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Abstract: Statistical Machine Learning (SML) refers to a body of algorithms and methods
by which computers are allowed to discover important features of input data sets which
are often very large in size. The very task of feature discovery from data is essentially the
meaning of the keyword ‘learning’ in SML. Theoretical justifications for the effectiveness
of the SML algorithms are underpinned by sound principles from different disciplines, such
as Computer Science and Statistics. The theoretical underpinnings particularly justified by
statistical inference methods are together termed as statistical learning theory.

This paper provides a review of SML from a Bayesian decision theoretic point of view
– where we argue that many SML techniques are closely connected to making inference by
using the so called Bayesian paradigm. We discuss many important SML techniques such as
supervised and unsupervised learning, deep learning, online learning and Gaussian processes
especially in the context of very large data sets where these are often employed. We present
a dictionary which maps the key concepts of SML from Computer Science and Statistics. We
illustrate the SML techniques with three moderately large data sets where we also discuss
many practical implementation issues. Thus the review is especially targeted at statisticians
and computer scientists who are aspiring to understand and apply SML for moderately large
to big data sets.

Keywords and phrases: Bayesian Methods, Big Data, Machine Learning, Statistical Learn-
ing.

1. Introduction

Recently, there has been an exponential increase in the number of smart devices, known as “Internet
of Things” (IoT), that connect to the internet, and consequently, massive data sets are generated
by the users of such devices. This has led to a phenomenal increase in operational data for many
corporations, businesses, and government organizations. Clearly, each of these organisations now sees
a plethora of opportunities in learning important features, regarding consumer behaviour among
other aspects, from such large data sets, which can be translated into actionable insights collectively
known as business intelligence. Business intelligence is an umbrella term to describe the processes
and technologies that are used by organizations to leverage their large data sets to create profit
making acumen. Many companies and organisations, such as Google and Facebook, have enormously
benefitted by using SML techniques, which in turn justify the tremendously growing interest in the
statistical theory behind SML.

The explosion of operational data, collected from IoTs or otherwise, poses technological challenges
to store data in data repositories and warehouses which are sometimes called data lakes, see e.g.
Kimball (2013) and Inmon (2016). Often, organizations leverage the data stored in these data
lakes using two most common approaches. The first is a top-down approach where a user has a
specific query or hypothesis to test. For example, a retail company might be interested in finding
an additional expense of $1000 on digital marketing is going to boost the revenue significantly.
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Such queries or hypotheses are formulated a priori before starting the investigation. This type of
analysis works when users exactly know what to look for in the data. The second approach is used
to discover insights that the users have not explicitly looked to determine but would like to discover
from the data alone. This is called data mining and the most common approach to data mining is
machine learning which is characterized by its use of statistical theory and methods. Recently, many
researchers are using an alternative mathematical data exploration approach called topological data
analysis, see e.g. Holzinger (2014). This paper, however, does not discuss those approaches.

Motivated by the enormous success of SML techniques for large data sets we set out to find
accessible reviews of these techniques in the literature. Indeed, there are many such reviews and a
few notable ones include: Domingos (2012); Rao and Govindaraju (2013); Al-Jarrah et al. (2015);
Friedman, Hastie and Tibshirani (2009) and Qiu et al. (2016) and the references therein. Domingos
(2012) discusses the general area of machine learning but does not focus on SML. The book by
Rao and Govindaraju (2013) covers many theoretical aspects, such as sequential bootstrap, cross-
entropy method, bagging, boosting and random forest method. The article by Al-Jarrah et al.
(2015) discusses the challenges of big data and some techniques to scale machine learning to big
data sets from a computer science perspective. The book by Friedman, Hastie and Tibshirani (2009)
focuses on a decision theoretic approach to SML. However, the book does not discuss many recently
successful concepts, such as the Gaussian process prior models. Finally, Qiu et al. (2016) present
an exhaustive literature survey, but they do not provide a review of statistical learning theory.

The main contribution of this paper is to present many SML techniques by using a Bayesian
decision theoretic framework following along the lines of Friedman, Hastie and Tibshirani (2009)
but including more recent concepts of Gaussian process prior models and techniques such as deep
learning for big data. Aiming to be a bridge between the machine learning literature and statistical
decision theory, this paper provides a dictionary which maps the key concepts of SML from Com-
puter Science and Statistics. The paper also discusses model complexity and penalization methods
using arguments based on Bayesian methods. The SML techniques are illustrated with three mod-
erately large data sets where we also discuss many practical implementation issues. We also discuss
machine learning techniques suitable for big data.

The rest of this paper is organized as follows. In Section 2, we present the main ideas of SML and
discuss the nature of typical problems solved using SML. In Section 2 we also present a dictionary,
which maps similar concepts used in Statistics and Computer Science. In Section 3, we present a de-
scription of big data and its characteristics with a view to applying SML to such data sets. Section 4
provides an overview of theoretical ideas needed for the analysis of SML algorithms. In Section 5,
we discuss the challenges of applying machine learning to big datasets and the computational ap-
proaches to address these challenges. Section 5 describes the application of SML to big data using
the ideas based on statistical learning theory previously presented in Section 4. In Section 6 we
discuss some important practical issues in applying SML. Section 7 presents a comparative study of
different methods presented in Sections 4 and 5 with three different datasets. Finally, we conclude
this work with a few summary remarks in Section 8.

2. The Main Keywords in Statistical Machine Learning

The major concepts of SML have been in the purview of both Computer Scientists and Statisti-
cians for quite a while. SML is an outcome of the natural intersection of both Computer Science
and Statistics, see Mitchell (2006) and UC Berkeley (2018). Statisticians and Computer Scientists
often use different terminologies to describe the same idea and method. For example, the attributes
in a dataset are called covariates by the Statistical community and features by the Computer
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Science community. In Table 1 we present a dictionary which maps the key concepts between the
Computer Science and Statistics, see Wasserman (2004)[Preface] for more details about the table.
In the remainder of this section, we describe the main keywords in SML.

Table 1
Dictionary of Same Concepts between Statistics and Computer Science

Statistics Computer Science Explanations
Data Training or In-sample (x1, y1), . . . , (xn, yn)

the data to fit/train the model
- Test or Out-sample (xn+1, yn+1), . . . , (xn+m, yn+m)

the data to test the accuracy of prediction
from the trained or fitted model

Estimation Learning use data to estimate (or learn) unknown quantity
or parameters of the model

Classification Supervised Learning predicting a discrete y from X

Regression Supervised Learning predicting a continuous y from X

Clustering Unsupervised Learning putting data into groups

Dependent variable Label (or Target) the yi’s

Covariates or Predictors Features the Xi’s

Classifier Hypothesis map from covariates to outcome

Hypothesis - Subset of parameter space Θ, which is supposed to be true

Confidence interval - Interval that contains an unknown quantity
with certain probability

Bayesian inference Bayesian inference statistical methods for using data to update probability

frequentist inference - statistical methods with guaranteed frequency behavior

Directed acyclic graph Bayesian net multivariate distribution with conditional
independence relations

Statistical Consistency PAC learning uniform bounds on probability of errors
Large deviation bounds

- semi-supervisd learning limited amount of labeled data is used
in combination with unlabeled data to
perform the learning task.

stochastic games reinforcement learning an agent interacting with its environment
to maximize reward

Sequential Analysis On-line learning Receives data sequentially.
learn or predict an incoming stream of observations,
one sample at a time.

Class of Models (M) Hypothesis Class (H) Set of models like logistic regression
for binary classification problem
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Learning: What is known as parameter estimation or estimation of unknown functions in Statistics,
is known as “learning” in Computer Science. That is, SML is concerned with learning from data.
Supervised Learning: A categorization of learning tasks based on the use of a label, (also known
as the target or dependent variable) to perform the learning activity. Tasks that use labels to
perform the learning activity are called supervised learning tasks. The label can be either a discrete
or a continuous quantity. Supervised learning tasks where the label is a discrete quantity are called
classification tasks. When the label is continuous, the learning task is called regression. The goal of
a learning task associated with a label is to predict it. For example, an application that performs
fraud detection based on transaction characteristics is an example of supervised learning. In another
example, credit card companies heavily use supervised learning to identify good customers, where
they use the potential customers demographic profile and credit history as covariates or features in
their classification task.

Unsupervised Learning: Not all learning tasks are associated with labels. Such tasks are called
unsupervised learning tasks. These tasks do not use a label to perform the learning activity. An
essential problem in unsupervised learning involves grouping similar data points. This task is called
clustering. During exploratory analysis of the data for a learning task, analysts often use techniques
that express the observed variability regarding a small number of uncorrelated unobserved factors.
Reducing the number of variables helps in understanding the characteristics of the data and the
problem. This technique is called factor analysis and is another example of an unsupervised learn-
ing task. Unsupervised learning has many practical applications, see e.g., Friedman, Hastie and
Tibshirani (2009)[Chapter 14] for more details.

Semi-supervised learning: There are application areas where labeled data are scarce, and a
limited amount of labeled data is used in combination with unlabeled data to perform the learning
task. This kind of learning is called semi-supervised learning, see e.g., Chapelle, Scholkopf and
Zien (2010). Semi-supervised learning has claimed great successes in image classification and text
processing applications, see e.g., Guillaumin, Verbeek and Schmid (2010).

