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Abstract Multivariate circular observations, i.e. points on a torus arise frequently
in fields where instruments such as compass, protractor, weather vane, sextant or
theodolite are used. Multivariate wrapped models are often appropriate to describe
data points scattered on p−dimensional torus. However, the statistical inference
based on such models is quite complicated since each contribution in the log-
likelihood function involves an infinite sum of indices in Zp, where p is the dimen-
sion of the data. To overcome this problem, for moderate dimension p, we propose
two estimation procedures based on Expectation-Maximisation and Classification
Expectation-Maximisation algorithms. We study the performance of the proposed
techniques on a Monte Carlo simulation and further illustrate the advantages of
the new procedures on three real-world data sets.

Keywords CEM Algorithm · EM Algorithm · Estimation Procedures · Multi-
variate Wrapped Distributions · Torus.

1 Introduction

There are many problems in applied sciences where a quantity of interest is mea-
sured as a direction. Mardia (1972) is one of the first references in this field describ-
ing how to deal with this kind of data in many subjects, e.g. physics, psychology,
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image analysis, medicine and astronomy. As a simple example of directional data,
one may consider a unit vector of length n. Clearly, such a vector can represent an
angle on a unit n-sphere, provided we choose an initial direction and orientation
for the n-sphere. This type of data are often referred to as circular (directional)
data. One important aspect of the directional data is that they cannot be anal-
ysed using standard methods/models developed in the Euclidean space. Mardia
and Jupp (2000) and Jammalamadaka and SenGupta (2001) are two commonly
used resources that provide a comprehensive review of tools and techniques used
in the directional (circular) statistics. Another important reference is Batschelet
(1981).

The Wrapped Normal and the von Mises distributions are two important prob-
ability distributions defined on the unit circle. They often play a similar role as
the Normal model on the Euclidean space. For instance, the von Mises distribu-
tion belongs to the Exponential family and it is a natural circular analogue of
the univariate Normal distribution, when the variability in the circular domain is
small. As for the multivariate von Mises distribution, its conditional distributions
are also von Mises while its marginal distributions are not (see, e.g. Mardia and
Jupp, 2000, p. 55). The Wrapped Normal is another circular distribution similar
to the univariate Normal. It is symmetric and obtained by wrapping a Normal dis-
tribution around the unit circle. Although it does not belong to the Exponential
family, the convolution of two Wrapped Normal variables is also Wrapped Normal
(Jammalamadaka and SenGupta, 2001). The associated conditional and marginal
distributions are Wrapped Normal, too. The Wrapped Normal distribution also
appears in the central limit theorem on the unit circle and in connection with
Brownian Motion on the unit circle see, (see, Stephens, 1963, for more details).

The von Mises distribution is perhaps more famous, and its fame is due to
the analytical tractability of the maximum likelihood estimators (MLEs) in uni-
variate framework. Despite this, deriving MLEs for the multivariate case is still
an open problem. In some recent works, Mardia et al (2007, 2008) and Mardia
(2010) introduced applications of bivariate and trivariate von Mises distributions.
Furthermore, Mardia and Voss (2014) studied some properties of the multivari-
ate von Mises distribution but statistical inference requires evaluation of a quite
complex estimation scheme (Mardia et al, 2008). These are some of the reasons
that one may investigate utilising the Wrapped Normal distribution as an alter-
native to the von Mises in the multivariate setting. Moreover, for most of the
distributions versus their wrapped versions, there is a correspondence between the
non-wrapped (line) parameters and the associated wrapped ones. This allows for
direct interpretation of the circular parameters as well as the respective inference
results.

The bivariate Wrapped Normal distribution is proposed by Johnson and Wehrly
(1978) while multivariate Wrapped Normal distribution is presented in Baba (1981).
Estimation of the Wrapped Normal parameters even in univariate case leads to
a complex numerical optimisation, since evaluation of the associated likelihood
function requires dealing with an infinite series. That is why some authors, e.g.
Fisher (1987) and Breckling (1989) proposed approximating this distribution by
the von Mises distribution. Kent (1978) showed that, the von Mises and Wrapped
Normal distributions can be well approximated by one another. Agostinelli (2007)
proposed an iterative reweighted maximum likelihood (IRML) estimating equa-
tions algorithm for univariate Wrapped Normal which is also available in the R
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package circular (Agostinelli and Lund, 2017). Fisher and Lee (1994) used the
Expectation-Maximisation (EM) algorithm to obtain parameter estimates from
the Wrapped Normal distribution for an autoregressive model with low order.
The E-step involves ratios of large infinite sums, which need to be approximated
at each step, making the algorithm computationally inefficient. Moreover, Coles
(1998), Ravindran and Ghosh (2011) and Ferrari (2009) adopted a data augmen-
tation approach to estimate the missing unobserved wrapping coefficients and the
other parameters in a Bayesian framework.

As mentioned before, the main difficulty of working with the Wrapped Normal
distribution is that the density function consists of an infinite sum, which does not
allow the exact evaluation. The likelihood-based inference for such distribution can
be very complicated and computationally intensive. That leads to our contribu-
tion in this work on the estimation problem for both univariate and multivariate
Wrapped Normal distributions using two innovative algorithms.

