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Abstract

In this paper, we mainly focus on the penalized maximum likelihood estimation (MLE)

of the high-dimensional approximate factor model. Since the current estimation procedure

can not guarantee the positive definiteness of the error covariance matrix, by reformulating

the estimation of error covariance matrix and based on the lagrangian duality, we propose an

accelerated proximal gradient (APG) algorithm to give a positive definite estimate of the error

covariance matrix. Combined the APG algorithm with EM method, a new estimation procedure

is proposed to estimate the high-dimensional approximate factor model. The new method not

only gives positive definite estimate of error covariance matrix but also improves the efficiency of

estimation for the high-dimensional approximate factor model. Although the proposed algorithm

can not guarantee a global unique solution, it enjoys a desirable non-increasing property. The

efficiency of the new algorithm on estimation and forecasting is also investigated via simulation

and real data analysis.

Key words and phrases: error covariance matrix, positive definiteness, EM precedure, acceler-

ated proximal gradient algorithm.

1 Introduction

The factor model finds its popularity in psychometrics, economics and many other research fields

for the utility in summarizing information in large dataset. Many researches have been done to
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investigate different topics relating to the factor model, such as its estimation and statistical infer-

ence theory (Mulaik, 2009; Bai, 2003), the dynamic factor model and its generalization (Geweke,

1978; Forni et al., 2000), and another active topic related to the factor model is covariance matrix

estimation, whose recent development can be found in the survey articles by Bai and Shi (2011),

Fan et al. (2016) and the reference therein.

Let y = (y1, · · · , yp)T be a p-dimensional observable random vector. Then, the factor model

(Mulaik, 2009) can be stated as follows

y = µ + Λf + e, (1.1)

where f = (f1, · · · , fr)T is a vector of common factors of the p random variables in y, and Λ is

the p× r common factor loading matrix. f and e = (e1, · · · , ep)T are unobservable random vectors

and uncorrelated with each other. ei is the idiosyncratic error of yi correspondingly. Thus, the

covariance matrix of y, Cov(y) = Σy, can be decomposed as

Σy = ΛCov(f)ΛT + Σe. (1.2)

When the covariance matrix of e, Cov(e) = Σe, is a diagonal matrix, model (1.1) is called the

strict factor model. In studying the arbitrage in market, Ross (1976) showed that when the strict

factor model is satisfied, the mean µ of assets is approximately linear function of factor loadings.

Chamberlain and Rothschild (1983) relaxed the diagonal assumption and showed that as long as

the eigenvalue of Σe is bounded the conclusion sill holds. This leads to the approximate factor

model that allows the dependence among the error terms. In this paper, we mainly focus on the

approximate factor model. More researches on the strict factor model are referred to Fan et al.

(2008), Mulaik (2009), Hirose and Yamamoto (2015) and so on.

Many estimation procedures of the approximate factor model have been developed. By restrict-

ing the error covariance matrix to be diagonal, the consistency properties and limiting distribution

of the maximum likelihood (ML) estimators of approximate factor model have been established by

Bai and Shi (2011) and Doz et al. (2012). Choi (2012) proposed the generalized principal compo-

nent (PC) analysis method. Recently, in high-dimensional setting Bai and Liao (2016) proposed

an penalized maximum likelihood (PML) method to estimate the factor loading matrix and the

error covariance matrix simultaneously. In addition to the diagonal elements, the PML method

also gives a sparse estimate of the off-diagonal elements of Σe. But, we note that the PML method

can not guarantee the estimate of Σe to be positive (semi)definite and even the positive definite-

ness of Σy can not be ensured. And this stimulates our work. It should be pointed out that the

result of the PML method is closely related to the high-dimensional covariance matrix estimation
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problem in which the covariance matrix has the structure (1.2). With different procedures, Fan

et al. (2011) and Fan et al. (2013) first gave sparse estimates of the Σe, and then the covariance

matrix Σy. More researches on the estimation of high-dimensional covariance matrix are referred

to (Bickel and Levina, 2008; Cai and Liu, 2011; Rothman et al., 2008, 2009; Liu et al., 2014; Cui

et al., 2016; Xue et al., 2012; Bai and Shi, 2011; Fan et al., 2016). To achieve a sparse estimate of

Σe, penalty functions or thresholding techniques should be used. Examples include LASSO and it

variants (Tibshirani, 1996; Zou, 2006), the folded concave penalization (Fan and Li, 2001; Zhang,

2010), and more details on the high-dimensional data analysis should be referred to Bühlmann and

Van De Geer (2011).

In this paper, we only consider the penalized MLE of the high-dimensional approximate factor

model, which gives simultaneous estimates of the factor loading matrix Λ and the error covariance

matrix Σe. A detailed comparison of the ML based and PC based estimation procedures for the

approximate factor model has been given in (Bai and Liao, 2016), and the superiorities of the ML

based method are also given there. As we have said that the PML method used in (Bai and Liao,

2016) can not guarantee a positive definite estimate of the covariance matrix. To overcome this

drawback forms the main contents of our paper. By reconsidering the PML method, we propose a

new estimation equation and the corresponding algorithm. Our method not only gives simultaneous

estimates of Λ and Σe but also guarantees the positive definiteness of Σ̂e. Similar to (Bai and

Liao, 2016), we also check the influence of our new estimators on the weighted least squares (WLS)

estimate of the factor f . Of course there are also many other factor extraction methods (Mulaik,

2009, Ch. 7), but for comparison and its simplicity we only consider the WLS method. As a

byproduct, we also show that our method can also be used to estimate the covariance matrix Σy,

which was not addressed in (Bai and Liao, 2016).

The rest of the paper is organized as follows. In Section 2 we revisit the PML method and

propose our estimation function. The algorithm for solving our estimation equation is proposed in

the Section 3. All the simulation and a real data analysis are presented in Section 4. The concluding

discussion and the proof of main results are given in Section 5 and Appendix, respectively.

2 Methodology

We assume that f and e in model (1.1) are nondegenerate multivariate normal random vectors with

E(f) = 0 and E(e) = 0. Let y1,y2, · · · ,yn be the random observations from (1.1). If we further

assume that y1,y2, · · · ,yn are mutually independent, then the negative log-likelihood function is

given by

L(Σy) =
n

2
logdet(Σy) +

n

2
tr
(
Σ−1

y Sy

)
+
n

2
p log(2π),
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where we use logdet(A) to denote log(det(A)) for simplicity, and Sy = 1
n

∑n
j=1(yj − ȳ)(yj − ȳ)T

with ȳ = 1
n

∑n
j=1 yj . We take (1.2) into the above equation and get

L(Λ,Σe) = logdet
(
ΛCov(f)ΛT + Σe

)
+ tr

(
(ΛCov(f)ΛT + Σe)−1Sy

)
+ const.