Active learning: Another type of learning that bears a strong connection with semi-supervised
learning is active learning. As with semi-supervised learning, the labeled data is a scarce commodity
in active learning. However, in active learning, the learning algorithm can interact with an oracle
(who may be a human annotator) to pick this set of labeled data. A successful application of active
learning is in the area of information retrieval, see e.g., Settles (2012).

Reinforcement learning: Another category of learning, called reinforcement learning, charac-
terizes the learning task as an agent interacting with its environment to maximize reward, see e.g.,
Sutton and Barto (1998). The agent learns how to map situations (an operational context) into
actions so that it can have the maximum reward. Such a learning framework is a natural fit for
many application areas, for example, online advertisement, robotic control, recommender systems,
and video games. The Markov decision process from Statistics is an important tool that is used in
reinforcement learning, see e.g., Littman (1994).

Bayesian reinforcement learning explicitly elicits prior distribution over the parameters of the
model, the value function, the policy, and its gradient. It then updates the Bayes estimators, each
time it receives feedback, see e.g., Ghavamzadeh et al. (2015) and Vlassis et al. (2012). An analytic
solution to discrete Bayesian reinforcement learning is presented in Poupart et al. (2006).

Transfer learning: Most machine learning applications fall into the categories discussed above.
In addition to these, there exist some other niche types of learning. When confronted with a problem
for which the data is limited, we may be able to leverage the learning results from a similar problem.
This has been successful in some application areas like image classification and small area estimation.
This type of learning is called transfer tearning, see e.g., Pratt (1992) and Torrey and Shavlik (2009)
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for an overview.
Inductive Learning and Transductive learning In many applications of machine learning,

we hope to generalize the results. In other words, we would like the results obtained from performing
the learning task to apply to a new data set. This kind of learning is called inductive learning. We
discuss this in Section 4. In some applications, we may not need this generalization, where we are
only interested in performance on specific data, see e.g., Gammerman, Vovk and Vapnik (1998).
Learning that can achieve this goal is called transductive learning, see e.g., Gammerman, Vovk and
Vapnik (1998) and Pechyony (2009) for details. Transductive learning has been applied to solve
problems on graphs and in text mining, see e.g., Joachims (1999).

3. Statistical Machine Learning for Big Data

SML applications today need to perform over big data. Big data is a term used by practitioners
to describe data with characteristics that make it difficult for conventional software packages and
infrastructure to process. There is an effort to standardize the definition of big data, see National
Institute of Standards and Technology - US Department of Commerce (2018)[Section 2.1]. The
characteristics of big data are:

1. Volume: To learn insight, the processing of the high volume of operational data is important.
2. Variety: Operational data may arrive from multiple systems each with its own set of charac-

teristics.
3. Velocity: Operational data may arrive at high speed.
4. Variability: The meaning of the same data could vary over time. The variability is common

in the data from applications that have natural language processing capabilities. The same
words tend to mean different things in different contexts.

SML applications operating on big data have had to adapt to these challenges. Implementation
of SML is often tightly coupled to new computational frameworks for computation on big data.
Widely used computational frameworks include:

• MapReduce: It is a programming paradigm, associated with implementation for processing
big data sets with a parallel, distributed algorithm on clusters of computers, see e.g., Dean
and Ghemawat (2008) and Leskovec, Rajaraman and Ullman (2014)[Chapter 2] for further
details.
• Graph Lab: This is another high performance, distributed computation framework written

in C++. It is a graph-based approach to computation on big data, originally developed in
Carnegie Mellon University, see e.g., Low et al. (2012).
• Spark: This is a distributed general-purpose cluster-computing, open source framework, simi-

lar to Graph Lab. It was developed at the University of California, Berkeley, see Zaharia et al.
(2016).

It should be evident that apart from statistical theory, ideas from Computer Science, such as
algorithms, data structure and distributed systems are needed to implement SML applications.
The term data used in the description of big data in the above discussion refers to raw data
that may not be in the form required for SML. Data used by SML applications typically have a
tabular representation. Significant processing effort is needed to convert raw operational data into
the tabular representation used by SML algorithms. It is not hard to see that digital technology,
like IoT, social media etc. has resulted in big datasets. From the standpoint of SML algorithms
processing big data, there is another perspective to the term “big.” The dimensions of the tabular
representation affect the computation performed by SML algorithms. The height of the tabular
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representation provides the number of tuples, n, or sample size, and the number of values in the
tuple, p, or variables.

The problem of performing Statistical machine learning (SML) over data with a large sample
size of n refers to as the “big n” problem. The problem of performing SML over data with a large
number of covariates p is called the “big p” problem. Problems that are big regarding features and
are big concerning the sample sizes are now emerging in some application areas. See Ravi Kumar
(2014) for a discussion of these problems. Techniques to work on both “big n” and “big p” and
many other several challenges to machine learning on big data sets that are presented in Section 5.
Before that, we introduce the theoretical framework of statistical learning in the following Section.

4. Theoretical Framework for Statistical Learning

Statistical Learning theory provides the concepts and the analytical framework for the analysis of
machine learning algorithms. For a historical perspective of the development of Statistical Learning,
see Vapnik (1998)[Chapter 0]. In this section, we summarize the essential conceptual ideas used in
statistical learning. The goal of statistical learning theory is to study, in a statistical framework,
the properties of learning algorithms, see Bousquet, Boucheron and Lugosi (2004). The statistical
learning theory is rooted in the Bayesian decision theoretic framework, see Berger (1993).

4.1. Bayesian Decision Theoretic Framework

The central problem of statistical learning theory is the estimation of a function from a given set of
data. The notation used to formalize the problem is as follows. The data for the learning task consist
of attributes x with labels y. The input space is X , and the output space is Y . When the learning
task is classification, the output space is finite. For example, in a binary classification problem,
Y = {1,−1}. When the learning task is the regression, the output space is infinite, Y ⊆ R. The
data set D consists of (x, y) pairs from an unknown joint distribution P (x, y). We seek a function
f(x) for predicting y given values of the input x. The goal of learning is to learn the function
f : X 7→ Y that can predict the label y given x. We cannot consider all possible functions. We need
some specification of the class of functions we want to consider for the learning task.

The class of functions considered for the learning task is called the hypothesis class or class of
models, F , see Table 1. Consider a function f ∈ F . The hypothesis class F could be finite or infinite.
An algorithm A is used to pick the best candidate from F to perform label prediction. To do so,
A measures the loss function L(f(x), y), a performance indicator for f(x). It measures the loss due
to the error in the prediction from f(x) against the true label y. The loss, L(f(x), y), is a random
variable. Therefore we need the expected value of the loss to characterize the performance of f .
This expected value of the loss is called the risk and is defined as:

R(f) = E[L] =

∫
L(f(x), y)P (dx, dy). (4.1)

By conditioning on x, we can write Equation (4.1) as

R(f) = E[L] = ExEy|x(L(f(x), y)|x),

and the R(f) is also known as the posterior expected loss, see Berger (1993)[Chapter 4]. It is
sufficient to minimize the risk R(f) point wise:

f(x) = argminEy|x(L(f(x), y)|x). (4.2)
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The solution f(x) in (4.2) is known as the Bayes estimator under loss function L, see Berger
(1993)[Chapter 1 and Chapter 4] for more detail. When y assumes the values in Y = {1, 2, · · · , K},
i.e., the set of K possible classes. The loss function L can be presented as a K × K matrix. The
(k, j)th elements of the loss matrix L is

L(k, j) =
{ 0 k = j
lkj k 6= j,

where lkj ≥ 0 is the penalty for classifying an observation yj wrongly to yk. A popular choice of L
is the zero-one loss function, where all misclassification are penalized as single unit. We can write
the risk as

R(f) = Ex
K∑
k=1

L[yk, f̂ ]P (yk|x),

and it suffices to minimize R(f) point wise:

R(f) = argmin
f∈Y

K∑
k=1

L[yk, f̂ ]P (yk|x).

With the 0− 1 loss function this simplifies to

f(x) = max
y∈Y

P (y|x).

This solution is known as Bayes classifier, see Berger (1993) and Friedman, Hastie and Tibshirani
(2009)[Chapter 2]. This method classifies a point to the most probable class, using the posterior
probability of P (y|x). The error rate of the Bayes classifier is known as the Bayes rate and the de-
cision boundary corresponding to Bayes classifier is known as the Bayes-optimal decision boundary.
Suppose pk(x) is the class-conditional density of x in class y = k, and let πk = P (y = k) be the
prior probability of class k, with

∑K
k=1 πk = 1. A simple application of Bayes theorem gives us

P (y = k|x) =
pk(x)πk∑K
l=1 pl(x)πl

.

We see that in terms of ability to classify, having the pk(x) is almost equivalent to having the
posterior probability of P (y = k|x). Many techniques are based on models for the class densities:
(1) linear and quadratic discriminant analysis use Gaussian densities; (2) general nonparametric
density estimates for each class density allow the most flexibility; (3) Naive Bayes models are a
variant of the previous case, and assume that each of the class densities are products of marginal
densities; i.e., they assume that the inputs are conditionally independent in each class.