The remainder of this paper is organised as follows. Section 2 describes the
multivariate wrapped model in a general framework. Section 3 introduces two new
algorithms based on Expectation-Maximisation and Classification Expectation-
Maximisation methods for the estimation of the parameters when dealing with
the wrapped multivariate normal model. These approaches can easily be extended
to other multivariate wrapped models. This section also includes a description of
a method to obtain initial values and a discussion on how to extend the proposed
techniques to the case we are simultaneously dealing with circular and non-circular
observations. Section 4 reports the results of an extensive Monte Carlo experiment,
while Section 5 provides two illustrative examples based on real-world datasets;
Section 6 gives final comments and remarks. A third example, further illustrative
results on the two real-world datasets and a complete summary of the Monte Carlo
experiment can be found in the Supplementary Material.

2 Multivariate Wrapped Normal distribution

Wrapping consists of the geometric translation of a standard distribution to a space
defined on a circular domain, e.g., a unit circle. In other words, a distribution with
support on the entire real-line is translated to one with support on a circle of finite
circumference. A rich class of distributions on the unit circle can be obtained using
the wrapping technique. The procedure is as follows: given a random variable (r.v.)
X defined on R, Y = X mod 2π is a r.v. on the unit circle, by accumulating the
probability densities over all points X = (Y +2πj) where j ∈ Z. If G represents the
cumulative distribution function (CDF) on R, the resulting wrapped distribution
F on the unit circle is given by

F (y) =
+∞∑
j=−∞

[G(y + 2πj)−G(2πj)] , y ∈ (0, π] .

In particular, for any r.v. X with the density function g, and support on R, the
r.v. Y with a circular density function f and support on (0, 2π] can be defined as

f(y) =
+∞∑
j=−∞

g(y + 2πj) , y ∈ (0, π] .
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By this translation, both discrete and continuous wrapped distributions can be
constructed (Mardia and Jupp, 2000). Among the continuous wrapped distribu-
tions, the Wrapped Normal and the Wrapped Cauchy play an important role in
data analysis. A Wrapped Normal distribution, denoted WN(µ, σ2), is obtained
by wrapping a N(µ, σ2) distribution around the unit circle. This distribution is
unimodal and symmetric about the mean µ. The mean resultant length ρ (see, e.g.
Mardia and Jupp, 2000, pp. 28-29 and 50), which is the length of the first trigono-
metric moment, is given by ρ = exp[−σ2/2] for the Wrapped Normal distribution.
As ρ→ 0 the distribution converges to the uniform distribution on the unit circle
while as ρ→ 1, it tends to a point mass distribution at µ.

For the present paper we concentrate on the multivariate Wrapped Normal
distribution which is obtained by component-wise wrapping of a p-variate Normal
distribution on a p-dimensional torus (often called the p-torus or hypertorus for
short). In general a multivariate wrapped distribution can be obtained as follows.
Let X ∼ G represents the r.v. on Rp space, then the resulting wrapped r.v. Y ∼ F
on the p-torus has a CDF, F , given by

F (y) =
∑
j∈Zp

[G(y + 2πj)−G(2πj)] , y ∈ (0, 2π]p ,

where the sum is extended to all vectors j ∈ Zp. If X has the density function g

defined on Rp, then Y has a density function f on the p-torus given by

f(y) =
∑
j∈Zp

g(y + 2πj) , y ∈ (0, 2π]p.

For the multivariate Normal distribution, let X ∼ Np(µ,Σ). Then the random
vector Y = X mod 2π is called a multivariate Wrapped Normal distribution
WNp(µ,Σ) where the modulus operator is applied component-wise.

The bivariate Wrapped Normal distribution is proposed by Johnson and Wehrly
(1978) and multivariate Wrapped Normal distribution is introduced by Baba
(1981). Evaluation of the Wrapped Normal density function can be difficult, even
in univariate case, because it involves an infinite series.

2.1 Equivariance in Wrapped Normal models

Let X be a p-variate random vector. For a given b, a vector of length p, and a full
rank p× p matrix A consider the affine transformation W = AX + b. A location
estimate T is affine equivariant if T (W ) = AT (X) + b, while a scatter estimate
S is affine equivariant if S(W ) = AS(X)A>. Now let X ∼ Np(µX ,ΣX) so that
W ∼ Np(µW ,ΣW ), where µW = AµX + b and ΣW = AΣXA

>. Define U = X

mod 2π and V = W mod 2π as two multivariate Wrapped Normal models on
the p-torus. In Section SM–1 of the Supplementary Material we show that the
likelihood L(µW ,ΣW |v1, · · · ,vn) of the parameters µW ,ΣW based on the samples
v1, · · · ,vn is proportional to L(µX ,ΣX |u∗1, · · · ,u∗n), where u∗i is a sample from
U∗ = X mod (2πA−1j) and j is a length p vector of ones. An immediate result
is that L(µW ,ΣW |v1, · · · ,vn) is not proportional to L(µX ,ΣX |u1, · · · ,un). This
fact shows that MLEs are not affine equivariant for the multivariate Wrapped
Normal model.
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3 Parameters estimation

Let y1, . . . ,yn be an independent and identically distributed (i.i.d.) random sample
from a multivariate Wrapped Normal model on the p-torus with mean vector µ and
variance-covariance matrix Σ, Y ∼WNp(µ,Σ). As discussed in previous section,
we can consider yi, equivalently, as yi = xi mod 2π where xi is a sample from,
i.e. Xi ∼ Np(µ,Σ).