Note that the MLE of Λ is largely depending on the estimation of Σe. However, in high-dimensional

setting the estimation of Σe is difficult due to the fact that estimating too many parameters O(p2)

with a relative small sample size n. Therefore, additional structure assumption on Σe is usually

needed. One typical and wildly used assumption is that Σe is conditional sparse, which means

many off-diagonal elements are zero or nearly zero (Bai and Liao, 2016). To get a parsimonious

estimate of Σe, penalty function will be employed to shrink the small off-diagonal elements of

Σe to be zero. Discarding the mutual independence assumption among the observations, Bai and

Liao (2016) proposed the following penalized quasi-maximum likelihood (PML) estimation of the

approximate factor model.

2.1 The PML method

In the PML estimation of the approximate factor model, some identification conditions are needed

to estimate Λ. With the following restriction (Lawley and Maxwell, 1971; Bai and Liao, 2016) that

Cov(f) = Ir, ΛTΣ−1
e Λ is diagonal, (2.1)

and the elements of ΛTΣ−1
e Λ are distinct and arranged in descending order, Bai and Liao (2016)

proposed the following PML estimation equation to estimate Λ and Σe

(Λ̂, Σ̂e) = argmin
Λ,Σe

log
(∣∣det(ΛΛT + Σe)

∣∣)+ tr
(
(ΛΛT + Σe)−1Sy

)
+ Pλ(Σe), (2.2)

where | · | is to take the absolute value of the determinant of ΛΛT + Σe. Pλ(Σe) is a penalty

function and given by

Pλ(Σe) = λ‖W ◦Σe‖1,off ,

where λ is the tuning parameter, W is a matrix of weights, the symbol ◦ denotes the Hadamard

product, and ‖ · ‖1,off sums up the absolute value of the off-diagonal elements. Let wij denote the

element of W. When wij = 1, the well known LASSO penalty (Tibshirani, 1996) follows. Let

Σ̂e,ij be a preliminary consistent estimate of the element in Σe. If we set wij = Σ̂
−1
e,ij , then Pλ(Σe)
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corresponds to the adaptive LASSO penalty (Zou, 2006). Furthermore if we set

wij =

[
I(|ρ̂e,ij |≤λ) +

(c− |ρ̂e,ij |/λ)+

c− 1
I(|ρ̂e,ij |>λ)

]
× (Σ̂e,ii × Σ̂e,jj)

− 1
2

with ρ̂e,ij = Σ̂e,ij/(Σ̂e,ii× Σ̂e,jj)
1/2, then the smoothly clipped absolute deviation (SCAD) penalty

(Fan and Li, 2001) follows.

We note that when ΛΛT + Σe is nonsingular, taking the absolute value of its determinant

makes (2.2) well defined. But this can not guarantee the estimate of Σy, Σ̂y = Λ̂Λ̂
T

+ Σ̂e, to be

positive definite. Since Σe is the covariance matrix of the error term, it should be positive definite

or at least positive semidefinite. If we get a positive definite estimate of Σe, then it is sufficient

for Σ̂y to be positive definite. Motivated by this we propose the following method to estimate the

approximate factor model.

2.2 The proposed method

Under the same identification condition (2.1), we adopt the following constrained PML estimation

equation to estimate the factor loading matrix and the error covariance matrix of model (1.1)

(Λ̂, Σ̂e) = argmin
Λ,Σe,andΣe�0

L(Λ,Σe), (2.3)

where

L(Λ,Σe) = logdet
(
ΛΛT + Σe

)
+ tr

(
(ΛΛT + Σe)−1Sy

)
+ Pλ(Σe),

and Σe � 0 means Σe is positive definite. Compared with (2.2), we do not need to take the

absolute value of the determinant of ΛΛT+Σe. Meanwhile, our method not only gives simultaneous

estimates of Λ and Σe but also guarantees the estimate of Σe to be positive definite. If we assume

the observations are independent and drop the constraint Σe � 0, (2.3) is just the penalized MLE

equation of the approximate factor model. After obtaining Λ̂ and Σ̂e, with (1.2) the estimate of

Σy can be easily obtained by

Σ̂y = Λ̂Λ̂
T

+ Σ̂e,

which can be treated as an easy byproduct of our estimation procedure and was not discussed in

(Bai and Liao, 2016).
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3 Algorithm

The EM algorithm (McLachlan and Krishnan, 2007) has been widely used in the literature to find

the MLE of the factor models (Rubin and Thayer, 1982; Hirose and Miyuki, 2018). In this section,

we propose an EM based iterative procedure to give the estimators of Λ and Σe in the approximate

factor model (1.1).

Let F = [f1, · · · , fn] be treated as the missing data, Y = [y1, · · · ,yn] be the observed one.

Then, given Y and the k-th estimates of Λ and Σe, denoted by Λ(k) and Σ
(k)
e , the conditional

expectation of the penalized log-likelihood function of complete data is

E(Lc(Λ,Σe)|Y) =− n

2
logdet(Σe)− n

2
tr(Σ−1

e Sy) + ntr(ΛTΣ−1
e SyΓ(k))− n

2
Pλ(Σe)

− n

2
tr
(

(ΛTΣ−1
e Λ + Ir)(Γ

(k)TSyΓ(k) + Ω(k))
)

+ const. , (3.1)

where Γ(k) = Σ
(k)
y

−1
Λ(k) with Σ

(k)
y = Λ(k)Λ(k)T +Σe

(k), and Ω(k) = Ir−Λ(k)TΓ(k). The derivation

of (3.1) is given in Appendix part B. The k + 1-th estimates of Λ and Σe are given by(
Λ(k+1),Σe

(k+1)
)

= argmin
Λ,Σe,andΣe�0

logdet(Σe) + tr
(
Σ−1

e ΛΩ(k)ΛT
)

+ tr

(
Σ−1

e

(
Ip −ΛΓ(k)T

)
Sy

(
Ip −ΛΓ(k)T

)T)
+ Pλ(Σe), (3.2)

which is solved with the following iterative procedure.

Step 1. Treating Σe as a constant matrix, we take the derivative of (3.2) with respect to Λ and

update Λ as follows

Λ(k+1) = SyΓ(k)
(
Ω(k) + Γ(k)TSyΓ(k)

)−1
. (3.3)

Step 2. Substituting Λ(k+1) into equation (3.2), and Σe is updated by

Σe
(k+1) = argmin

Σe�0
logdet(Σe) + tr

(
Σ−1

e M
)

+ Pλ(Σe), (3.4)

where

M =
(
Ip −Λ(k+1)Γ(k)T

)
Sy

(
Ip −Λ(k+1)Γ(k)T

)T
+ Λ(k+1)Ω(k)Λ(k+1)T . (3.5)

Here, we need to claim that the Λs in Γ and Ω are also updated. Since Σ
(k)
e is still unchanged,

we here just write Γ(k) and Ω(k) for simplicity.

We note that equation (3.4) has the same form as the penalized MLE of covariance matrix discussed
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by Bien and Tibshirani (2011), except for the matrix M. And the nonconvexity makes it challenging

to solve (3.4). From equation (3.5), it can be easily checked that when Sy is positive definite, M

is also positive definite. According to Proposition 1 (Bien and Tibshirani, 2011), it can be easily

deduced that when M is positive definite, the constraint Σe � 0 can be tightened to Σe � δIp for

some δ > 0. Thus, when Sy is positive definite, (3.4) is equivalent to

Σe
(k+1) = argmin

Σe�δIp
logdet(Σe) + tr

(
Σ−1

e M
)

+ Pλ(Σe).

