0 3.2 3.5 2.7 12.0

p 3.0 2.5 2.7 2.3 3.1 3.2 3.1 3.4

0.3 0 s 2.5 4.0 1.5 13.4 2.8 3.1 2.5 11.4

p 3.7 3.6 3.8 3.1 2.7 2.6 3.2 2.3

0.5 0 s 3.1 5.1 1.7 16.5 3.0 3.2 2.2 11.4

p 4.3 3.8 4.7 3.7 3.1 2.6 3.3 2.5

0.7 0 s 4.1 6.1 2.6 18.5 2.7 4.0 2.1 11.5

p 4.9 4.3 5.6 4.9 2.8 2.8 3.1 2.7

0.9 0 s 4.6 7.2 2.7 21.4 3.5 4.2 2.0 11.3

p 6.3 5.9 5.9 6.3 3.2 2.7 3.3 2.5

0.1 0.12 s 53.2 58.3 43.6 74.4 22.9 27.8 18.5 46.6

p 54.1 54.8 51.8 55.0 24.4 24.8 23.6 25.6

0.3 0.30 s 43.2 50.8 33.9 70.0 27.4 32.6 23.2 55.6

p 45.3 46.2 42.4 45.9 29.7 29.8 29.0 30.1

0.5 0.45 s 33.5 39.6 22.8 62.2 31.2 34.5 25.7 58.9

p 35.1 36.7 34.0 36.0 32.6 32.9 32.0 33.2

0.7 0.80 s 51.9 60.0 39.4 80.2 62.0 67.1 55.6 86.1

p 53.0 52.8 50.8 52.5 64.6 65.6 63.1 67.1

0.9 1.20 s 56.4 65.2 41.0 86.1 87.2 89.5 82.2 96.6

p 55.7 56.7 53.9 57.2 88.5 89.1 86.8 88.8

In the column “V”, “s” and “p” refer to the standard and permutation versions of the tests, respectively.
Moreover, T = 50, n = n1 = (10, 10, 10), nr = 1000, nperm = 1000 and α = 5%

projections and usingATS andWTPS andGaussianwhite noisemay be slightly liberal
for less correlated functional data.

The conclusions about the empirical power of the tests based on random projections
under two different methods of generating Gaussian processes are the same as in the
multivariate case (see the last paragraph of Sect. 5.1). For very highly correlated
functional data (ρ = 0.1), the tests based on random projections using Gaussian
white noise are the most powerful. When the functional data are a little less highly or
moderately correlated (ρ = 0.3, 0.5), in terms of power, the best testing procedure is
the Fmaxb method. Finally, for less correlated functional data (ρ = 0.7, 0.9), the GPF
test and the tests based on random projections using Brownian motion outperform
the remaining ones. Thus, there is not one method, which performs best, and the
performance of the tests depends on the amount of correlation in functional data.

The tests based on random projections using different ANOVA methods do not
perform equally well. It turns out that the tests based on random projections using
ANOVA F test statistic and ATS have the highest power for normally distributed data,
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Table 2 Empirical sizes (δ = 0) and powers (δ �= 0), as percentages, of the GPF and Fmaxb tests and the
tests based on k = 30 random projections with two methods of generating Gaussian processes (GAUSS
and BM) obtained under FANOVA model and Gaussian distribution

ρ δ GPF Fmaxb GAUSS BM

ANOVA ATS WTPS ANOVA ATS WTPS

0.1 0 6.3 5.2 2.7 3.3 3.2 3.4 4.5 3.4

0.3 0 7.1 5.1 2.4 3.1 3.6 3.0 3.8 3.0

0.5 0 7.6 5.2 2.9 3.6 4.5 3.2 3.6 3.0

0.7 0 6.0 5.2 3.7 4.9 4.9 2.7 3.0 3.7

0.9 0 4.8 5.8 5.1 6.2 5.6 3.0 3.8 3.4

0.1 0.12 21.6 50.8 67.0 69.9 62.5 35.2 38.0 33.3

0.3 0.30 42.2 71.3 55.6 60.1 52.2 39.7 43.7 36.6

0.5 0.45 53.0 64.0 43.3 47.1 39.7 43.1 46.4 40.3

0.7 0.80 81.6 79.2 64.3 69.0 62.0 77.0 79.9 72.7

0.9 1.20 89.0 72.7 69.4 73.7 64.6 94.1 95.2 92.4

Moreover, T = 50, n = n1 = (10, 10, 10), nr = 1000, nboot = 10,000, nperm = 1000 and α = 5%

performing slightly better than those based on WTPS. The reason for this is that these
testing procedures are constructed under normality assumption, while the WTPS one
is not. The situation changes in case of t-distribution. There the tests based on random
projections using WTPS are usually the best ones.

6 Conclusions and future work

Functional data analysis offers tools for solving statistical problems for high-
dimensional data considered as curves or functions. An R package fdANOVA
implements a broad range of the analysis of variance testing procedures for univari-
ate and multivariate functional data. The implemented tests are usually very different
solutions to the FANOVA and FMANOVA problems. Since their performance may
depend on specifics of the functional observations, the package gives the opportu-
nity to choose the most appropriate test for specific real data. The article presents the
empirical evaluation of size control and power of some tests that were not compared
elsewhere, which, together with previous simulation results (see, for example, Górecki
and Smaga 2015, 2017a), may help in choosing appropriate procedures in practice.
All the time-consuming parts of the package are parallelized, whichmakes it relatively
fast, given that most of the testing procedures are based on permutation, projection
and resampling methods.

When the testing procedures implemented in the fdANOVA package reject the
null hypothesis about equality of group mean functions, it would be of interest to
check which mean functions are significantly different and which are not. So, further
developments of the packagewill include the implementation of post hoc and constrast
analysis for functional data. Such testing procedures are considered, for instance, by
Zhang (2013), who proposed the L2-norm-based and F-type tests.
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7 Supplementarymaterials

Supplementary Materials contain the review of the R packages considering functional
data analysis and the results of simulations described and discussed in Sect. 5.
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