The log-likelihood of the unknown parameters Ω = (µ,Σ) of a multivariate
Wrapped Normal model is represented by

`(Ω;y1, . . . ,yn) =
n∑
i=1

log

∑
j∈Zp

φp(yi + 2πj;Ω)

 , (1)

where φp is the multivariate Normal density in Rp and j is a vector of indices in Zp.
For the univariate case Agostinelli (2007) proposed an iteratively reweighted least
squares (IRLS) algorithm to maximise the log-likelihood function. The details of
this method are provided in Agostinelli (2007) and the implementation is available
in the function mle.wrappednormal in the R (R Core Team, 2019) package circular

(Agostinelli and Lund, 2017). For the multivariate case (p > 1), a similar approach
seems infeasible and alternative techniques are required. A direct maximisation of
the log-likelihood function for small to moderate dimensional problems, says p ≤ 5,
is possible provided an appropriate parametrisation of the model is considered. For
instance, the variance-covariance matrix Σ can be reparametrised as described in
Pinheiro and Bates (1996). In this work we use the log-Cholesky parameterisation,
which allows for unconstrained optimisation while ensuring the positive definite-
ness of the estimated Σ is achieved. Let σ be the set of p(p + 1)/2 parameters
that we introduce to represent Σ uniquely, and let Σ(σ) = R(σ)>R(σ) be the
associated Cholesky decomposition. The p × p upper triangular matrix R(σ) is
full rank and parameterised via σ. To ensure that the diagonal elements of Σ are
positive, we incorporate the logarithms of the diagonal elements of R(σ) in our
parameterisation. Besides direct maximisation, we propose two algorithms, based
on Expectation-Maximisation (EM) method (Dempster et al, 1977), to maximise
(1) in subsections 3.1, and 3.2.

Fisher and Lee (1994) used the EM algorithm to obtain parameter estimates
of an autoregressive model for circular data with Wrapped Normal distribution.
Their procedure suffers from high computational complexity, as it involves ratios
of large multivariate infinite sums in each iteration of the E-step, and that makes
the algorithm computationally inefficient. Alternatively, Coles (1998), Ravindran
and Ghosh (2011) and Ferrari (2009) adopted a data augmentation approach to
estimate the missing unobserved wrapping coefficients in a Bayesian framework
which is not our main objective in this paper.
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3.1 EM algorithm

Instead of the log-likelihood in Equation (1), the EM algorithm maximises the
complete log-likelihood function given by

`C(Ω;y1, . . . ,yn) =
n∑
i=1

log

∑
j∈Zp

vijφp(yi + 2πj;Ω)

 , (2)

where vij is an indicator of the ith unit having the j vector as wrapping coefficients.
The algorithm alternates between two steps: Expectation (E) and Maximisation
(M) as follows.

– E step: In this step we compute the conditional expectation of the complete
log-likelihood function by setting vij equal to the probability that yi has j as
wrapping coefficients, i.e.

vij =
φp(yi + 2πj;Ω)∑

h∈Zp φp(yi + 2πh;Ω)
, j ∈ Zp, i = 1, . . . , n ;

– M step: In this step we update the estimates of Ω by maximising the complete
log-likelihood conditional on vij ’s, i = 1, . . . , n given in E step.

In practical implementation, Zp is replaced by the Cartesian product ×ps=1J where
J = (−J,−J + 1, . . . , 0, . . . , J − 1, J) for some large enough J (see, e.g. Mardia and
Jupp, 2000, pp. 50).

Note that the complete log-likelihood is non-decreasing at each iteration of
the EM algorithm, and hence the algorithm converges to a local maximum. See
Section SM–2 of the Supplemental Material for details. In practice we declare

convergence of the algorithm if both maxr=1,...,p(2(1− cos(µ
(k+1)
r −µ(k)r )))1/2 and

maxr,s=1,...,p(|σ(k+1)
rs − σ

(k+1)
rs |) are smaller than a fixed threshold (10−6 in our

case), where µ
(k)
r are the elements of the vector µ at the kth step of the algorithm

and σ
(k)
rs ’s are defined similarly for the elements of the matrix Σ. An alternative

criterion can be obtained based on the increments of the log-likelihood functions
between two subsequent iterations.

Since the M step involves a complicated maximisation problem, we introduce
a modification based on the law of total variance. We call the new algorithm the
Total Variance EM algorithm. For a fixed J let µ(k) and Σ(k) be the estimates
at the kth step of the algorithm; for the ith observation we recompute yi (i =
1, · · · , n) such that each components of yi − µ(k) are expressed in the interval
(−π, π]. This translation prevents the use of large values of J in order to have a
good approximation. We build a data matrix Ỹi of dimension (2×J + 1)p×p with
the row entries of the form

ỹr = yi+2πJr = (yi1+2πjr1, yi2+2πjr2, . . . , yip+2πjrp), r = 1, . . . , (2×J+1)p,

where the vector Jr = (jr1, · · · , jrp) is one of the (2 × J + 1)p rows of the matrix
obtained by the Cartesian product ×ps=1J . Let w̃i be a weight vector with entries

w̃r = φp(ỹr;Ω
(k)) where Ω(k) = (µ(k),Σ(k)).