Following the MM procedure (Lange, 2016) and the proximal gradient method used in (Bien and

Tibshirani, 2011), we give an alternative to Step 2 as follows.

Step 2′. Choose a suitable depth of projection t, and update Σe as follows

Σ
(k+1)
e = argmin

Σe�δIp

1

2t
‖Σe −Mn‖2F + Pλ(Σe), (3.6)

where Mn = Σ
(k)
e − t

(
Σ

(k)
e

−1
−
(

Σ
(k)
e

−1
MΣ

(k)
e

−1
))

.

The details on the derivation of (3.6) can be found in (Bien and Tibshirani, 2011). We need to

point out that when p > n, Sy (or M) is only positive semidefinite and the constraint Σe � δIp

will not hold. If we drop the constraint, (3.6) reduces to the following equation

Σ
(k+1)
e = arg min

1

2t
‖Σe −Mn‖2F + Pλ(Σe), (3.7)

which was used by Bai and Liao (2016) to update Σe. We can check that (3.7) has a closed-form

solution which exactly corresponds to the generalized thresholding covariance matrix estimator

(Rothman et al., 2009). We also note that the Σ
(k+1)
e given by (3.7) may contain negative eigenvalue

due to the thresholding procedure. A similar discussion on the high-dimensional covariance matrix

estimation has been given by Xue et al. (2012), which asserted that the generalized thresholding

covariance matrix estimator can not guarantee the estimate of covariance matrix to be positive

definite. So in high-dimensional setting we directly give an lower bound δ of the minimum eigenvalue

of Σe, which forms the constraint Σe � δIp in (3.6). It should be noted that δ is not a tuning

parameter and we may choose δ = 10−4. Similar treatment has been used in high-dimensional

covariance matrix estimation to guarantee a positive definite estimate of the covariance matrix

(Rothman, 2012; Xue et al., 2012; Liu et al., 2014). Liu et al. (2014) also proposed a data driven

procedure to determine the value of δ.

To solve (3.6), many methods, like alternating direction method of multipliers (ADMM, Boyd

et al., 2011), can be used. However, when the ADMM is taken, a penalty parameter in the
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augmented lagrange function needs the user choose. The penalty parameter has no influence on

the theoretical convergence results (Xue et al., 2012), but can give nonnegligible impact on the

numerical performance (Ma et al., 2013). Here, we follow Cui et al. (2016) and solve (3.6) by

applying the APG algorithm to its lagrangian dual problem.

The lagrange function of (3.6) is

L(Σe,Z) =
1

2t
‖Σe −Mn‖2F + Pλ(Σe)− tr

(
ZT (Σe − δIp)

)
, (3.8)

where Z is the lagrange multiplier. The lagrange dual problem of (3.8) is given by

max
Z�0

min
Σe

L(Σe,Z). (3.9)

Let X(Z) =Mn + tZ. We define

g(Z) ≡ −min
Σe

{L(Σe,Z)} =− inf
Σe

{
1

2t
‖Σe −X(Z)‖2F + Pλ(Σe)

}
− 1

2t
‖δIp −Mn‖2F +

1

2t
‖X(Z)− δIp‖2F . (3.10)

Since Pλ(Σe) = λ‖W◦Σe‖1,off , the first part of (3.10) has a colsed-form solution and its minimizer

is given as

Σ̂e = S (X(Z), tλW) = [sign(X(Z)ij) max {|X(Z)ij | − tλWij , 0}] , (3.11)

and S(·, ·) is the elementwise soft-thresholding operator. Thus for (3.10) we have

g(Z) =− 1

2t

∥∥∥Σ̂e −X(Z)
∥∥∥2

F
− Pλ

(
Σ̂e

)
− 1

2t
‖δIp −Mn‖2F +

1

2t
‖X(Z)− δIp‖2F .

By Proposition 1 (see Appendix A), the function g(Z) is continuously differentiable and its gradient

is given by

∇g(Z) = S (X(Z), tλW)− δIp.

Meanwhile, the lagrange dual problem (3.9) can be written as

min
Z
f(Z) ≡ g(Z) + δpsd(Z), (3.12)

where δpsd(·) is the indictor function of the cone of positive semidefinite matrices. Beck and Teboulle

(2009) proposed an APG algorithm to deal with (3.12), and proved a complexity result of O(1/k2).

Then, from Part 2 of Proposition 1, ∇g(Z) is globally Lipschitz continuous, and according to
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the APG algorithm we can solve (3.12) by an iterative procedure of minimizing its quadratic

approximation

Y(k+1) = arg min
Z�0

g(Z(k)) +
1

2

∥∥∥Z− Z(k)
∥∥∥2

F
+ tr

(
∇g(Z(k))T (Z− Z(k))

)
. (3.13)

It is well known that the solution to (3.13) is given by

Y(k+1) = P+

(
Z(k) −∇g(Z(k))

)
, (3.14)

where P+(·) is the projection operator onto the cone of positive semidefinite matrices. For a

symmetric matrix X, let X =
∑p

i=1 λiviv
T
i be its eigendecomposition, and then its projection onto

the cone of positive semidefinite matrices is given by P+(X) =
∑p

i=1 max {λi, 0} vivTi . Now we

summarize the above discussion as the following APG algorithm to update Σe in Step 2′.

Algorithm 1 Update Σe by APG algorithm

Given Σ
(k)
e , the updated estimate Λ(k+1), and t(k) = 1. Set k := 1. Iterate until convergence:

Step 2′a Compute M by (3.5) and Mn in (3.8).

Step 2′b Compute S
(
X(Z(k)), tλW

)
by (3.11), ∇g(Z(k)), and Y(k+1) = P+

(
Z(k) −∇g(Z(k))

)
.

Step 2′c Compute t(k+1) = 1+
√

1+4t(k)
2

2 .

Step 2′d Compute Z(k+1) = Y(k+1) + t(k)−1
t(k+1) (Y(k+1) + Y(k)).

The following theorem given by Cui et al. (2016) shows that the convergence of APG algorithm

has O(1/k2) complexity. Its proof rests on Part 2 of Proposition 1 and Theorem 4.4 of Beck and

Teboulle (2009), which is a straight extension from vectors to matrices.

Theorem 1. Assume f is defined in (3.12) and {Zk} are generated by the APG algorithm. Then

for any optimal solution Z∗ of minZ f(Z), we have

f(Zk)− f(Z∗) ≤
2‖Z0 − Z∗‖2F

(k + 1)2
, ∀k ≥ 1,

where Z0 is the initial value.

Then, we conclude this part by the following theorem which shows that the value of objective

function is nonincreasing and its proof is given as Appendix part C.