When y is continuous, as in a regression problem, the approach discussed in Equation (4.1) and
(4.2) works, except that we need a suitable loss function for penalizing the error. The most popular
loss function is squared error loss: L(f(x), y) = (y− f(x))2 and the solution under the loss function
is

f(x) = E(y|x),

the conditional expectation also known as the regression function. If we replace the squared error
loss by the absolute error loss, i.e., L(f(x), y) = |f(x) − y|, then the solution is the conditional
median,

f(x) = median(y|x),

its estimates are more robust than those for the conditional mean.
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4.2. Learning with Empirical Risk Minimization

The learning of f is performed over a finite set of data often called the training dataset. To evaluate
the expected loss in Equation (4.1), we need to evaluate the expectation over all possible datasets.
In practice, the joint distribution of the data is unknown, hence evaluating this expectation is
intractable. Instead, a portion of the dataset Dtraining ⊂ D, is used to perform the learning and the
remainder of the dataset Dtest = D −Dtraining, is used to evaluate the performance of f using the
loss function L. The subset of the data used for this evaluation, Dtest, is called the test dataset. The
expected loss over the training dataset is the empirical risk and is defined as:

R(f̂) =
1

n

n∑
i=1

L(f(xi), yi). (4.3)

Here n represents the number of samples in the training dataset, Dtraining. The learning algorithm

uses the empirical risk, R(f̂), as a surrogate for the true risk, R(f), to evaluate the performance
of f . The best function in F for the prediction task is the one associated the lowest empirical risk.
This principle is called Empirical Risk Minimization, and is defined as

h = inf
f∈F

R(f̂). (4.4)

The task of applying algorithm A to determine h is called the learning task. Implementation of
algorithm A is called the learner. For example, the maximum likelihood procedure is an example
of the learner. The lowest possible risk for the learning problem, R∗ associated with the function
f ∗, is obviously of interest to us. The lowest possible risk is the Bayes risk. The hypothesis class for
f ∗ may or may not be the same as F . Consider the output produced by the learner h. Comparing
the risk for h with R∗ (excess risk) provides another perspective of the quality of h, presents in
Equation (4.5):

R(ĥ)−R∗ =
(
R(ĥ)−R(h)

)
+ (R(h)−R∗) . (4.5)

In Equation (4.5), the first term is the estimation error and the second term is the approxima-
tion error. Consider the hypothesis class that represents hyperplanes. The algorithm estimates the
parameters of the hyperplane from the training dataset using the empirical risk minimization. If
we use a different training dataset, then the estimates for the hyperplane are different, and such
error arises from using a sample to learn h. Accordingly, it is called the estimation error. The ap-
proximation error indicates how well a hypothesis class can approximate the best function. Let us
consider an example where f ∗ (associated with R∗) is complex, say a high degree polynomial and
our hypothesis class F is the set of hyperplanes. We should expect to see a high approximation
error. Note that we observe the high approximation error, if f ∗ is simple (like a hyperplane) and our
hypothesis class F is complex (like a class of high degree polynomials). It is evident that the choice
of the hypothesis class F affects the performance of the learning task. In particular, the complexity
associated with the hypothesis class F can influence the level of risk that the learning algorithm A
can achieve.

In summary, both the approximation error and the estimation error affect the performance of
the algorithm to determine the best hypothesis class for a problem. One must make a trade-off
between the two, and it is called the bias-variance trade-off, see Friedman, Hastie and Tibshirani
(2009). Choosing hypothesis classes that are more complex than what is optimal can lead to a
phenomenon called over-fitting . Often, over-fitting implies very good performance of the class on
the training data set but very poor performance on the test data. The capability of the function
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determined by algorithm A to maintain the same level of precision on both the training and test
datasets is called generalization. If the algorithm A generalizes well, then the new insight learned
from modeled data is likely to be reproducible in the new dataset, provided the training dataset
is true representation of the population.

4.3. Bayesian Interpretation of the Complexity Penalization Method

Datasets with complex structure occur in many applications. Using a complex hypothesis class
on a simple learning problem and simple hypothesis class on a complex problem, both result in
poor performance. Hence we need methods that are sophisticated to handle the complexity of the
problem. The method should consider a set of hypothesis, and pick an optimal hypothesis class
based on an assessment of the training data. The method must also achieve good generalization
and must avoid over-fitting. A class of methods that can achieve good generalization are known
as Complexity Penalization Methods. These methods include a penalty for the complexity of the
function while evaluating the risk associated with it, see Friedman, Hastie and Tibshirani (2009)
for details. The general template to determine the solution h of complexity penalization method is:

h = argmin
f∈F

{
R̂(f) + C(f)

}
, (4.6)

where C(f) is the term associated with the complexity of the hypothesis class F . The solution
h in (4.6) is the solution of constrained optimization of the risk R̂(f), where C(f) is the cost or
constrained on R̂(f).

We have not yet discussed ways of specifying the complexity C(f) of the hypothesis class. There
are many available methods and the right choice depends on the learning problem and hypothesis
class. The intent here is to point out that methods to specify the complexity of the hypothesis
class exists. Examples of choices used to specify the complexity of the hypothesis class include VC
dimension (Vapnik Chevronenkis dimension), Covering Number and Radamacher Complexity, see
Bousquet, Boucheron and Lugosi (2004) for details.

The Bayesian approach has one-to-one correspondence with the complexity penalization method.
In a Bayesian approach, we consider a probability distribution over F . The Bayes rule can determine
the probability of a particular model as,

P (f |x) =
P (x|f)P (f)

P (x)
, (4.7)

where x represents the input. The denominator in Equation (4.7) is the normalizing constant to
ensure that probabilities associated with the functions in F integrate to 1 and the denominator is
free from f . So after taking the log on both sides, the Equation (4.7) can be expressed as

log(P(f |x)) ∝ log(P(x|f)) + log(P(f)).

Consider the right hand side of Equation (4.6). The first term, R̂(f) called the risk, is proportional
to the negative log-likelihood of the function f , i.e., − log(P(x|f)). The second term of Equation
(4.6), C(f) can be interpreted as the negative log-prior distribution, i.e., − log(P(f)) for the problem
under consideration, see Friedman, Hastie and Tibshirani (2009). The C(f) can also be viewed as a
cost function. The cost C(f), is large when the function f is less likely and is small when f is more
likely. The solution h in Equation (4.6) is the posterior mode of the posterior distribution of f , i.e.,

h = argmin
f∈F

{
− log(P(f |x))

}
. (4.8)
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Posterior mode is the Bayes estimator under Kullback-Libeler type loss function, see Das and Dey
(2010). The posterior mode is estimated via optimization routine. In Section 5.1.2, we discuss the
large scale optimization on big dataset to find posterior mode. The posterior mean and posterior
median can also be estimated via the Markov Chain Monte Carlo (MCMC) simulation techniques
such as the Gibbs sampler, see Gelfand and Smith (1990). MCMC-based Inference of big data is an
active area of research, see e.g., Rajaratnam and Sparks (2015).

4.4. No Free Lunch Theorem of Statistical Learning

An important result related to picking a hypothesis class for a problem is the “No Free Lunch
Theorem for Statistical Learning”, see Wolpert (1996). The theorem says that there does not exist a
single hypothesis class that works for all learning problems. Practitioners should keep this result in
mind when applying learning theory to practical problems. In practice, selecting a good hypothesis
class comes from prior experience with a learning problem and exploratory analysis to validate
expert judgment. Empirical risk minimization obtains the parameters of the hypothesis class. Having
sufficient data ensures that we get good parameter estimates. In summary, good performance on a
learning task is achieved by having prior experience for the problem and sufficient data to estimate
parameters. Some of these ideas have been used in unsupervised learning as well, see Friedman,
Hastie and Tibshirani (2009)[Chapter 14] for details.

4.5. PAC Learning and Statistical Consistency

The idea of Probably Approximately Correct (PAC) learning is parallel to the asymptotic consistency
of the estimator in Statistics, see e.g., Haussler (1992). Recall that the learning task performs with
a particular dataset D, discussed in Section 4.2. The hypothesis class F considered by the learning
algorithm may or may not correspond to the hypothesis class associated with the Bayes risk, R∗.
Therefore the posterior mode h in Equation (4.8) determines as the best predictor by the learning
algorithm could be an approximation to f ∗ associated with the Bayes risk. As a consequence, we
expect to see some difference (ε) between the empirical risk R(ĥ) and the Bayes risk R∗. The
empirical risk is determined by a training dataset. A different training data set would yield a
different value for the empirical risk associated with the posterior mode h. Therefore the quantity
R(ĥ) − R∗ is a random variable. We can evaluate probability to characterize this variation. This
characterization takes the form for a given ε > 0,

P
(
|R(ĥ)−R∗| ≤ ε

)
≥ 1− δ, (4.9)

where 0 ≤ δ ≤ 1. For a hypothesis class H, we can evaluate its suitability to a learning problem
using Equation (4.9). As a consequence this learning approach is known as Probably Approxi-
mately Correct (PAC) learning. Evaluation of Equation (4.9) is usually done using inequalities from
concentration of measure, see Bousquet, Boucheron and Lugosi (2004) for the details of how the
concentration of measure can be used to make statements in the form of Equation (4.9). Germain
et al. (2009) present a general PAC-Bayes theorem from which all known Bayes risk bounds are
obtained as particular cases for linear classifiers.