We define µ̃i and Σ̃i be the weighted sample mean and sample covariance
based on the Ỹi data matrices and the weight vectors w̃i. Now let M to be the
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matrix with the row entries µ̃i, and define C to be the sample covariance of the
data matrix M . Then, we can update the parameters by

µ(k+1) =
1

n

n∑
i=1

µ̃i ,

Σ(k+1) =
1

n

n∑
i=1

Σ̃i +C ,

where µ̃i’s and Σ̃i’s are the conditional means and conditional (within) variance-
covariance matrices respectively, while C is the between variance matrix. This
algorithm can be easily implemented in a parallel fashion, since updating the
parameters associated with the ith observation can be performed independently
at each step. Furthermore, updating the elements of the weight vector w̃i can also
be performed in parallel.

3.2 Classification EM algorithm

An alternative algorithm for the aforementioned estimation problem is the Clas-
sification EM (CEM) algorithm (Celeux and Govaert, 1992) where the E step is
followed by a C step (classification step) in which vij is estimated as either 0 or 1,
so that the ith observation is associated to the most likely j ∈ Zp vector. In this
context the CEM algorithm summarises the complete log-likelihood, given in (2),
to the following “classification” log-likelihood function:

`C(Ω, j1, . . . , jn;y1, . . . ,yn) =
n∑
i=1

log φp(yi + 2πji;Ω), (3)

in which the ji’s ∈ Zp (i = 1, . . . , n) are treated as unknown parameters. The
procedure at the kth step is then performed as follows.

– E step: Same as before we compute vij by

vij =
φp(yi + 2πj;Ω)∑

h∈Zp φp(yi + 2πh;Ω)
, j ∈ Zp i = 1, . . . , n ;

– C step: Let ĵi = arg maxh∈Zp vih;
– M step: In this step we update the estimates of Ω by maximising the classi-

fication log-likelihood, given in (3), conditional on ĵi (i = 1, . . . , n) given in C
step.

In Section SM–2 of the Supplemental Material, we show that the classification
log-likelihood function is non-decreasing at each iteration of the CEM algorithm,
and hence the algorithm converges to a local optimum.

Similar to the the EM algorithm, in the practical implementation Zp is replaced
by the Cartesian product ×ps=1J , for some large enough J . The ĵi plays the role of
an offset in the classification log-likelihood and hence the M step is straightforward.
Note that, at each iteration, the classification step can provide an estimate of the
original unobserved samples x1, . . . ,xn, obtained as x̂i = yi + 2πĵi, (i = 1, . . . , n).
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3.3 Extending to joint circular and linear variables

An extension to the joint estimation of circular and linear (non-circular) observa-
tions can be obtained for both the EM and CEM algorithms. Suppose that

X =

[
X1

X2

]
∼ Np1+p2

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
.

Here our samples are from the joint vector (Y1,X2) where Y1 = X1 mod 2π, that
is Y1 ∼ WNp1(µ1,Σ11). For the CEM algorithm, first we suggest performing the
algorithm as described in the subsection 3.2 to estimate the parameters associated
to the first component, Y1. As a by-product we obtain ĵi and x̂1i, (i = 1, . . . , n), in
the C step of the algorithm. The x̂1i’s can be used to achieve n pseudo-observed
vectors of the length p1+p2 in the non-wrapped Gaussian setting, (x̂1i,x2i)’s. Now
we perform the MLE for the multivariate Normal distribution on these pseudo-
observed vectors, in order to obtain estimates of the remaining components µ2,
Σ12 and Σ22. One may note that, only the estimate of Σ12 depends on the joint
vectors. As for the EM algorithm, similarly we suggest performing the algorithm
as illustrated in the subsection 3.1 and obtain the final µ̃1i, (i = 1, . . . , n). These
µ̃1i’s can then be used as estimates for the unknown observations, x1i’s. Likewise
by considering the whole n pseudo-observed vectors of (µ̃1i,x2i)’s, an estimate of
Σ12 can be obtained. The rest of the parameters can be estimated using x1i’s and
x2i’s, separately.

3.4 Initial values

In order to intialize the algorithms introduced in this section, we require appropri-
ate starting values. For these purposes, we suggest using the circular means and
−2 log(ρ̂r), where ρ̂r is the sample mean resultant length for mean vector µ(0),

and the variances σ
(0)
rr (r = 1, . . . , p). Following Jammalamadaka and SenGupta

(2001) the circular correlation coefficient between two circular samples x and y is
defined by

ρc(x,y) =

∑n
i=1 sin(xi − x̄) sin(yi − ȳ)(∑n

i=1 sin(xi − x̄)2
∑n
i=1 sin(yi − ȳ)2

)1/2 ,

where x̄ and ȳ are the circular means. We let σ
(0)
rs = ρc(yr,ys)σ

(0)
rr σ

(0)
ss , for r 6= s,

as the initial values for the covariance matrix at the start of the algorithms. This
ensures that the initial matrix Σ(0) is of full rank.