Theorem 2. If we solve the problem (2.3) by the proposed iterative procedure, then the value of

objective function in each iteration is nonincreasing.
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Remark 1. Compared with ADMM, the APG algorithm has a theoretical guarantee for the iterate

number before reaching the prescribed accuracy and is free of penalty parameter selection which

will be needed for the ADMM (Cui et al., 2016). The APG algorithm serves as an intermediate

step to ensure Σ̂
(k)
e to be positive definite. And this may give additional computation burden to

our algorithm. Thus in the implementation of our algorithm we are more likely to solve (3.7) first

and its solution is given by

Σ̂
(k+1)
e = S(Mn, tλW), (3.15)

which can be efficiently computed. When Σ̂
(k+1)
e is positive definite, the algorithm goes to next

iteration; when Σ̂
(k+1)
e is not positive definite, the APG algorithm will be used to give a positive

definite estimate of Σe.

4 Empirical study

Note that in our model (2.3) a tuning parameter λ should be selected. In this paper we use the K-

fold cross-validation to choose λ, which has been widely used in covariance matrix estimation and

finds its theoretical support in (Bickel and Levina, 2008). Let A be the index set of n observations,

and Sy,A = |A|−1
∑

t∈A(yt− ȳ)(yt− ȳ)T be the sample covariance matrix given by validation data.

The symbol |A| denotes the cardinality of set A. Let Λ̂(Ac, λ) and Σ̂e(Ac, λ) be the estimated

loading matrix and error covariance matrix by the training data in Ac, the compliment of A,

with tuning parameter λ. Then we partition the data into K subsets, denoted by its index sets

A1, · · · ,AK , and choose the λcv as follows

λcv = arg min
λ

1

K

K∑
k=1

L
(
Λ̂(Ack, λ), Σ̂e(Ack, λ),Sy,Ak

)
,

where L(Λ̂, Σ̂e,Sy) = 1
n logdet

(
Λ̂Λ̂

T
+ Σ̂e

)
+ 1

ntr(Sy(Λ̂Λ̂
T

+ Σ̂e)−1).

Now we specify some issues in the implementation of our algorithm. For (3.6) in Step 2
′
, we

set the projection depth t = 0.1, δ = 10−4, and Pλ(Σe) is chosen as the SCAD penalty. When (3.6)

is solved via the APG algorithm, we take the same termination criterion used in (Cui et al., 2016).

As we have shown that our algorithm has a nonincreasing property, we terminate the algorithm

when the reduction of the value of objective function is less than 10−6. We take the consistent

estimates of Σe and Λ given by Bai and Li (2016) as the initial values in our iterative procedure.

Moreover, the nonconvexity of the objective function (2.3) can not guarantee a unique minima, and

a conventional method is to try different initial values and choose the one with minimum function

value as the final estimator.
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4.1 Simulation

In our simulation, we take the synthetic example given by Bai and Liao (2016) with some mod-

ification on the error covariance matrix Σe to check the efficiency of our estimator. Three error

covariance matrices with different sparsity patterns are considered. In each setting, we generated

200 independent data sets. All the computations are performed in Matlab 2014a on a PC Intel

Core(TM) i5-6600 CPU, 3.30Ghz with RAM 4.00 GB.

The underling factor model is constructed as follows. Let the two factors {f1j , f2j} be indepen-

dently generated from N (0, 1), and the elements of Λ be uniform on [0, 1]. The covariance matrix

of the idiosyncratic error term has the following three different structures.

Model 1. (Banded matrix ) Let {αij}i≤p,j≤n be generated from the standard normal distribution

N (0, 1), and

e1j = α1j ,

e2j = α2j + a1α1j ,

e3j = α3j + a2α2j + b1α1j ,

e(i+1)j = α(i+1)j + aiαij + bi−1α(i−1)j + ci−2α(i−2)j ,

with {ai, bi, ci}i≤p being generated from 0.7×N (0, 1).

Model 2. (Approximately sparse matrix ) Let Σe = αIp+M, where M = [mij ] with mij = 0.5|i−j|,

and α is used to control the condition number of Σe equal to p.

Model 3. (Block diagonal matrix ) The indices 1, · · · , p are evenly divided into 5 groups. Then for

each group we set the covariance matrix to be AR(0.6) which means the conditional covariance

between any two random variables ei and ej is 0.6|i−j|.

Since we want to investigate the influence of the positivity of Σe on the estimation of Λ and

f , we use three different methods: (1) MMEM: the majorize-minimize EM algorithm proposed

by Bai and Liao (2016); (2) EMAPG: our proposed algorithm; (3) EPC: a two-step algorithm

based on generalized PC method (Choi, 2012) to estimate the loading matrix and factor, and

principal orthogonal complement thresholding (POET) method (Fan et al., 2013) to estimate the

error covariance matrix. When using POET estimator, we follow Bai and Liao (2016) to choose

the thresholding parameter C = 0.7, 0.5.

We compare the performance of these three different estimation procedures with respect to

the following aspects. For the factor loading matrix (LOAD) and the factors (FACT), we take

two different criterions. One is the smallest canonical correlation (CCOR) between the estimator
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and the parameter (the higher the better), which was also used in (Bai and Liao, 2016) as a

measurement to assess the accuracy of each estimator; the other is mean squared error (MSE), and

smaller MSE means better accuarcy. For the error covariance matrix, we report the root-mean-

square error(RMSE)

RMSEΣe =
1

200× p

200∑
t=1

∥∥∥Σ̂e(t)−Σe

∥∥∥
F

and the empirical deviation (in parentheses) across 200 replications. As an easy result with (1.2),

the RMSE of Σy denoted by RMSEΣy is also reported. Moreover, we also exhibit the ratios of

Σ̂e and Σ̂y being non-positive definite (RNPD) in 200 replications. Larger ratio means worse

approximation of the underling covariance structure. All the simulation results for Models 1, 2 and

3 are reported in Tables 1, 2, 3, 4, 5 and 6, correspondingly.

From Tables 1, 3 and 5, we note that except the MSEs of loading matrix for EMAPG and

MMEM algorithms are similar, our EMAPG algorithm outperforms the MMEM algorithm with

respect to CCOR and MSE, which implies that preserving the positive definiteness of Σ̂e can

improve the penalized MLE of Λ and f . And from Tables 2, 4 and 6, we also note that the positive

definiteness of Σ̂e plays an important role in the WLS estimation of f , and when RNPD of Σ̂e (or

Σ̂y) is higher, the superiority of our algorithm becomes more obvious. Moreover, as a byproduct

the EMAPG algorithm also has very good performance in estimating the covariance structure of

the approximate factor model. From Tables 3 and 5, we note that the EPC algorithm may give

best performance when Σ̂e is positive definite. This coincides with the conclusion given in (Bai

and Liao, 2016) that it is hard to see whether MMEM(EMAPG) or EPC dominates the other,

but no matter which method will be used a positive definite estimate of Σe is essential to the

WLS estimate of f . We note that the EPC method also has very good performance in estimating

the covariance structure of approximate factor model with respect to RMSE. But, due to the

thresholding procedure in POET, the EPC method can not guarantee the positive definiteness of

Σ̂e, and becomes inefficiency in estimating f . We may conclude that our estimator (2.3) not only

gives simultaneous estimates of the factor loading matrix Λ and the error covariance matrix Σe, but

also can be used to estimate the covariance structure of the approximate factor model. According

to our simulation, keeping the positive definiteness of the error covariance matrix can improve the

estimation of loading matrix and factors (with WLS method) for both the one step penalized MLE

and the two step EPC methods. Another issue is CPU time. The the iterative step in keeping

Σ̂e positive definite brings much more computational burden to EMAPG algorithm compared with

MMEM algorithm. But the EMAPG algorithm does give best performance in our simulation.