4.6. Supervised Learning and Generalized Linear Models

The Computer Science community sees supervised learning as solution to two different problems,
namely (i) Regression and (ii) Classification. However, the Statistics community sees supervised
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learning as a single solution class and models it using the generalized linear models (GLM), see
e.g., McCullagh and Nelder (1989). The approach in Statistics is to model the dependent variable
y using the natural exponential family

p(y) = exp{θy − ψ(θ)},

for different choices of θ, p(·) may represents a Gaussian, Binomial, Bernoulli and Poisson distri-
bution, see McCullagh and Nelder (1989) for detail. These distributions can model a continuous,
binary or count response variables, see Das and Dey (2006, 2013). Then features are modeled as
the function of the conditional mean of y, through the link function g(·) as

E(y|x) = g(β1x1 + · · ·+ βpxp),

where x = (x1, x2, . . . , xp) is the vector of p features or covariates in the datasets. The Bayesian
GLM is presented in Gelman et al. (2013)[Chapter 16].

4.7. Complexity of Linear Hyper-planes: Multicollinearity and Feature Selection

One of the popular hypothesis class, we consider is the family of linear hyper-planes. Suppose
X = [xij]n×p is the design matrix with n samples and p features.

f(X) = Xβ,

where β = (β1, · · · , βp)T are the p regression coefficients. The ordinary least square solutions of β is

β̂OLS = argmin
β
{(y −Xβ)T (y −Xβ)},

can be obtained by solving the normal equations

XTXβ = XTy. (4.10)

If two (or more) predictors are highly correlated, that makes the system in Equation (4.10) “near
singular”. It makes the solution unreliable. The “near singular” undesirable property of many prob-
lems are known as multicollinearity , and the L2 penalty on β can fix the problem. The approach
is known as the Ridge solution of the multicollinearity, see Hoerl and Kennard (1970),

β̂Ridge = argmin
β
{(y −Xβ)T (y −Xβ) + λβTβ}. (4.11)

If we compare the Ridge solution in (4.11) with (4.6), the first term

R̂(β) = (y −Xβ)T (y −Xβ),

is the residual sum of squares and C(β) = βTβ is the L2 penalty on β. The objective function in
Equation (4.11) can be presented as

p(β|y,X, σ2) ∝ exp{− 1

2σ2
(y −Xβ)T (y −Xβ)}. exp{− λ

2σ2
βTβ},

where p(β|y,X, σ2) is the posterior distribution of β, the L2 penalty is proportional to the Gaussian
prior distribution on β, where (β|σ2, λ) ∼ N(0, σ2/λ), and y ∼ N(Xβ, σ2I) yields the likelihood
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function. In this case, the Ridge solution is the posterior mode and it has a mathematically closed
form solution:

β̂Ridge = (XTX + λI)−1XTy.

This result implies that the Ridge learning method is the Bayesian solution which is also known as
the shrinkage estimator, see e.g., Friedman, Hastie and Tibshirani (2009). One more point we must
note is that, if two predictors are highly correlated, i.e., both the predictors inherently contained
similar kind of information, then they are naturally expected to have a similar functional relationship
with y. Hence we need an algorithm, which keeps the predictors which are most relevant in predicting
y and drop the less crucial features and come up with a parsimonious model, see Tibshirani (1996).
Managing the complexity of the hypothesis class involves reducing the number of features in f and
the task is known as the feature selection, see Tibshirani (1996). In Bayesian statistics, the same
task is known as the model selection, see e.g. Gelfand and Dey (1994).

Hence, the learning algorithm A should figure out the best subset of p features from X, for which a
performance metric like the Mean Square Error (MSE) is minimum or the adjusted-R2 is maximum.
One can apply the best subset selection, see Friedman, Hastie and Tibshirani (2009) [Chapter 3],
but the best model has to search through 2p many models. So the complexity of model space makes
it impossible to implement even for a dataset with p = 20 different features. The forward-stepwise
subset selection is a greedy algorithm and the model complexity is O(p2).

In a recent paper, Bertsimas, King and Mazumder (2016) show that the traditional best subset
selection puzzle formulated as a mixed integer optimization (MIO) problem. With the recent ad-
vances in MIO algorithms, they demonstrate that the best subset selection obtained at much larger
problem sizes than what was thought impossible in the statistics community. It is a new alternative
approach compared to popular shrinkage methods.

The shrinkage methods are a popular technique to manage complexity for linear hyper-planes hy-
pothesis class, see Tibshirani (1996). The Least Absolute Shrinkage and Selection Operator (LASSO)
can be a particularly effective technique for feature selection, see Tibshirani (1996). If the values of
coefficients are estimated to be zero, then effectively the solution is to drop that feature from the
model. Such solutions are called sparse solutions. The LASSO yields the desired sparse solutions
with L1 penalty on β, defined as

C(β) = λ

p∑
j=1

∣∣βj∣∣.
Although, the Ridge solution handles the multicollinearity issue, it, however, fails to yield the sparse
solutions. The LASSO estimate is defined as:

β̂lasso = argmin
β

{
(y −Xβ)T (y −Xβ) + λ

p∑
j=1

∣∣βj∣∣}, (4.12)

where λ is a parameter that affects the sparsity of the solution. The L1 penalty on β is equivalent to
the Laplace or double exponential prior distribution, see e.g., Park and Casella (2008). The LARS
algorithm for LASSO solution is a popular algorithm which makes the LASSO solution highly
scalable for large datasets.

Note that λ is a parameter that must be provided to the learning algorithm A. There are sev-
eral approaches to learn λ. In one approach, λ is learned using a grid search with k-fold cross-
validation technique. In another approach, full Bayesian methodology elicits a prior on λ, known
as the Bayesian LASSO presented in Park and Casella (2008). The Bayesian LASSO focuses on
estimating the posterior mean of β using the Gibbs sampler. The slow implementation of the Gibbs
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sampler makes the full Bayesian implementation of the LASSO less attractive for practitioners. On
the contrary, the fast, scalable implementation of the LARS makes it very attractive with partial
Bayes solution for the practitioner.

The convex combination of the L1 and L2 penalty yields a new kind of penalty, known as the
elastic net,

β̂EN = argmin
β

{
(y −Xβ)T (y −Xβ) + λ

p∑
j=1

(
α
∣∣βj∣∣+ (1− α)β2

j

)}
, (4.13)

where 0 ≤ α ≤ 1, see Zou and Hastie (2005). Like LASSO and Ridge, we can similarly argue that
the Elastic Net solution is a Bayesian solution and fully Bayesian Elastic Net implementation is
also available, see Li and Lin (2010). One of the advantages of the Elastic Net is that it can address
the multicollinearity problem and feature selection together. The copula prior proposed in a recent
paper showed that the Ridge, LASSO, elastic net etc. are special cases of the copula prior solution,
see Sharma and Das (2017).

4.8. Tree Models and Its Complexity

Regression trees partition the input space into regions with a constant response for each region, see
Breiman et al. (1984). The hypothesis class for trees takes the following form:

f(x) =
M∑
m=1

ciI(x ∈ Rm), (4.14)

where:

• cm represents the constant response for region Rm.

• I(x ∈ Ri) is the indicator function that is defined as I(x) =

{
1 if x ∈ Rm

0 otherwise

• M represents the number of terminal nodes and is an important parameter for the tree hy-
pothesis class.

If we use the square error loss function then the optimal choice for cm is the average of the response
values yi in the region Rm. The input space is partitioned into regions R1, · · · , Rm using a greedy
algorithm, see Friedman, Hastie and Tibshirani (2009)[Chapter 9, Section 9.2.2] for details. The
number of regions (M), which partition the input space, is an important parameter to the algorithm.
The parameter M represents the height of the tree. It determines the complexity of the solution
and the complexity management strategy must monitor the parameter. A strategy that works well
is to partition the input space until there is a minimum (threshold) number of instances in each
region. This tree is then shortened using pruning. Pruning is facilitated by minimization of a cost
function which is defined as follows.

• Let Nm be the number of instances that belong to region Rm and cm = 1
Nm

∑
Xi∈Rm

yi,

• Let T0 represent the tree obtained without applying the pruning by developing the tree until
a minimum number of instances in each leaf node is achieved.
• Let T be the tree that is subject to pruning. The pruning process involves collapsing nodes of
T0 to build an optimal tree. It has

∣∣T ∣∣ nodes.