4 Monte Carlo experiments

To compare the performance of the proposed methods, we consider two Monte
Carlo experiments, one for the univariate case; and the second one for the multi-
variate case. For the univariate case, the experiments have the following configura-
tions: sample size n = 10, 50, 100, 500; µ0 = 0; σ0 = π/8, π/4, π/2, π, 3/2π, 2π; and
we set the number of Monte Carlo replications to 500. We compare the following
methods: (a) the direct maximisation of the log-likelihood function performed via
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the R function optim using the default settings; (b) the EM algorithm; (c) the
CEM algorithm; and (d) we also consider the algorithm implemented in function
mle.wrappednormal, available in the R package circular (Agostinelli and Lund,
2017), which is based on an IRML procedure to compute the maximum likelihood
estimates. As for the initial values of these methods, we use the circular mean and
−2 log(ρ̂) respectively for µ and σ, where ρ̂ is the sample mean resultant length. In
this section, without loss of generality, we set J equal to 4, for all of the procedures
in the univariate case, where p = 1.

For the multivariate case, the experiments has the following configurations:
number of variables p = 2, 5, 10; sample sizes are selected from the range of n =
10, 50, 100, 500, depending on the value of p; µ0 = 0; and we set the number of
Monte Carlo replications to 500.

To account for the lack of affine equivariance of the Wrapped Normal model, we
consider different covariance structures, Σ0, as in Agostinelli et al (2015). For each
sample in our simulation setup, we create a different random correlation matrix
with a fixed condition number (CN). We use the following procedure to obtain
random correlations with condition numbers CN fixed at 20:

1. For a fixed condition number CN given, we first simulate a diagonal matrix
Υ (t) = diag(λ1, . . . , λp), (where t = 0 and λ1 > λ2 > . . . > λp) with the
largest eigenvalue λ1 = CN and the smallest eigenvalue λp = 1. The remaining
(p − 2) eigenvalues, λ2, . . . , λp−1, are sorted random samples from a uniform
distribution in the interval (1,CN).

2. Next, we generate a p× p random matrix, Y , in which its elements are chosen
independently from standard normal distribution. Then, we use the eigende-
composition of the symmetric matrix Y >Y to obtain a random orthogonal
matrix U , whose columns are the orthonormal eigenvectors of Y >Y .

3. Using the results of 1 and 2 above, we construct a random covariance matrix
by the eigendecomposition, Σ(t) = UΥ (t)U>. Note that the condition number
of Σ(t) is equal to the desired value, CN.

4. In this step, we convert the covariance matrix Σ(t) into the correlation matrix
R(t), i.e.,

R(t) = D−1/2Σ(t)D−1/2,

where D = diag(d1, . . . , dp), and di’s are the main diagonal elements of Σ(t).
5. We may note that the condition number of R(t) is not necessarily equal to CN.

To remedy this problem, we use the following spectral decomposition to obtain
the updated covariance matrix, Σ(t+1):

Σ(t+1) = UΥ (t+1)U> , (4)

where
Υ (t+1) = diag

(
λ̃R

(t)

1 , λR
(t)

2 , . . . , λR
(t)

p

)
.

Here Υ (t+1) is a diagonal matrix formed by the eigenvalues of R(t) (λR
(t)

i s),

and λ̃R
(t)

1 = CN×λR
(t)

p . This adjustment of the first eigenvalue is to make sure

the condition number of Σ(t+1), given in (4), is equal to desired CN.
6. Now we set t ← t + 1 and repeat steps 4 and 5 until the condition number

of R(t) is within a tolerance level (or some iteration limit is reached). In our
Monte Carlo study, in all of the cases, convergence was reached after a few
iterations.
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Once a desired correlation matrix is obtained, covariance matrices are constructed
in such a way that variances in the main diagonal elements are the square of σ0,
chosen among the values (π/8, π/4, π/2, π, 3/2π, 2π), as in the univariate case. Here
we compare the following four methods:

(a) optim: where direct maximisation of the log-likelihood (1) is performed using
the R function optim with the default setting;

(b) EM: where the EM algorithm is used;
(c) CEM: where the CEM algorithm is employed; and
(d) circular: where the IRML procedure implemented in function mle.wrappednormal,

package circular is utilised.

As initial values for all these methods, we use the approach recommended in Sec-
tion 3.4, which aims to be fast and effective. Furthermore, we also run the first
three algorithms, providing the true values µ0 and Σ0 as the initial values, in or-
der to better understand the effect of different initial values in the performance of
each method. The character “T” (as for the true parameters) is added at the end
of the labels to single out these scenarios (i.e., optimT, EMT, CEMT) in the asso-
ciated Figures. As of the remaining of this section, we set J equal to 3, for all the
methods in the multivariate case, where p > 1. For evaluation of the log-likelihood
function, the covariance matrix Σ is parametrised using the log-Cholesky param-
eterisation (Pinheiro and Bates, 1996) as described in Section 3, which allows for
unconstrained optimisation while ensuring positive definiteness of Σ.

In all cases the performance is evaluated using the following three measures:

(i) Likelihood-ratio test statistic (Λ): is expressed as difference between the log-
likelihoods, i.e.