12



Table 1: Comparison of three methods with respect to loading matrix (LOAD) and factors(FACT).

Model 1 MMEM EMAPG EPC
λCV λCV C = 0.7 C = 0.5

n p CCOR MSE CCOR MSE CCOR MSE CCOR MSE

LOAD 50 50 0.3954 0.0425 0.4043 0.0428 0.3430 0.0441 0.3278 0.0406
100 0.4940 0.0572 0.5529 0.0578 0.4168 0.0616 0.3604 0.0573
150 0.6111 0.0681 0.6407 0.0688 0.5967 0.0701 0.4792 0.0686
200 0.6457 0.0770 0.6857 0.0779 0.6741 0.0805 0.5310 0.0741

100 50 0.4704 0.0390 0.4876 0.0398 0.4612 0.0419 0.4175 0.0409
100 0.5980 0.0544 0.6621 0.0552 0.4686 0.0577 0.3895 0.0562
150 0.7917 0.0696 0.8146 0.0705 0.7767 0.0710 0.6307 0.0679
200 0.8138 0.0732 0.8301 0.0746 0.8018 0.0765 0.6428 0.0719

FACT 50 50 0.3833 0.2552 0.3936 0.0728 0.3522 0.0711 0.3330 0.0680
100 0.6070 0.0876 0.6957 0.0692 0.5426 0.0698 0.4308 0.0685
150 0.7298 0.0752 0.7929 0.0693 0.7490 0.0685 0.5195 0.0708
200 0.7909 0.1000 0.8416 0.0676 0.8358 0.0686 0.5680 0.0694

100 50 0.4457 0.1301 0.4608 0.1054 0.4251 0.0981 0.3731 0.0983
100 0.6547 0.1183 0.7186 0.1002 0.5271 0.0975 0.3663 0.0996
150 0.8502 0.1489 0.8998 0.0970 0.8736 0.0938 0.5744 0.0971
200 0.8620 0.1201 0.9052 0.0965 0.8581 0.0949 0.5640 0.0965
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Table 2: Comparison of three methods with respect to Σe and Σy.

Model 1 MMEM EMAPG EPC
λCV λCV C = 0.7 C = 0.5

Σe | Σy Σe | Σy Σe | Σy Σe | Σy

RNPD 50 50 0.0850|0.0350 0|0 0|0 0.1600|0.1600
100 0.3150|0.2800 0|0 0|0 0.8850|0.8850
150 0.6450|0.5550 0|0 0|0 1|1
200 0.7800|0.7600 0|0 0|0 1|1

100 50 0.1850|0.0050 0|0 0|0 0.4350|0.4350
100 0.1950|0.1100 0|0 0.0800|0.0800 0.9950|0.9950
150 0.4950|0.4300 0|0 0.0050|0.0050 1|1
200 0.5950|0.5150 0|0 0.4950|0.4950 1|1

RMSEΣe 50 50 4.4333(3.0957e+03) 0.2781(7.5245e-04) 0.2544(1.4590e-04) 0.2406(1.9101e-04)
100 28.2653(1.4710+05) 0.2022(3.3704e-05) 0.1717(3.5727e-05) 0.1687(4.2260e-05)
150 1.3006(61.4565) 0.1540(3.7551e-05) 0.1212(1.4117e-05) 0.1261(1.3933e-05)
200 2.4525e+03(1.0820e+09) 0.1439(6.2364e-05) 0.1206(7.9970e-06) 0.1308(9.5932e-06)

100 50 1.8999(201.9690) 0.3014(7.5342e-04) 0.2285(1.2228e-04) 0.2125(1.4658e-04)
100 1.7287(89.3294) 0.1845(4.5147e-05) 0.1364(6.4340e-05) 0.1258(8.1845e-05)
150 8.8185(5.3643e+03) 0.1455(4.1528e-05) 0.0981(2.9208e-05) 0.0942(3.4040e-05)
200 6.8095(4.9002e+03) 0.1382(1.5709e-05) 0.0891(7.0492e-06) 0.0891(5.4020e-06)

RMSEΣy 50 50 4.5434(3.0948e+03) 0.3934(0.0021) 0.4256(0.0022) 0.4107(0.0024)
100 28.4198(1.4709e+05) 0.3769(0.0016) 0.3805(0.0018) 0.3779(0.0040)
150 1.4485(61.1368) 0.3295(0.0015) 0.3254(0.0015) 0.3411(0.0050)
200 2.4526e+03(1.0820e+09) 0.3328(0.0011) 0.3263(0.0013) 0.3506(0.0056)

100 50 1.9580(201.7909) 0.3436(0.3436) 0.3417(0.0016) 0.3166(0.0014)
100 1.8136(89.0758) 0.2764(7.1768e-04) 0.2585(9.2646e-04) 0.2623(0.0049)
150 8.9094(5.3627e+03) 0.2548(5.3078e-04) 0.2366(7.2468e-04) 0.2710(0.0089)
200 6.9032(4.8990e+03) 0.2500(5.0955e-04) 0.2417(0.0027) 0.2701(0.0070)
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Table 3: Comparison of three methods with respect to loading matrix (LOAD) and factors(FACT).

Model 2 MMEM EMAPG EPC
λCV λCV C = 0.7 C = 0.5

n p CCOR MSE CCOR MSE CCOR MSE CCOR MSE

LOAD 50 50 0.7825 0.0410 0.8316 0.0415 0.8535 0.0412 0.7987 0.0396
100 0.7892 0.0521 0.8566 0.0526 0.8764 0.0569 0.7724 0.0522
150 0.8496 0.0668 0.8938 0.0678 0.8744 0.0685 0.7633 0.0635
200 0.8732 0.0767 0.9006 0.0779 0.8533 0.0774 0.6964 0.0735

100 50 0.8732 0.0395 0.9074 0.0403 0.9205 0.0402 0.8160 0.0387
100 0.8796 0.0542 0.9365 0.0545 0.7843 0.0489 0.8242 0.0516
150 0.8788 0.1284 0.9425 0.1278 0.7206 0.1228 0.8110 0.1217
200 0.8991 0.0755 0.9501 0.0745 0.7072 0.0711 0.8034 0.0703

FACT 50 50 0.7215 0.2033 0.8464 0.0717 0.8889 0.0688 0.7018 0.0688
100 0.7063 1.9261 0.9061 0.0694 0.9521 0.0697 0.6514 0.0699
150 0.7275 0.3294 0.9515 0.0697 0.8879 0.0683 0.6117 0.0685
200 0.7405 0.1254 0.9647 0.0682 0.8256 0.0701 0.5403 0.0693

100 50 0.7107 0.2797 0.8684 0.0985 0.9095 0.0953 0.5776 0.0970
100 0.7172 0.3958 0.9489 0.1004 0.5371 0.0949 0.6040 0.0976
150 0.6986 44.5154 0.9729 0.2041 0.4748 0.1980 0.5698 0.1997
200 0.6816 1.4890 0.9850 0.0983 0.4411 0.0981 0.5845 0.0968
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Table 4: Comparison of three methods with respect to Σe and Σy.