• Define mean sse as : Qm(T ) = 1
Nm

∑
yi∈Rm

(
yi − cm

)2
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We can define the cost function that is minimized during ERM with the regression tree hypothesis
class as:

Cα(T ) =

∣∣T∣∣∑
m=1

NmQm(T ) + α
∣∣T ∣∣, (4.15)

where α is a parameter that controls the complexity associated with T . Note that Cα(T ) is the
penalized sum of square of errors. As with the linear model, for each value of α, we obtain a
hypothesis fα by applying ERM where the Equation (4.15) is minimized. Many variations of tree
models are developed. One of the most popular is the Random Forest. The random forests is an
ensemble learning of tree models, see Breiman (2001). The ensemble learning is discussed in Section
5.1.5.

4.9. Gaussian Process Prior for Machine Learning

The final hypothesis class we consider is the Gaussian Process priors. For this, we consider a full
Bayesian approach to learning. We still use the template defined by Equation (4.6); however we
now use the Bayesian approach, explained in the Equation (4.7), to pick the best model from the
hypothesis class F .

A Gaussian Process is viewed as a prior over a space of functions. We encode our beliefs about the
family of functions that are suitable for the problem by choice of a covariance function or kernel. In
other words, F is specified by using this covariance function or kernel, see Rasmussen and Williams
(2006) for further details. See Duvenaud (2014) for guidelines about picking a kernel for a problem.

We consider the generic hyper-plane presentation

y = f(x) + ε,

where ε ∼ N (0, σ2I). This means y ∼ N(f(x), σ2I),

f(x) =
∞∑
i=1

βkφk(x),

φk(x) is a completely known basis function and βk’s are unknown, uncorrelated random variable
from Gaussian distribution, then the Karhunen-Loève theorem states that f(x) = βφ follows the
Gaussian process. Here the hyper-plane f(x) is completely unknown and we assume that f is
a random realization from the Gaussian process. Therefore the resulting model is known as the
Gaussian process prior model, see Rasmussen and Williams (2006). The corresponding model for
data is

y ∼ Nn(φ(x)β0, K(x, x′) + σ2In),

where E(f) = E(φ(x)β) = φ(x)E(β) = φ(x)β0 is the prior mean function, such that β ∼ N (β0, σ
2I),

and K(x, x′) is the covariance kernel function of f . The estimated value of y for a given x0 is the
mean (expected) value of the functions sampled from from the posterior at that value of x0. Suppose
µ(x) = φ(x)β0, then expected value of the estimate at a given x0 is given by

f̂(x0) = E(f(x0|x, y))

= µ(x0) +K(x0, x)[K(x, x′) + σ2In]−1(y − µ(x)).

If we choose the prior β ∼ N (0, σ2I), then the above equation can be expressed as

f̂(x0) = K(x0, x)[K(x, x′) + σ2In]−1y.



Sambasivan et al./Bayesian Machine Learning 15

One very strong point in favor of the Gaussian process prior model is that the f̂(x) approximates
f(x) well, i.e.,

P
(

sup
x
|f̂(x)− f(x)| < ε

)
> 0 ∀ε > 0,

see Ghoshal and Vaart (2017) for further details. However, the solution f̂ involves the inversion of
the covariance matrix of order n. The time complexity of the matrix inversion is O(n3) and the
space complexity is O(n2). This limits the applicability of the Gaussian process prior model to small
and moderate size dataset. Recently, a fast bagging algorithm has been developed to implement
the Gaussian process prior regression for massively large dataset and makes the GP prior highly
scalable, see Das, Roy and Sambasivan (2018).

4.10. Is P-Value Missing from Machine Learning Literature?

In the dictionary presented in Table 1, we see corresponding to the “hypothesis Testing,” no concept
is available in the Computer Science. Though computer scientists are very much aware of the theory
of the hypothesis testing in Statistics and they often use it in practice; it is rarely discussed or
mentioned in the mainstream machine learning literature. The reasons are the following:

• There is a lot of development in SML by technology companies, see e.g., Shinal (2017). There-
fore the SML focus more on the prediction of the target variable, rather than finding associa-
tion between target variable and features, and hypothesis testing whether a particular feature
influence influence the target variable or not.
• Even if, one is making inference; typically SML deals with massive datasets, which requires

handling of thousands of hypothesis. It results in the multiple testing problems.
• A focus on statistically significant, novel and affirmative results, based on the “P-value”

method leads to bias, known as “P-hacking.” When researchers keep collecting data until
analyses yield statistically significant results, the studies become prone to “P-hacking.” Results
found from “P-hacking” are generally not reproducible. The testing of the hypothesis, if not
correctly conducted, unknowingly it might lead the scientists to P-hacking, a situation all
scientist must avoid, see Head et al. (2015) for detail.
• The SML considers each hypothesis as a model and Bayesian model selection strategy is a

much more comprehensive strategy for large data.

5. Challenges to Machine Learning for Big Data

Organizations that have made investments in big data desire to exploit their data assets to gain
operational efficiencies or business advantage. From a learning theory standpoint, it would seem
that having data to perform learning is a good thing. However, McKinsey (2018) presents an or-
ganizational perspective of challenges and hurdles in applying machine learning to big datasets.
Computer scientists use time and space complexity to characterize the running time (processing)
and storage required by algorithms. The ‘storage required’ and ‘run-time’ characterized as functions
of the size of the dataset, i.e., in terms of n and p. Ideas from the order of growth of functions are
used to characterize the asymptotic behavior of the running time and storage associated with an
algorithm, see e.g., Cormen et al. (2009)[Chapter 3]. The upper bound of a function f(n) used to
characterize the time complexity, or space complexity is described using the big-O notation. The
upper bound of f(n) in the big-O notation described in Equation (5.1):

O(g(n)) = {f(n) : ∃ positive constants c, n0, (5.1)

such that 0 ≤ f(n) ≤ c.g(n), ∀n ≥ n0}.
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Several commonly used machine learning algorithms are associated with polynomial space and time
complexity. For example, kernel methods are associated with O(n3) time complexity and O(n2)
space complexity, see e.g., Shawe-Taylor and Cristianini (2004). Therefore when n is large (say one
million samples), time and space complexity is beyond the available computational resources. In
high dimensional datasets, the dimensionality of the problem creates the computational bottleneck.
For example, principal component analysis (PCA) on a high dimensional dataset is associated with
time complexity O(np2 + p3), see e.g., Tipping and Bishop (1999). Large values of p like those
encountered in genomic or text mining datasets impose computational challenges to dimension
reduction techniques. Overcoming these challenges requires ideas from both Computer Science and
Statistics. The challenges in application of data mining to big data is described in Wu et al. (2014).
Recently, Ĺheureux et al. (2017) survey the challenges in applying machine learning to big datasets.
The paper provides the challenges in the context of the characteristics of big datasets described
in Section 3. We describe three other approaches to machine learning that are not mentioned
in Ĺheureux et al. (2017). In this paper, we motivate the approaches to machine learning on big
datasets using ideas from statistical learning theory discussed in Section 4. We provide the particular
examples of these perspectives and a description of how they mitigate the computational challenges.

5.1. Approaches to Machine Learning for Big Data

We adopt the terminology used in Ĺheureux et al. (2017) to discuss the approaches. We provide a
brief description of each approach to provide a context for discussion.

5.1.1. Online Learning

There are two ways machine learning algorithms interact with the data. One is the batch learning,
and the other is the online learning. In batch learning, the algorithm processes the entire dataset.
In online learning, the algorithm receives data sequentially. The model trained on an initial dataset
that is used to predict an incoming stream of observations, one sample at a time. This idea is similar
to sequential analysis in Statistics, see e.g., Berger (2017). After the prediction of the incoming
observation, the model updates the performance of the predicted observation (the feedback) into
consideration, see e.g., Shalev-Shwartz (2007) and Shalev-Shwartz and Singer (2008) for algorithmic
approaches and theory. Manfred and Ole (1999) discussed online learning from a Bayesian inference
point of view. Bayesian online learning consists of prediction steps and update steps for learning of
unknown parameter θ. The prior predictive mean

E(θ|Dt) =

∫
θ p(θ|Dt)dθ,

where p(θ|Dt) is the prior predictive distribution

p(θ|Dt) =
p(Dt|θ)p(θ)∫

θ∈Θ
p(Dt|θ)p(θ)dθ

,

where Dt = {yt, · · · , y1}. The learning of θ updates itself when new sample yt+1 arrives with the
posterior mean as

E(θ|Dt+1) =

∫
θp(θ|Dt+1)dθ,

where the posterior density is

p(θ|Dt+1) =
p(yt+1|θ)p(θ|Dt)∫

θ∈Θ
p(yt+1|θ)p(θ|Dt)dθ

.
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Applications may consider online learning for one of the following reasons:

1. There is too much data to keep in memory.
2. The nature of the application may be such that the hypothesis class is continuously evolving.

This is a characteristic of many application domains like advertisement, online user experience
personalization, etc. and is called concept drift.

On-line applications are associated with higher deployment complexity than batch models since
these require a model update with every request processed. The choice of online versus batch
learning for a particular task depends on the questions and organizational objectives associated
with the problem. Batch learning requires the learning algorithm to process all of the data in the
dataset. It creates computational challenges. We need to apply a suitable choice from the other
approaches described below to overcome these challenges. Many machine learning algorithms have
online implementations. Laskov et al. (2006) describe an application of support vector machines in
an online manner. Das and Dey (2013) present the online learning of Generalized Linear Models.
Sambasivan and Das (2017a) describe an online approach with Gaussian Processes prior models.