Λ(µ̂, Σ̂) = −2(`(µ0,Σ0)− `(µ̂, Σ̂)) ,

where µ0 and Σ0 are the true parameters.
(ii) Angular separation (AS):

AS(µ̂) =

p∑
i=1

(1− cos(µ̂i − µi0)) ,

is an angular measure to obtain the dissimilarity between the estimated and
true mean vectors, with a range from 0 to 2p.

(iii) Entropy loss (∆): is a divergence measure, also appears in the likelihood ra-
tio test statistics, for testing the null hypothesis that a multivariate Normal
distribution has covariance matrix Σ = Σ0.

∆(Σ̂) = trace(Σ̂Σ−1
0 )− log(|Σ̂Σ−1

0 |)− p .

Entropy loss is essentially the Kullback-Leibler divergence between two Gaus-
sian distributions with equal mean vectors and covariances Σ̂ and Σ0, respec-
tively.

In Figures 1 – 4, we report the results of the likelihood-ratio test statistic (Λ),
the angular separation (AS), and the entropy loss (∆) for all values of dimensions:
p = (1, 2, 5, 10), sample sizes: n = (10, 50, 100, 500), standard deviations: σ0 =
(π/8, π/4, π/2, π, 3/2π, 2π), and different methods (optim, optimT, EM, EMT, CEM,
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CEMT, circular), as long as the results converge to a reasonable solution in a feasible
time frame. Figure 5 provides information on the execution time for n = 100, 500
and σ0 = π/8, 3π/2. Comprehensive results of the outputs are available in Section
SM–6 of the Supplementary Material.

For dimension p = 1, and small values of σ0 (e.g., smaller than π/2), all of the
methods perform equally well, regardless of sample size. As σ0 increases further,
we notice that all algorithms with the initial values set to be the true ones (optimT,
EMT, CEMT) have better performances, i.e., lower AS, and ∆ in compare to the
corresponding methods (optim, EM, CEM), as expected. For σ0 ≥ π, as sample size
increases, optim and EM obtain smaller ∆ values, whereas CEM performs better
based on the Λ criterion.

For p ≥ 2, the IRML algorithm in Agostinelli (2007) is not available anymore
(as it is developed only for p = 1). Similar to the univariate case (p = 1), for all
sample sizes and σ0 < π/2, the remaining six methods perform equally well for
p = 2. For σ0 = π, EM and optim obtain smaller ∆ and Λ. Like p = 1, the methods
starting with the initial values set to be the true ones (optimT, EMT, CEMT),
perform better in p = 2 as well. For larger σ0, EM and optim show somewhat similar
behaviour based on the Λ measure, while they do not have a huge difference with
CEM using the AS performance.

As the dimension is increased to p = 5, for σ0 ≤ π/2, all of the methods have
similar results based on the AS measure. In this case, EM, EMT, CEM, and CEMT

perform better with respect to the measurements ∆ and Λ. For σ0 > π/2 and
larger sample size (n = 500), these methods (EM, EMT, CEM, and CEMT) show
similar performance as well. For p = 10, EM and CEM approaches are the only ones
that do not fail, and their performances are similar to the case p = 5. Furthermore,
as it is shown in Figure 5, on average optim is much slower than the EM and CEM ap-
proaches. In fact, in all four cases: (n, σ0) = {(100, π/8), (500, π/8), (100, 3π/2), (500, 3π/2)},
optim fails to converge to a local maximum for p > 5. Also Figure 5 confirms that
CEM is slightly faster than EM.
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Fig. 1: Performance of the estimators in the univariate case p = 1. First row is
corresponding to AS, second and third rows are based on ∆ and Λ, respectively.
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Fig. 2: Performance of the estimators in the bivariate case p = 2. First row is
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Fig. 3: Performance of the estimators in the case p = 5. First row is corresponding
to AS, second and third rows are based on ∆ and Λ, respectively.
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Fig. 4: Performance of the estimators in the case p = 10. First row is corresponding
to AS, second and third rows are based on ∆ and Λ, respectively.
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Fig. 5: Mean execution times for n = 100, 500 (first and second rows respectively),
and σ0 = π/8, 3π/2 (first and second columns respectively). Black line: optim, red
line: EM, and green line: CEM. The point-wise confidence intervals of the execution
times are shown by dash line.

5 Application to real-world data

In this section we consider two real data examples in bioinformatics. The first one
deals with describing the protein structure using bivariate angles. The results of
this example are reported in the subsection 5.1. The second example is on RNA
data and it is analysed in subsection 5.2; in this case observations are on 7-torus,
i.e. the variables are lying on a 7-dimensional torus. A third example is related
to wind direction, a univariate example, where its analysis is reported in Section
SM–3 of the Supplementary Material.

5.1 Protein structure: A bivariate case

One of the important topic in the field of structural biology is the determination of
the three-dimensional (3D) structure of a protein. Protein backbone is what holds
a protein together with a relatively simple chemical structure: a nitrogen atom,
two carbon atoms, one or two oxygen atoms, and a few hydrogens. Amino acid is
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an organic side chain (or residue), unique to 20 well-known amino acids, attached
to the central carbon, Cα.