Model 2 MMEM EMAPG EPC
λCV λCV C = 0.7 C = 0.5

Σe | Σy Σe | Σy Σe | Σy Σe | Σy

RNPD 50 50 0.9550|0.9350 0|0 0|0 1|1
100 0.9950|0.9950 0|0 0|0 1|1
150 1|1 0|0 0.8050|0.8050 1|1
200 0.9950|0.9900 0|0 1|1 1|1

100 50 0.9650|0.9600 0|0 0.0250|0.0050 1|1
100 1|0.9950 0|0 1|1 1|1
150 0.9900|0.9900 0|0 1|1 1|1
200 1|1 0|0 1|1 1|1

RMSEΣe 50 50 386.2803(1.8140e+07) 0.1110(3.8297e-06) 0.0836(1.5029e-05) 0.0752(1.8411e-05)
100 9.5761e+04(1.8308e+12) 0.0785(2.5924e-06) 0.0519(3.4325e-06) 0.0484(2.9666e-06)
150 1.0811e+04(2.2867e+10) 0.0645(2.5259e-06) 0.0403(1.3453e-06) 0.0398(1.2129e-06
200 75.7420(2.2395e+05) 0.0573(1.2244e-06) 0.0344(7.4460e-07) 0.0356(5.8684e-07)

100 50 53.2334(2.3425e+05) 0.1091(2.2362e-06) 0.0705(7.5454e-06) 0.0627(7.3771e-06)
100 446.8518(2.2263e+07) 0.0766(2.0965e-06) 0.0399(2.5089e-06) 0.0366(2.0241e-06)
150 1.7385e+05(5.6536e+12) 0.0623(1.0231e-06) 0.0306(8.5315e-07) 0.0294(7.2741e-07)
200 323.6460(5.8833e+06) 0.0536(5.8271e-07) 0.0257(4.7981e-07) 0.0258(4.5756e-07)

RMSEΣy 50 50 386.3244(1.8140e+07) 0.2235(0.0023) 0.2223(0.0037) 0.2390(0.0076)
100 9.5762e+04(1.8308e+12) 0.1954(0.0019) 0.1897(0.0028) 0.2374(0.0093)
150 1.0811e+04(2.2867e+10) 0.1889(0.0016) 0.1946(0.0037) 0.2355(0.0094)
200 75.7767(2.2394e+05) 0.1899(0.0022) 0.2108(0.0075) 0.2690(0.0145)

100 50 53.2582(2.3425e+05) 0.1741(0.0010) 0.1567(0.0014) 0.2109(0.0083)
100 446.8674(2.2263e+07) 0.1593(0.0015) 0.2263(0.0158) 0.2149(0.0152)
150 1.7385e+05(5.6536e+12) 0.1555(0.0016) 0.2459(0.0148) 0.2295(0.0158)
200 323.6604(5.8833e+06) 0.1580(0.0021) 0.2251(0.0120) 0.2280(0.0161)
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Table 5: Comparison of three methods with respect to loading matrix (LOAD) and factors(FACT).

Model 3 MMEM EMAPG EPC
λCV λCV C = 0.7 C = 0.5

n p CCOR MSE CCOR MSE CCOR MSE CCOR MSE

LOAD 50 50 0.5922 0.0407 0.6071 0.0411 0.6377 0.0421 0.6454 0.0433
100 0.7463 0.0542 0.7856 0.0549 0.7943 0.0536 0.7351 0.0546
150 0.8165 0.0700 0.8540 0.0711 0.8593 0.0695 0.7669 0.0661
200 0.8171 0.0788 0.8480 0.0802 0.8554 0.0793 0.6941 0.0761

100 50 0.6301 0.0373 0.6490 0.0376 0.6307 0.0374 0.6344 0.0375
100 0.8647 0.0553 0.8854 0.0563 0.8897 0.0530 0.8280 0.0527
150 0.8991 0.0690 0.9193 0.0701 0.9215 0.0673 0.8452 0.0645
200 0.9028 0.0731 0.9242 0.0736 0.9276 0.0716 0.8442 0.0679

FACT 50 50 0.5580 0.3452 0.6141 0.0690 0.6521 0.0678 0.6624 0.0704
100 0.7674 0.1090 0.8617 0.0703 0.8731 0.0667 0.6969 0.0692
150 0.8162 0.5846 0.9344 0.0698 0.9462 0.0668 0.6934 0.0682
200 0.8478 0.3853 0.9397 0.0689 0.9528 0.0686 0.6008 0.0713

100 50 0.5798 0.1833 0.6185 0.1012 0.6056 0.0970 0.6090 0.0968
100 0.7423 0.1620 0.8946 0.1006 0.9068 0.0936 0.7262 0.0968
150 0.8373 0.2067 0.9703 0.1004 0.9753 0.0952 0.7224 0.0973
200 0.8146 0.2241 0.9709 0.0958 0.9765 0.0927 0.6896 0.0947
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Table 6: Comparison of three methods with respect to Σe and Σy.

Model 3 MMEM EMAPG EPC
λCV λCV C = 0.7 C = 0.5

Σe | Σy Σe | Σy Σe | Σy Σe | Σy

RNPD 50 50 0.8450|0.8200 0|0 0|0 0.0050|0.0050
100 0.9850|0.9750 0|0 0|0 0.9450|0.9450
150 1|0.9950 0|0 0|0 1|1
200 0.9850|0.9850 0|0 0|0 1|1

100 50 0.2100|0.2000 0|0 0|0 0.1800|0.1800
100 0.9150|0.8800 0|0 0|0 0.5000|0.5000
150 1|0.9900 0|0 0|0 0|0
200 0.9900|0.9800 0|0 0|0 1|1

RMSEΣe 50 50 17.6165(8.5831e+03) 0.1342(6.8154e-06) 0.1211(1.5340e-05) 0.1080(3.0385e-05)
100 302.9665(1.3792e+07) 0.0980(4.0206e-06) 0.0810(5.1237e-06) 0.0723(7.0484e-06)
150 1.3785e+04(2.8936e+10) 0.0817(3.9691e-06) 0.0653(2.3473e-06) 0.0609(2.3916e-06)
200 4.3840e+04(3.8321e+11) 0.0716(2.9771e-06) 0.0565(1.2709e-06) 0.0550(1.1393e-06)

100 50 3.7862e+03(2.8564e+09) 0.1276(2.6228e-06) 0.1094(1.1661e-05) 0.0931(2.2638e-05)
100 33.3834(9.6090e+04) 0.0931(1.0097e-06) 0.0682(4.4114e-06) 0.0558(4.2159e-06)
150 238.4404(6.6527e+06) 0.0769(4.7543e-07) 0.0525(2.1810e-06) 0.0444(1.5492e-06)
200 80.4486(9.5889e+05) 0.0670(3.3169e-07) 0.0451(1.0238e-06) 0.0396(6.5967e-07)