5.1.2. Posterior Mode with Large Scale Optimization

As we discussed in Section 4.2 and 4.7; finding the posterior mode as the statistical machine learning
solution, optimization methods are used extensively. Optimization problems are represented as
below:

minimize
θ

f0(θ)

subject to fi(θ) ≤ bi, i = 1, · · · ,m.
(5.2)

Here θ = (θ1, θ2, · · · , θp) are the parameters being estimated and f0 : Rp 7→ R is the func-
tion to be optimized and is called the objective function, see Boyd and Vandenberghe (2004).
The empirical risk (in Equation (4.3)) is the objective function that needs to be minimized and
fi : Rp 7→ R, i = 1, 2, · · · ,m are called the constraints. The constants b1, b2, . . . , bm are called
the limits for the constraints. The constraints correspond to the penalty or cost function C(f) in
penalization method in Section 4.3.

An optimization problem is convex if the objective function and the constraints are convex. This
means that these functions satisfy the conditions below:

fi(

p∑
j=1

αjθj) ≤
p∑
j=1

αjfi(θj), i = 0, 1, · · · ,m; αi ∈ R,

p∑
j=1

αj = 1. (5.3)

When an optimization problem is convex, then it has a unique minimum. The empirical risk mini-
mization (ERM) principle discussed in Section 4 is often implemented using optimization. The risk
function corresponds to the loss function that is appropriate for the problem. Many machine learn-
ing problems are convex optimization problems and numerical optimization techniques are used in
these problems, see e.g., Nocedal and Wright (2006). As with hypothesis classes for learning theory,
there are many algorithms for numerical optimization. The appropriate choice depends on problem
characteristics. As with hypothesis classes, no optimization algorithm is optimal for all problems.
This result is called the “No Free Lunch Theorem for Optimization”, see e.g., Wolpert and Macready
(1997). Two numerical optimization approaches are predominantly used to perform ERM on large
datasets, namely (i) stochastic and (ii) batch approaches. The details of both these techniques as
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well as a comprehensive review of optimization methods in machine learning are provided in Bot-
tou, Curtis and Nocedal (2018). Large scale optimization techniques are used to solve both “big n”
and “big p” problems discussed in Section 3. An example of application to a “big n” problem is
in Zhang (2004). An example of application to a “big p” problem is available in Lu, Monteiro and
Yuan (2012).

Many problems solved using machine learning are non-convex. The most prominent machine
learning technique associated with non-convex optimization is deep learning (discussed later in
this section). An overview of the techniques for non-convex optimization along with applications is
presented in Jain and Kar (2017).

5.1.3. Bayesian Inference

Bayesian inference methods require computation of posterior probabilities that are often analytically
intractable when the datasets are large. Zhu et al. (2017) provide a discussion of methods used to
apply Bayesian methods to big datasets. Bayesian inference has been applied to both “big n” and
“big p” problems. Two methods predominantly used are:

• Markov Chain Monte Carlo Methods (MCMC): These methods use repeated random sam-
pling to approximate the posterior distribution. Andrieu et al. (2003) present the conceptual
building blocks of the MCMC technique and provide an overview of various MCMC algorithms
used in machine learning.
• Variational Inference: This is a method to approximate posterior probabilities using an op-

timization based machine learning approach. The objective is to approximate the posterior
density and to do so we consider a family of candidate densities. The approximation is mea-
sured using the Kullback-Liebler divergence between the target and candidate posterior den-
sity. Blei, Kucukelbir and McAuliffe (2017) provide a discussion of Variational Inference and
its applications to solving big data problems.

A significant development in the application of Bayesian approaches to machine learning is the
development of Bayesian Non-Parametric methods. Bayesian Non-Parametric methods adapt the
complexity associated with the hypothesis class based on the data observed. In a parametric ap-
proach, the complexity of the hypothesis class is specified a priori and does not adapt to the data
received by the learning algorithm. Using a parametric hypothesis class requires the use of other
methods to manage the level of complexity of the hypothesis class using the data, see e.g., Nowak
(2018)[Section 2.2]. Gershman and Blei (2012) provide an introductory overview of Bayesian Non-
Parametric methods.

5.1.4. Local Learning

Complex hypothesis classes are often associated with high computational complexity. For example,
as discussed in Section 4.9, Gaussian Processes prior or kernel methods are associated with O(n3)
time complexity. Therefore applying a complex hypothesis class to a “big n” dataset makes learning
intractable. A natural question to consider with “big n” datasets is: “would a divide and conquer
approach make the computation tractable ?”. It does. Different strategies can be used to partition
the dataset, and we could apply the learning procedure discussed in Section 4 on the partitions.
We can consider a complex hypothesis for the partitions because the size of the partition is much
smaller than the size of the dataset and computational complexity is not a limiting factor in the
choice of the hypothesis class. Park and Choi (2010) and Tresp (2000) provide two approaches for
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applying Gaussian Processes on big data that use clustering to create the partitions. A decision tree
algorithm, for example the Classification and Regression Tree algorithm (CART), can be used to
create the partitions, see e.g., Breiman et al. (1984) and Sambasivan and Das (2017b).

5.1.5. Ensemble Learning

In ensemble learning, we consider several learners, as discussed in Section 4 for a particular learning
task. The ensemble model combines the predictions from each of the learners to produce the final
prediction. There are a couple of ways to achieve this - bagging and boosting. Bootstrap aggregating,
also called bagging, achieves good performance by reducing the estimation error discussed in Section
4, see Breiman (1996). Boosting achieves good performance by reducing the approximation error
discussed in Section 4. In practice, trees are one of the most used hypothesis class to build ensembles.
Random forests is an ensemble algorithm that is based on bagging tree models, see Breiman
(2001). Extreme gradient boosted trees, aka., xgboost is an ensemble algorithm that is based on
boosting tree models, see Chen and Guestrin (2016). Both random forests and xgboost are
scalable and can be used with big datasets. Ensemble techniques are used with “big n” datasets.
The bagging and boosting framework are generic.

Chipman, George and McCulloch (2006) presented a Bayesian ensemble learning method, where
each tree is constrained by a prior to be a learner. Fitting and inference were accomplished using the
MCMC algorithm. Quadrianto and Ghahramani (2015) presented the Bayesian random forest, by
random sampling many trees from a prior distribution, and perform weighted ensamble of predictive
probabilities. Hypothesis classes other than trees can be used with these techniques. For example,
Das, Roy and Sambasivan (2018) apply bagging using Gaussian Processes prior regression on big
datasets. Model development in ensemble methods, such as xgboost, is performed on a represen-
tative sample from the data, see e.g., Chen and Guestrin (2016). This makes these methods very
scalable.

5.1.6. Deep Learning

In Section 4 we have described that the goal of the statistical machine learning (SML) is to learn
a function that can predict labels accurately. The performance of the function is impacted by the
features. If we have good features, then we can achieve good performance with enough data and an
appropriate hypothesis class. Deep learning exploits this idea. In deep learning terminology these
features are called representation, see Goodfellow, Bengio and Courville (2016)[Chapter 1]. For many
SML problems generating highly discriminative features from the observed set of features is very
difficult. In deep learning, supervised learning algorithms learn both good features and the function
that maps the feature space to the output space. Deep learning also provides algorithms for learning
good features or representations. This type of learning is unsupervised and is called representation
learning, see auto-encoders in Goodfellow, Bengio and Courville (2016). Deep learning algorithms
also use optimization for empirical risk minimization.

Back-propagation is a technique used to calculate the gradients of the risk function in the opti-
mization procedure used for deep learning. Deep learning is computationally intensive. Interestingly,
the hardware architecture for the video graphics cards used in computers (the GPU) can perform
the computation associated with back-propagation very efficiently. It led to new hardware develop-
ment for deep learning. For a discussion of optimization techniques in deep learning see Goodfellow,
Bengio and Courville (2016) and Bottou, Curtis and Nocedal (2018). Deep learning can be applied
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to both “big n” and “big p” problems, see Goodfellow, Bengio and Courville (2016). Practical sug-
gestions to develop effective deep learning applications are presented in Goodfellow (2018). The
uncertainty estimation for Bayesian deep learning for computer vision is presented by Kendall and
Gal (2017). To the best of our knowledge Bayesian deep learning is an emerging field and many
research issues are yet to be addressed.

5.1.7. Transfer Learning

When we have limited labeled data, the transfer learning learns from different domain which have
plenty of labeled data, and transfers the relevant knowledge to the target domain with an optimal
Bayesian update, see e.g., Karbalayghareh, Qian and Dougherty (2018), Ĺheureux et al. (2017),
and Pratt (1992). Lack of data for a problem is what motivates transfer learning. This idea is
similar to the idea of prior elicitation in Bayesian statistics, using either expert opinion, or older
data or based on the published journal article, see e.g., Das, Yang and Banks (2012). A lot of the
reported successes in this area are associated with deep learning. Yosinski et al. (2014) discuss the
transferability of features in deep learning. The system whose model utilizes is called the source
system and the system for which limited data is available is called the target system. While the
target system may not have sufficient data, the source system may train on big data.