The backbone conformation of proteins can be represented equivalently by the
Cartesian coordinates of Cα traces or the 2 pseudo-angles (θ, τ) between the two
consecutive planes formed by 4 successive Cα (see Figure 6(A) for a clarification
on (θ, τ) representation). The Ramachandran plot, a scatter plot of θ vs. τ , can
reflect the allowed regions of conformational space available to protein chains,
provide a path for distinctive classification of protein structures, and largely con-
tribute to different applications in this area of research (Oldfield and Hubbard,
1994). A variety of techniques is used in the literature to estimate the bivariate
density functions associated to the Ramachandran plots. Here we use the bivari-
ate Wrapped Normal distribution, and three procedures to obtain the associated
MLEs.

A collection of data sets called SCOP.1 about protein structure analysed in
Najibi et al (2017) and described in their Supplementary Material are used as an
illustrative example here. The collection contains bivariate information about 63
protein domains that were randomly selected from three remote Protein classes in
the Structural Classification of Proteins (SCOP). Hence, each of these 63 collec-
tion is a bivariate data set. The class labels are available and we can check the
homogeneity in each of the three clusters by applying the techniques developed in
this paper.

In this example, three clusters are identified by the locations of the proteins in
the SCOP tree. See Figure 6(B-D) for an illustration on three randomly selected
bivariate datasets (three randomly selected protein structures are: 1BWW, 1SW7,
and 1BRK, publicly available in the Protein Data Bank archive, known as PDB)
associated to each cluster. The constituents of the collection of protein domains
in SCOP.1 are as follows.

– Cluster 1: 19 domains from “All beta proteins/ Immunoglobulin-like beta-
sandwich /Immunoglobulin/ V set domains (antibody variable domain-like)/
Immunoglobulin light chain kappa variable domain, VL-kappa/ Human (Homo
sapiens)”. Sample sizes are in the range between 104 and 106.

– Cluster 2: 26 domains from “Alpha and beta proteins (a/b)/TIM beta, alpha-
barrel/Triosephosphate isomerase (TIM) / Triosephosphate isomerase (TIM)
/ Triosephosphate isomerase/ Chicken (Gallus gallus)”. Sample sizes are in the
range between 233 and 244.

– Cluster 3: 18 domains from “Alpha and beta proteins (a+b)/ Microbial ribonu-
cleases/ Microbial ribonucleases/ Bacterial ribonucleases/ Barnase/ Bacillus
amyloliquefaciens”. Sample sizes are in the range between 104 and 107.

Three procedures are considered: (a) optim: direct maximisation of the log-
likelihood using the the function optim in R with the default settings, (b) EM, and
(c) CEM algorithms, as introduced in subsections 3.1 and 3.2 respectively. All the
algorithms are initialized using the same values as described in subsection 3.4. For
all of the methods we investigate the results for J = 3 and J = 6.

Figure 7 reports the results in each of the three clusters. In Figure 7(A), one
can see the estimated means based on all methods in 3 different clusters. It is
obvious that EM, and CEM have better performance to distinguish all clusters
and by increasing J , from 3 to 6, optim improves as well. In Figures 7(B)– 7(D),
all estimated means are marked by different signs (black circles for cluster 1, red
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Fig. 6: Schematic representation of the protein backbone angles. (A) Angles along
the Cα trace is denoted by (θi, τi), where θi is the pseudo-bond angle of three
consecutive Cα atoms

(
Cα(i),Cα(i + 1),Cα(i + 2)

)
, and τi is the pseudo-torsion

angle of four consecutive Cα atoms
(
Cα(i), · · · ,Cα(i+3)

)
. The term pseudo is used

for (θ, τ) here because the consecutive Cα atoms are not actually connected by a
single chemical bond. (B-D) Ramachandran plots associated to three randomly
selected bivariate samples from clusters 1− 3 in SCOP.1.

triangle and blue crosses for clusters 2 and 3, respectively) for different clusters. To
further illustrate the behaviour of the second moment, for each density, ellipsoid
confidence regions with nominal coverage probability 0.95 are also provided.

In Figure 8, we evaluate the performance of each method by comparing the
log-likelihood functions at the estimated values in cluster 1 and cluster 3. Since
the use of J = 3 and J = 6 in EM and CEM lead to similar results, we report
only the J = 3 case. As for optim, the performance is very different for J = 3
and J = 6, and that is why we report both cases. While for J = 6 the direct
maximisation (optim) provides homogeneous solutions within each clusters, for
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1WTL.A
Method

optim EM CEM
init −2463.97 −306.97 −310.98
optim −4918.87 −2464.61 −310.98
EM −310.49 −306.97 −310.98
CEM −2280.10 −306.97 −310.98

1BRE.B
Method

optim EM CEM
init −403.39 −314.50 −301.31
optim −327.74 −314.72 −370.96
EM −324.06 −314.50 −309.54
CEM −576.15 −314.50 −301.31

1BRE.C
Method

optim EM CEM
init −309.27 −312.80 −301.10
optim −375.34 −312.80 −299.58
EM −312.80 −312.80 −306.51
CEM −305.31 −312.80 −301.10

Table 1: Protein data set. Log-likelihood values of optim, EM, and CEM (columns)
obtained after convergence using different starting values (rows).