RMSEΣy 50 50 17.6840(8.5807e+03) 0.2690(0.0014) 0.2246(0.0016) 0.2177(0.0017)
100 303.0102(1.3792e+07) 0.2303(0.0016) 0.2268(0.0018) 0.2363(0.0046)
150 1.3785e+04(2.8936e+10) 0.2308(0.0019) 0.2267(0.0021) 0.0021(0.0053)
200 4.3841e+04(3.8321e+11) 0.2205(0.0021) 0.2176(0.0023) 0.2484(0.0070)

100 50 3.7862e+03(2.8564e+09) 0.1845(6.3202e-04) 0.1808(9.2587e-04) 0.1674(9.9825e-04)
100 33.4172(9.6088e+04) 0.1741(0.0011) 0.1663(0.0014) 0.1674(0.0025)
150 238.4683(6.6527e+06) 0.1653(8.9474e-04) 0.1581(0.0012) 0.1847(0.0047)
200 80.4751(9.5888e+05) 0.1522(6.6468e-04) 0.1464(7.8750e-04) 0.1753(0.0043)
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4.2 Forecasting simulation

The difference between ML based and PC based methods for estimating the high-dimensional ap-

proximate factor model has been extensively discussed (Bai and Liao, 2016). Bai and Liao (2016)

also showed that incorporating the cross-sectional correlations does lead to a considerable improve-

ment on the estimation of Λ and f and a better performance of forecasting. In our simulation, we

have shown that a positive definite estimate of Σe can further improve the estimation of Λ and f ,

and now we will check its influence on forecasting through simulation.

Within a same framework, we only consider the following three ML based methods to investi-

gate the influence of different estimators of Σe on forecasting: (1) the heteroscedastic ML (HML)

estimator (Bai and Li, 2016) that gives no concern on the cross-sectional dependence and estimates

Σe to be diagonal; (2) the MMEM algorithm that takes the cross-sectional dependence into con-

sideration but can not guarantee Σ̂e to be positive definite; (3) the EMAPG algorithm that not

only takes the cross-sectional dependence into consideration but also guarantees Σ̂e to be positive

definite. We construct the following synthetic two factors time series model:

xt+1 = βT ft + εt, ft = ρft−1 + νt, (4.1)

where β = [2, 3]T , ρ = 0.5, εt ∼ N (0, 1) and νt ∼ N (0, I2). The factor ft in (4.1) is unknown and

can be estimated from the following factor model

yt = Λft + et,

where the elements in Λ are generated from the uniform distribution on the interval [0, 1], the

components of ft are generated from standard normal distribution, and et has the same covariance

structure as Model 2.

In our simulation we set n = 50, 100. To compare the forecasting error, we generate m + n

observations, and then conduct one-step ahead out-of-sample forecasting m times with a moving

window of a fixed sample size. Specially, setting t = 0, · · · ,m − 1, we first estimate f by the

data {yi}t+ni=t+1 and get {f̂i}t+ni=t+1, then the estimator β̂t+n is obtained by regressing {xi}t+ni=t+2 onto

{f̂i}t+n−1
i=t+1 . The forecast of xt+n+1 is x̂t+n+1 = β̂

T

t+nf̂t+n, and the forecasting error is given by

(xt+n+1− x̂t+n+1)2. In order to give quantitative measurement of the performance, we take the PC

estimator as benchmark and compute the mean squared out-of-sample forecasting error by

MSE =
1

m

m−1∑
t=0

(xt+T+1 − x̂t+T+1)2.

For different methods, the relative MSEs to PC method are reported in Table 7. From Table 7, we

19



Table 7: Forecasting error of synthetic data with m = 50.
HML MMEM EMAPG

n = 50 p = 50 0.8411 0.7683 0.6803
p = 100 0.9291 0.9241 0.8738
p = 150 0.9583 0.9595 0.8993

n = 100 p = 50 0.8558 0.7881 0.7549
p = 100 0.9441 1.0515 0.9851
p = 150 0.9965 1.0085 0.9992

find that considering the correlation between idiosyncratic error term can improve the performance

of forecasting, and the MSEs of EMAPG algorithm are usually smaller than the other two methods,

which implies that the forecasting accuracy can be further improved by preserving the positive

definiteness of Σ̂e. Moreover, we can also find that as n and p increase the performances of these

three methods become very similar, which coincides with the consistency properties given in (Bai

and Liao, 2016; Bai and Li, 2016).

4.3 Macroeconomic times series data

The diffusion index forecasting model (Stock and Watson, 2002) has the following form

xht+h = ah + βTh ft +
l∑

i=1

γihxt+1−i + εht+h,

yt = Λft + et,

where h is the forecast horizon, l is the number of lags for xt, and the goal is to forecast xht+h =
1
h

∑h
i=1 xt+i, the h-step-ahead variable. Here we forecast the industrial production with the dataset

of real time macroeconomic time series of the United States, which has been analyzed by Ludvigson

and Ng (2011) and identified with 8 factors by information criterion. We take the same procedure

of forecasting used in Section 4.2 and report the relative MSEs to PC method in Table 8.

Table 8: Forecasting error of real data analysis.
HML MMEM EMAPG

h = 1 One leg 1.0696 1.0389 1.0528
Three leg 1.0696 1.0264 1.0265

h = 9 One leg 1.1320 0.9152 0.9044
Three leg 1.1303 0.9156 0.8679

h = 18 One leg 0.9426 0.8316 0.7154
Three leg 0.9387 0.8270 0.6864
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From Table 8, when h = 1, there are very little differences among these three methods on

short term forecasting, and we can not tell which method should be preferred. The same findings

have been illustrated by (Bai and Liao, 2016; Boivin and Ng, 2005; Luciani, 2014). We note that

taking the cross-sectional dependence into account makes MMEM and EMAPG have smaller MSEs

compared with HML method for long term forecasting. Moreover, our numerical results also show

that the MSEs of EMAPG algorithm are smaller than that of MMEM for the cases h = 9 and

h = 18, which means that preserving the positive definiteness of Σ̂e can improve the performance

of forecasting. On the other side, the reliability of long term forecasting may suffer from the

potential loss of the stationarity (Bai and Liao, 2016).