5.1.8. Life Long Learning

We concluded Section 4 by saying that achieving good performance with a learning algorithm
requires incorporating prior knowledge of the problem and sufficient data. Big datasets may provide
the latter. However, we need a framework to combine the experience with the problem (prior
information) into the learning algorithm. The Bayesian framework becomes handy here. Lifelong
learning considers systems that can learn many tasks over a lifetime from one or more domains.
They efficiently and effectively retain the knowledge they learned and use that knowledge to more
efficiently and effectively learn new tasks, see e.g., Silver, Yang and Li (2013), Zhiyuan Chen,
Hruschka and Liu and Chen, Hruschka and Liu (2016) for an overview of lifelong learning. The
PAC-Bayesian bound for lifelong learning is presented by Pentina and Lampert (2014).

5.2. Hyper-Parameter Tuning with Bayesian Optimization

Approaches to statistical machine learning (SML) like ensemble methods and deep learning require
us to set parameters that are not part of the empirical risk minimization (ERM) procedure associated
with the learning task, see Section 4. These parameters are called hyper-parameters. Examples of
hyper-parameters are the following:

• The number of trees to use in a random forest model.
• The fraction of the data to use for sampling in an ensemble tree method - either xgboost or

random forests.

These hyper-parameters are not determined during ERM but have a significant impact on the
performance of the learning task. The conventional way of choosing these parameters is to use tech-
niques like grid search or random search. Both these techniques pick values in the hyper-parameter
space and then evaluate the performance for each set of values of the hyper-parameters. The hyper-
parameter settings associated with the best performance is then picked. Grid search picks the hyper-
parameter settings over a grid of values for hyper-parameter space whereas random search picks
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hyper-parameter values based on distribution specifications we specify for the hyper-parameter.
Bergstra and Bengio (2012) provide an example of research claims that random search performs
better than grid search for deep-learning. SML solutions associated with complex hypothesis classes
have many hyper-parameters. Determining good values for them is critical to achieving good per-
formance. Goodfellow (2018) suggests that it is prudent to develop solutions, that the practitioner
knows how to tune well rather than using approaches where good hyper-parameter settings for a
particular application is unknown.

A recent development in this area is the use of Bayesian Optimization to pick good hyper-
parameter values, see e.g., Snoek, Larochelle and Adams (2012). The approach used is to model
hyper-parameter selection as an optimization problem. A characteristic of this problem is that there
is no explicit form of the objective function. A Gaussian Process model is used as a proxy for the
objective function. The theme for determining good hyper-parameter values is to balance exploration
(trying new hyper-parameter values) versus exploitation (using hyper-parameter values for which
performance is known). Experiments to tune hyper-parameters are computationally intensive in
big datasets. Bayesian optimization mitigates this problem by performing experimentation in a
principled manner.

6. Some Practical Issues in Machine Learning

There is a lot of development in Statistical Machine Learning (SML) by technology companies, see
Shinal (2017). While the sentiment around SML as technology is upbeat, it is hard to escape the
hype around it, see Williams (2015). Larose (2005)[Chapter 1] provides an excellent discussion of the
fallacies and the realities in this area. It gives an indication of the dissonance between perception and
reality that practitioners face in applying machine learning and data mining. At this point, SML
as a technology requires several human subject matter experts to implement it successfully. For
data mining projects, process models to apply data mining have been developed, see Foroughi and
Luksch (2018) . As discussed in Larose (2005)[Chapter 1], it is quite easy to perform SML poorly.
Applying a process to SML projects can ensure avoidance of many pitfalls. A typical sequence of
phases in a project involves the following:

1. Problem Definition and planning: The problem that the organization or business or
academic research group wants to solve using its data must be specified. One should finalize
whether to use GP prior models or Decision tree or K-means clustering at this planning stage.
Whether the goal is the prediction or statistical inference, should be part of the planning
stage.

2. Data Processing: The data relevant to the problem must be identified in the organizations’
data assets. Suitable processing must be applied to transform it into the form that can be
used for machine learning.

3. Modeling: The nature of the problem dictates the machine learning tasks that are required
or considered for the project.

4. Evaluation: One must evaluate the results from the machine learning tasks in the context of
the business or organizational problem. Though ‘square error’ or ‘0-1 loss’ is widespread; it is
better to define a metric meaningful to the problem at hand.

5. Deployment: If the model is deemed to be useful in the evaluation phase, it gets deployed
in the live environment for public/general use.

A comprehensive discussion of the individual phases can be seen in Larose (2005) and Kuhn and
Johnson (2013). Data collected by organizations is seldom in a form that is suitable for SML tasks.
A significant amount of time and effort for machine learning projects is often required for data
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preparation. Common issues include identifying redundant data, handling missing data values and
handling data that are not in a consistent state because they were gathered before transactions or
organizational processes had been completed, see, e.g. Larose (2005) [Chapter 2] for a discussion of
data pre-processing.

The machine learning algorithms we consider for a particular project or problem may dictate some
transformations to the data. Scaling, centering and deriving new features are some of the commonly
performed tasks during the preprocessing phase, see Larose (2005) and Kuhn and Johnson (2013).
The term feature engineering is used to describe the process of encoding features in a manner
suitable for a machine learning problem. Data collected for the machine learning typically have
many extra attributes. Redundant attributes often are associated with many adverse effects, such
as multicollinearity and over fitting.

The number of samples required for a learning task, with specified accuracy, dramatically in-
creases as we increase the number of attributes. It is called the curse of dimensionality, see e.g.,
Friedman, Hastie and Tibshirani (2009)[Chapter 2, Section 2.5] for detail. We have finite compu-
tational resources to perform the learning task. When redundant attributes are present, we waste
some of the computational resources on determining model components that are not useful. These
resources could have been better utilized if they were applied in estimating a more complex hypoth-
esis class with a lesser number of variables. Redundant variables can cause over-fitting. Redundant
variables increase the computation required to determine the best function in a hypothesis class.
Finally, redundant attributes make the machine learning solution less interpretable. For all these
purposes, it is essential to pick an optimal subset of the attributes for the machine learning task.
Hence the problem of the best subset selection is significant.

Statistical methods likes Principal Component Analysis (PCA) and Factor Analysis (FA) are
useful to reduce the number of attributes we consider for the learning task, see e.g., Larose (2006).
While feature selection methods determine a subset of attributes in the original dataset, PCA and
FA apply transformations to determine a set of uncorrelated variables that are called extracted
features. The entire original set of attributes considered in this transformation. PCA and FA are
examples of methods that are called feature extraction methods. The feature selection methods like
LASSO, elastic net etc. try to come up with subset of features, see e.g., Tibshirani (1996) and Zou
and Hastie (2005).

Many practical suggestions for developing statistical machine learning (SML) solutions are pro-
vided in Goodfellow, Bengio and Courville (2016); Goodfellow (2018). Though these suggestion are
made in the context of deep learning, a lot of this advice applies to supervised learning tasks in
general. It guides the choice of the hypothesis classes we want to consider for the project. The
level of noise in the data is another consideration. If the data are very noisy, then the return on
investment (ROI) to develop sophisticated models may not pay off. Noise removal using techniques
such as those discussed in Xiong et al. (2006) may help. In SML projects, we often have a collection
of models we may consider for a particular learning task. The problem of selecting the best model in
this collection is called model selection and is typically based on some theoretical metric (commonly
used choices based on information theory). Complex hypothesis classes tend to be associated with
many parameters. Accurate tuning of these parameters is critical to achieving good performance
with the model. It may be prudent to consider a small set of sophisticated hypothesis classes that
we know how to tune well, see Goodfellow, Bengio and Courville (2016) and Goodfellow (2018).
Because the parameter space for sophisticated hypothesis classes is large, it is often challenging to
identify a high performing set of parameter values for unfamiliar hypothesis classes in a reasonable
time. Therefore it may be expedient to consider hypothesis classes that have the complexity to
address the needs of the problem and for which good hyper-parameter settings are known.
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The analysis of the training and test errors can yield information that we can use to refine the
hypothesis classes that we are considering for the learning task. A hypothesis class under fits when
it does not have sufficient complexity to model the variations that manifest in the data. The under
fit is characterized by high test and train error. Analysis of the training and test errors can reveal
if the hypothesis class we are considering for a problem under fits, over fits or is a good fit.

7. Application

In this section we present three applications with three different size datasets. The code used
to obtain the results in this section can be downloaded from the website: https://github.com/
cmimlg/SMLReview.

7.1. Predicting House Prices - A Regression Task with Small Datasets

In this example we consider a real-life non-spatial regression task. The Boston housing dataset
provides house prices in the Boston region, see Lichman (2016). The dataset contains information
about census tracts from the 1970 census. Each tracts includes the median house price value. For
illustration, consider a regression task where the objective is to predict the value of median house
price when we know other information about the census tract. A description of the attributes of
the dataset is provided in Table 2.