J = 3 the algorithm seems very unstable. However as it is shown in Figure 8, the
log-likelihood values provided by optimusing J = 3 is always larger than that of
using J = 6. Consistent with this fact, for almost all situations the EM, and CEM

report a larger value of the log-likelihood compare with the direct optimisation
(optim); this is particularly the case for the third cluster. It is worth to note that,
the whole results for the log-likelihood functions in each cluster have been further
illustrated in Section SM–4 in Supplementary Material.

To study the stability of the procedures we investigate the performance of
each technique under different starting values. Table 1 reports the log-likelihood
of the methods (in columns: EM, CEM, and optim) using different starting values
(in rows: initials values described in Section 3.4, init; and the estimates obtained
from optim, EM, CEM) for three particular data sets namely 1WTL.A, 1BRE.B,
1BRE.C(for more information, see Najibi et al (2017)). The solutions provided by
EM, and CEM seem very stable, apart from the 1WTL.A, where the EM starting
value is chosen to be the optim solution. The optim shows high sensitivity on the
choice of the initial values. Finally, we would like to remark that EM, and CEM are
maximising different flavours of the log-likelihood and hence it can happen that
CEM, after convergence, provides a larger value of the genuine log-likelihood.

5.2 RNA data set: An example of data on a 7-torus

We consider a data set on Ribonucleic acid (RNA). RNA is a polymeric molecule
essential in various biological roles in coding, decoding, regulation, and expression
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Fig. 7: Estimated densities based on EM, CEM, and optim. (A) Estimated means
for three clusters (cluster 1: black circles, cluster 2: red triangle, and cluster 3: blue
crosses), (B)–(D) Estimated means for different clusters are marked by different
signs (cluster 1: black circles, cluster 2: red triangle, and cluster 3: blue crosses),
plus the ellipsoid confidence regions with nominal coverage probability 0.95 for
each density.

of genes. RNA and DNA are nucleic acids, and, along with lipids, proteins and
carbohydrates, constitute the four major macromolecules essential for all known
forms of life. In RNA, each nucleic base corresponds to a backbone segment de-
scribed by 6 dihedral angles and one angle for the base, giving a total of 7 angles.
The distribution of these 7 angles over large samples of RNA strands have been
studied, among others, by Eltzner et al (2018) using Torus Principal Component
Analysis. The original data set contains 8301 observations, but based on a cluster-
ing procedure the data set was split into 23 clusters and all of the observations with
more than 50◦ in angular distance from their nearest neighbour were removed. So,
the final data set contains 7390 observations grouped in 23 clusters. We apply the
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Fig. 8: Protein data set. Comparison of the log-likelihood functions at the MLEs for
cluster 1 (lower triangle: black circles) and cluster 3 (upper triangle: blue crosses).

optim, EM, and CEM algorithms, with J = 3, in each of these clusters, to estimate
the parameters of 23 multivariate Wrapped Normal models. The estimated param-
eters can be used to provide a qualitative measure to evaluate the homogeneity of
the groups, i.e., a qualitative comparison of the estimated means and the shape
of estimated correlation matrices using the associated graphical representations.
Due to moderate dimension on both sample size and number of variables, direct
optimisation of the log-likelihood, optim needs about 100 times the execution time
of EM and between 150–400 times the execution time of CEM (see Figure SM–11).
In Tables SM–2, SM–3 and SM–4 we report the estimated mean angles for each of
the 23 clusters based on EM, CEM and optim algorithm respectively. Figures SM–2
– SM–10 represents the estimated correlation structures for all the 23 clusters.

As seen in both Tables SM–2 and SM–3, the means estimated within each
cluster are closer to each other. Also, Figures SM–2 – SM–10 depict each corre-
lation by an ellipse whose shape tends towards a line with slope 1 for positive
linear correlations, to a circle for correlations near zero, and to a line with nega-
tive slope, −1, for negative linear correlations. In addition, a red colour indicates
strong negative, and a blue colour implies strong positive correlations. A through
inspection of these plots confirms the promising agreement between the EM and
CEM algorithms.

To summarize our finding from Monte Carlo simulation and the analysis

of real daata sets it is clear that the proposed methodology is computation-

ally more efficient than the direct likelihood optimization. Furthermore,
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the comparison between direct likelihood optimization and the proposed

method for different values of J is interesting. The analysis suggests that

J = 3 is not sufficient for purposes of evaluating the likelihood directly

(Figure 7), while J = 6 provides a better fit but still not optimal. On con-

trary the introduced methodology show a good stability with respect to the

choice of J. Finally, the discrepancy in likelihood values (Figure 8) suggests

that the methodology is more appropriate from an optimisation perspective

for handling the bahaviour of the present objective functions.

6 Discussion

We introduced two new algorithms based on Expectation-Maximisation and Clas-
sification Expectation-Maximisation methods for the estimation of the parameters
in multivariate Wrapped Normal model to deal with circular data on torus. The
proposed algorithms perform well in comparison with the direct maximisation of
the log-likelihood function. The new EM, and CEM procedures converge to an ac-
ceptable solution in moderate to high dimensional setting, while this is not the
case for the direct maximisation, (optim). Also real examples indicate that, for
large dimensions, the new algorithms (EM, CEM) outperform the direct maximi-
sation of the log-likelihood (optim), in finding the global maximum. The proposed
methods can be easily extended to most wrapped multivariate elliptical symmetric
distributions indexed by multivariate location and scatter matrix.
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