5 Concluding discussion

In this paper, by revisiting the penalized MLE of the high-dimensional approximate factor model

proposed by Bai and Liao (2016), we propose a new estimator and present the corresponding algo-

rithm. The main contribution of our work is that we reformulate the estimation of error covariance

matrix as a high-dimensional covariance matrix estimation problem, and propose an APG algo-

rithm to guarantee the estimate of error covariance matrix to be positive definite. Combined with

the APG algorithm, an EM iterative procedure (EMAPG algorithm) is given to give simultaneous

estimates of the factor loading matrix and the error covariance matrix. We also prove that although

the EMAPG algorithm can not guarantee a global minimizer, it enjoys a desirable non-increasing

property. Our simulation shows that the proposed EMAPG algorithm not only gives a positive def-

inite estimation of error covariance matrix but also improves the estimation of the high-dimensional

approximate factor model. Moreover, we note that a positive definite estimate of error covariance

matrix also improves the performance of forecasting when the factors are estimated by the WLS

method. As an interesting byproduct, our estimator can be easily used to estimate the covariance

matrix of the approximate factor model, which does not hold for the estimator given in (Bai and

Liao, 2016). On the other side, keeping the estimate of error covariance matrix positive definite

in every iteration may make the EMAPG algorithm time consuming, thus finding some easy com-

putable and positive definite estimates of the error covariance matrix to reduce the computational

burden should be treated as a research topic in the near future.

Acknowledgement

The authors wish to thank the anonymous reviewers and the Editor for their helpful and very

detailed comments, which have led a substantial improvement to the presentation of their paper.

They also appreciate Yuan Liao for sharing the code used in Bai and Liao (2016).

21



Appendix

A The Moreau-Yosida regularization

The Moreau-Yosida regularization of a closed proper convex function f associated with a given

parameter ρ is defined as

ϕρf (x) = min
y∈X

{
f(y) +

1

2ρ
‖y − x‖2

}
, (A.1)

where x ∈ X , the domain of f and equipped with the norm ‖ · ‖. The unique minimizer of (A.1),

denoted by P ρf (x), is called the proximal point mapping associated with f .

Proposition 1 (Cui et al. (2016)). Let f : X → (−∞,+∞] be a closed proper convex function,

ϕρf be the Moreau-Yosida regularization of f , and P ρf be the associated proximal point mapping.

Then the following results hold.

1. ϕρf is continuously differentiable with gradient given by

∇ϕρf (x) =
1

ρ
(x− P ρf (x)).

Furthermore, ∇ϕρf is continuously Lipschitz continuous with modulus 1/ρ.

2. For any x1, x2 ∈ X , one has

〈P ρf (x1)− P ρf (x2), x1 − x2〉 ≥ ‖P ρf (x1)− P ρf (x2)‖2,

which implies the mapping P ρf (·) is globally continuous with modulus 1 by the Cauchy-Schwarz

inequality.

The proof of Proposition 1 can be found in (Hiriart-Urruty and Lemaréchal, 1993, p.320).

Proposition 1 shows that the Moreau-Yosida regularization of any closed proper convex function

is continuously differentiable, which is useful for the constrained optimization problem involving

nonsmooth function.

22



B Derivation of (3.1)

Proof. Let F = [f1, f2, · · · , fn] be treated as the missing data, Y = [y1,y2, · · · ,yn] be the observed

one. Then the log-likelihood function of complete data is given by

Lc(Λ,Σe) =− n

2
log(|Σe|)−

1

2

n∑
i=1

(yi − µ−Λfi)
TΣ−1

e (yi − µ−Λfi)−
1

2

n∑
i=1

fTi fi + const.

(B.1)

Since ȳ is the MLE of µ and the conditional distribution of fi given yi is

fi ∼ N
(
Γ(k)T (yi − ȳ),Ω(k)

)
,

with Γ(k) = Σ
(k)
y

−1
Λ(k) and Ω(k) = Ir −Λ(k)TΓ(k), the conditional expectation of Lc(Λ,Σe) given

Y is

E (Lc(Λ,Σe)|Y) =− n

2
log(|Σe|)−

n

2
tr(Σ−1

e Sy)− 1

2
E

(
n∑
i=1

fTi (ΛTΣ−1
e Λ + Ir)fi|Y

)

+ E

 n∑
j=1

fTi ΛTΣ−1
e (yi − ȳ)|Y

+ const. (B.2)

With a little algebra, we get

E

 n∑
j=1

fif
T
i |Y

 = n
(
Γ(k)TSyΓ(k) + Ω(k)

)
, (B.3)

E

 n∑
j=1

(yi − ȳ)fTi |Y

 = nSyΓ(k). (B.4)

Substituting (B.3) and (B.4) into (B.2) and adding the penalized term give (3.1).

C Proof of Theorem 2

Proof. For simplicity of presentation, we set f be the generic density function. Let f(y|Λ,Σe) be

the density function, then we use the following penalized maximum likelihood function

Lp(Λ,Σe) = log (f(Y|Λ,Σe))− n

2
Pλ(Σe), (C.1)
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where Y = [y1,y2, · · · ,yn]. Given the current estimates Λ(k) and Σ
(k)
e , the conditional expectation

of the complete data log-likelihood function given Y is

E(Lc(Λ,Σe)|Y) =

∫
log f(F,Y|Λ,Σe)f

(
F|Y,Λ(k),Σ

(k)
e

)
dF − n

2
Pλ(Σe)

=

∫
log (f(F|Y,Λ,Σe)f(Y|Λ,Σe)) f

(
F|Y,Λ(k),Σ

(k)
e

)
dF − n

2
Pλ(Σe)

=Lp(Λ,Σe) + E log

 f(F|Y,Λ,Σe)

f
(
F|Y,Λ(k),Σ

(k)
e

)


+ E log
(
f
(
F|Y,Λ(k),Σ

(k)
e

))
.

Since − log(·) is convex, we have

− E log

 f(F|Y,Λ,Σe)

f
(
F|Y,Λ(k),Σ

(k)
e

)
 ≥ − log E

 f(F|Y,Λ,Σe)

f
(
F|Y,Λ(k),Σ

(k)
e

)
 = 0

by Jensen’s inequality. Hence, we get

E(Lc(Λ,Σe)|Y) ≤ Lp(Λ,Σe) + E log
(
f
(
F|Y,Λ(k),Σ

(k)
e

))
. (C.2)

Given Σ
(k)
e and Λ(k), we update Λ by minimizing −E(Lc(Λ,Σ

(k)
e )|Y). Thus, we have

E
(
Lc

(
Λ(k+1),Σ

(k)
e

)
|Y
)
≥ E

(
Lc

(
Λ(k),Σ

(k)
e

)
|Y
)
.

Then, Σe is updated by minimizing −E(Lc(Λ
(k+1),Σe)|Y). Since the MM procedure is nonin-

creasing and the APG algorithm is convergent, we get

E
(
Lc

(
Λ(k+1),Σ

(k+1)
e

)
|Y
)
≥ E

(
Lc

(
Λ(k+1),Σ

(k)
e

)
|Y
)
.

According to (C.2), the following inequalities hold

Lp

(
Λ(k+1),Σ

(k+1)
e

)
+ E log

(
f
(
F|Y,Λ(k),Σ

(k)
e

))
≥E

(
Lc

(
Λ(k+1),Σ

(k+1)
e

)
|Y
)

≥E
(
Lc

(
Λ(k),Σ

(k)
e

)
|Y
)

=Lp

(
Λ(k),Σ

(k)
e

)
+ E log

(
f
(
F|Y,Λ(k),Σ

(k)
e

))
.

Just dividing the both sides of the above inequalities by −n/2, the nonincreasing property of the

EMAPG algorithm follows easily.
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