Attribute Description
1 CRIM per capita crime rate by town
2 ZN proportion of residential land zoned for lots over 25,000 sq.ft
3 INDUS proportion of non-retail business acres per town
4 CHAS Charles River dummy variable (= 1 if tract is adjacent to river; 0 otherwise)
5 NOX nitric oxides concentration (parts per 10 million)
6 RM average number of rooms per dwelling
7 AGE proportion of owner-occupied units built prior to 1940
8 DIS weighted distances to five Boston employment centers
9 RAD index of accessibility to radial highways
10 TAX full-value property-tax rate per USD 10,000
11 PTRATIO pupil-teacher ratio by town
12 B Proportion of Black Minority
13 LSTAT percentage of lower status of the population
14 MEDV median value of owner-occupied homes in USD 1000’s

Table 2
Description of the Boston Housing Dataset

The quantity we want to predict is the median house value (attribute MEDV ) for a census
tract. The other attributes represent the input. The notation used in the discussion that follows is
consistent with that used in Section 4. We consider three hypothesis classes to learn a solution for
the regression problem. There are 505 samples in the data set. We use 70% of the data for training
and 30% of the data for testing. We use the root mean square error as a metric to evaluate the
performance of the model produced by the hypothesis class.

First, we consider the family of linear hyper-planes. The Shrinkage Methods, as discussed in
the previous section, are implemented to manage the complexity for linear hyper-planes hypothesis
class. Next we consider the regression trees, see e.g., Breiman et al. (1984). We try a range of α
values in (4.15) and pick the solution that has the lowest penalized sum of squared errors. For each
α, Equation (4.15), i.e., Cα(T ) provides the optimal tree size. This is illustrated in Table 3. The

https://github.com/cmimlg/SMLReview
https://github.com/cmimlg/SMLReview
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rpart package Therneau, Atkinson and Ripley (2017) is the regression tree implementation that
we use here. A review of Table 3 shows that a tree with 6 splits produces the best result.

α Num Splits |T | Cα(T )
0.51 0 1.01
0.17 1 0.52
0.06 2 0.36
0.04 3 0.30
0.03 4 0.29
0.01 5 0.27
0.01 6 0.25
0.01 7 0.26

Table 3
Selection of α for Regression Tree, based on Cα(T ). Lower the Cα(T ) better it is. The best choice corresponds to

|T | = 6 and α = 0.01

Finally, we consider the Gaussian process prior models. The kernel used for this problem is a
sum of a linear kernel and squared exponential kernel. Now we discuss the details of the hypothesis
classes and perform learning (or estimation) using the hypothesis classes. In Table 4, we present
the RMSE in the test set, for each of the hypothesis classes. The actual observed and prediction of
y in the test dataset from each of the models is shown in Figures 1 - 3.

Hypothesis Class RMSE
Gaussian Process 3.21

LASSO 4.97
Regression Tree 5.06

Table 4
Root Mean Square Error (RMSE) in Test Data Set.

Figure 1. LASSO Fit Figure 2. Regression Tree Fit Figure 3. GP Fit

A review of Table 4 shows that the Gaussian Process hypothesis class provides the best results.
An analysis of Figure 1 - 3 shows that tracts with low and high median house values are particularly
challenging. The Gaussian Process hypothesis class performs better than the other hypothesis class
in this respect.

In Section 4 we discussed the notion of the minimum risk associated with the learning task, R∗

and the associated function f ∗. For regression problems:

f ∗ = E[y|X], (7.1)
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and is called the regression function. The minimum risk associated with the learning task, i.e., R∗

associated with f ∗. See Castro (2018a)[Chapter 2, Section 2.2] for a proof. The function f ∗ represents
the best that the learning algorithmA can achieve with any hypothesis class. See Van de Geer (1990)
for a discussion of the convergence of estimators developed using techniques such as algorithm A
to the regression function. The values in the MSE column of Table 4 represent the empirical risk
on the test set. A natural question to consider is how this empirical risk would vary if we consider
all possible test sets. This represents the estimation error (see discussion following Equation (4.5).
The Probably Approximately Correct (PAC) method provides a framework to evaluate the question
discussed above. For the details of how this can be applied to regression tasks that use the mean
square error to measure risk, see Castro (2018b). Note that the discussion in Castro (2018b) requires
that the label space Y is bounded. It is a reasonable assumption for this example. We can assume
that house prices fall within a particular range. This example provides a sketch of how statistical
learning can be applied to perform learning on a real problem.

7.2. Classification of Forest Cover Types with Moderate Size Dataset

To provide a concrete example of the local learning approach, let us consider the forest cover
dataset, from ForestScience (1998), that is discussed in Sambasivan and Das (2017b). The data
represents forest cover information from four wilderness areas in the Roosevelt National Forest of
northern Colorado in the United States. Each observation in the dataset corresponds to cartographic
information about a square cell (30 meters × 30 meters). The cartographic information provided
includes data like the elevation, slope, soil type etc.. The forest cover type represents the tree
cover in that cell, for example, spruce-fir, ponderosa pine etc.. The learning task is to predict the
tree cover type associated with a set of cartographic data. The dataset has over half of a million
samples. To implement a local learning approach, a CART decision tree is first applied to the
dataset to partition the data into relatively homogeneous segments. The notion of homogeneity for
this particular example pertains to the forest cover type associated with the segment. The number
of partitions, or equivalently, the height associated with the CART tree is an important parameter.
Sambasivan and Das (2017b) provide guidelines and describe simple experiments that can be used
to estimate this parameter. The second step of the local learning approach discussed in Sambasivan
and Das (2017b) develops a pool of classifiers for each partition. The cross-validation error for each
classifier is noted and the best performing classifier is chosen as the classifier for that partition.
For the forest cover dataset, it turns out that the nearest neighbor classifier performs best in most
partitions. This suggests that the intuition that trees of the same type grow close to each other can
be exploited to develop a good classifier for this dataset. If a single nearest neighbor classifier is
developed for the entire dataset, then this would involve the computation of a very large distance
matrix to determine the nearest neighbors of each test point. When we use a divide and conquer
strategy, the distance matrix computation is limited to each partition. This is computationally a
much easier task. For this dataset, the local learning strategy performed better than the ensemble
learning strategy discussed in the next section. The results of applying an ensemble learning strategy
(xgboost, see e.g. Chen and Guestrin (2016)) and a local learning strategy is summarized in Table
5

Metric Local Learning Ensemble Learning
RMSE 0.916 0.957
AUC 0.957 0.923

Table 5
Performance on Forest Cover Dataset
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As is evident from a review of Table 5, a local learning approach provides better results for the
forest cover dataset.

7.3. Time Series Prediction with Big Dataset

Das, Roy and Sambasivan (2018) illustrate an application of the ensemble technique to a dataset
from the utility domain that has nearly two million data instances, see Dheeru and Karra Taniskidou
(2017) for further detail of the dataset. The dataset represents electricity consumption data at one-
minute sampling intervals from a household. The dataset provides the voltage readings and three
sub-meter readings for the household over a four year period. The dataset exhibits periodicity and
seasonality. To capture these effects temporal features are created. The learning task is to predict
the voltage from the other features. Das, Roy and Sambasivan (2018) use bootstrapped samples
to develop a Gaussian Process model for the regression task. This is very similar to the use of a
random sample to develop a tree model in Breiman (2001). However, a Gaussian Process model is
developed using the sample in Das, Roy and Sambasivan (2018). Kernel selection for the Gaussian
Process regression model is determined by using data exploration and experimental evaluation. As
discussed in Das, Roy and Sambasivan (2018), in many problems it is observed that data usually
lie in a manifold Yang et al. (2015) or depend on a small number of features. In such problems it is
possible to develop reasonable models with a relatively small sample (see Das, Roy and Sambasivan
(2018)[Section 3] for details). The sample size is a critical parameter of the algorithm used in
Das, Roy and Sambasivan (2018). Guidelines for picking the sample size are provided in Das,
Roy and Sambasivan (2018)[Section 3]. Ensemble methods can be combined to enhance prediction
performance by using model stacking, see e.g., Wolpert (1992). Given a set of ensemble methods,
model stacking picks the best performing model for a particular input. For example, the performance
of the xgboost and bagged Gaussian Process models are provided in Table 6.

BGP XGBoost Stacked
2.09 1.63 1.61

Table 6
RMSE (Volts) for Ensemble Learning on Household Power Consumption Data

8. Summary

This paper has provides a comprehensive review of SML. Statistical learning theory provides the
concepts and the framework to analyze machine learning algorithms. Many important building
blocks of Statistical learning theory have been motivated and presented. An overview of big data
and the challenges they present to machine learning has also been provided.

Theoretical ideas from statistics and computer science are both needed to design, implement and
evaluate machine learning applications. Application of machine learning is inherently computational.
Computational approaches for applying machine learning to big datasets are motivated using ideas
from statistical learning theory.We conclude by saying that success in applying machine learning
for big data systems requires:

• Leveraging prior experience gained either first hand personally or through careful review of
literature.
• Data of sufficient quantity and quality.
• An understanding of the statistical and computational tools required to design algorithms,

implement them and interpret the results.
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