Skip to main content
Log in

Inference and optimal censoring scheme for progressively Type-II censored competing risks model for generalized Rayleigh distribution

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

This paper considers the statistical inference for the competing risks model from generalized Rayleigh distribution based on progressive Type-II censoring when the parameters of the latent lifetime distributions are different or common. Maximum likelihood estimates are obtained, where the existence of the point estimators are proved, and the confidence intervals are established via the observed Fisher information matrix as well. Bayesian estimates of unknown parameters and reliability characteristics are derived under symmetric and asymmetric loss functions, and Monte Carlo Markov Chain sampling method is used to compute the Bayesian point estimates and the highest posterior density credible intervals. In addition, Bootstrap methods are also considered to obtain bias-corrected point estimates and approximate confidence intervals. Then we carry out hypothesis test using likelihood ratio test statistics. Monte Carlo simulation and a set of real data are presented to assess the performance of our proposed methods. Finally, the optimal censoring scheme issue is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali S (2015) On the Bayesian estimation of the weighted lindley distribution. J Stat Comput Simul 85(5):855–880

    Article  MathSciNet  Google Scholar 

  • Aslam M, Ali S, Yousaf R, Shah I (2020a) Mixture of transmuted Pareto distribution: properties, applications and estimation under Bayesian framework. J Franklin Inst 357(5):2934–2957

    Article  MathSciNet  Google Scholar 

  • Aslam M, Noor F, Ali S (2020b) Shifted exponential distribution: Bayesian estimation, prediction and expected test time under progressive censoring. J Test Eval 48(2):1576–1593

    Article  Google Scholar 

  • Balakrishnan N, Aggarwala R (2000) Progressive censoring: theory. Methods and applications. Birkhäuser, Boston

    Book  Google Scholar 

  • Balakrishnan N, Sandhu R (1995) A simple simulational algorithm for generating progressive Type-II censored samples. Am Stat 49(2):229–230

    Google Scholar 

  • Basak I, Balakrishnan N (2017) Prediction of censored exponential lifetimes in a simple step-stress model under progressive Type II censoring. Comput Stat 32:1665–1687

    Article  MathSciNet  Google Scholar 

  • Chacko M, Mohan R (2019) Bayesian analysis of weibull distribution based on progressive Type-II censored competing risks data with binomial removals. Comput Stat 34(1):233–252

    Article  MathSciNet  Google Scholar 

  • Cox DR (1959) The analysis of exponentially distributed lifetimes with two types of failure. J R Stat Soc Ser B (Methodol) 21(2):411–421

    MATH  Google Scholar 

  • Cramer E, Schmiedt AB (2011) Progressively Type-II censored competing risks data from lomax distributions. Comput Stat Data Anal 55(3):1285–1303

    Article  MathSciNet  Google Scholar 

  • Guo L, Gui WH (2018) Statistical inference of the reliability for generalized exponential distribution under progressive Type-II censoring schemes. IEEE Trans Reliab 67(2):470–480

    Article  Google Scholar 

  • Hall P (1997) The bootstrap and edgeworth expansion. Springer, New York

    MATH  Google Scholar 

  • Huang SR, Wu SJ (2017) Optimal sample size allocation for accelerated life test under progressive type-II censoring with competing risks. J Stat Comput Simul 87(1):1–16

    Article  MathSciNet  Google Scholar 

  • Krishna H, Goel N (2018) Classical and Bayesian inference in two parameter exponential distribution with randomly censored data. Comput Stat 33:249–275

    Article  MathSciNet  Google Scholar 

  • Kundu D, Pradhan B (2011) Bayesian analysis of progressively censored competing risks data. Sankhya B 73(2):276–296

    Article  MathSciNet  Google Scholar 

  • Lawless JF (2003) Statistical models and methods for lifetime data. Wiley, New York

    MATH  Google Scholar 

  • Meintanis SG (2008) A new approach of goodness-of-fit testing for exponentiated laws applied to the generalized Rayleigh distribution. Comput Stat Data Anal 52(5):2496–2503

    Article  MathSciNet  Google Scholar 

  • Min W, Shi YM (2016) Bayes estimation and expected termination time for the competing risks model from Gompertz distribution under progressively hybrid censoring with binomial removals. J Comput Appl Math 300(C):420–431

    MathSciNet  MATH  Google Scholar 

  • Ng HKT, Chan PS, Balakrishnan N (2004) Optimal progressive censoring plans for the Weibull distribution. Technometrics 46(4):470–481

    Article  MathSciNet  Google Scholar 

  • Pareek B, Kundu D, Kumar S (2009) On progressively censored competing risks data for Weibull distributions. Comput Stat Data Anal 53(12):4083–4094

    Article  MathSciNet  Google Scholar 

  • Raqab MZ, Kundu D (2006) Burr type X distribution: revisited. J Probab Stat Sci 4(2):179–193

    MathSciNet  Google Scholar 

  • Sarhan AM (2007) Analysis of incomplete, censored data in competing risks models with generalized exponential distributions. IEEE Trans Reliab 56(1):132–138

    Article  Google Scholar 

  • Surles JG, Padgett WJ (2001) Inference for reliability and stress-strength for a scaled Burr Type X distribution. Lifetime Data Anal 7(2):187–200

    Article  MathSciNet  Google Scholar 

  • Surles JG, Padgett WJ (2005) Some properties of a scaled Burr Type X distribution. J Stat Plan Inference 128(1):271–280

    Article  MathSciNet  Google Scholar 

  • Wang L (2018) Inference of progressively censored competing risks data from Kumaraswamy distributions. J Comput Appl Math 343:719–736

    Article  MathSciNet  Google Scholar 

  • Ye ZS, Chan PS, Xie M, Ng HKT (2014) Statistical inference for the extreme value distribution under adaptive Type-II progressive censoring schemes. J Stat Comput Simul 84(5):1099–1114

    Article  MathSciNet  Google Scholar 

  • Zellner A (1986) Bayesian estimation and prediction using asymmetric loss functions. Publ Am Stat Assoc 81(394):446–451

    Article  MathSciNet  Google Scholar 

  • Zhang Y, Meeker WQ (2005) Bayesian life test planning for the Weibull distribution with given shape parameter. Metrika 61(3):237–249

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors’ work was partially supported by the National Statistical Science Research Project of China (No. 2019LZ32). The authors would like to thank the editor and anonymous referees for their constructive comments and suggestions that have substantially improved the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhao Gui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 3.1:

I. For given \(\lambda _k>0\), we have \(0<B_{ki}<1\).

(1) When \(\alpha _k\rightarrow 0^+\), then \(B_{ki}^{\alpha _k}\rightarrow 1^-\) and \(1-B_{ki}^{\alpha _k}\rightarrow 0^+\). \(\sum _{i=1}^mI(\delta _i=k)\log (B_{ki})<0\) is a constant, and we have

$$\begin{aligned} \lim \limits _{\alpha _k\rightarrow 0^+}\frac{m_k}{\alpha _k}=+\infty , \quad \lim \limits _{\alpha _k\rightarrow 0^+}-\sum _{i=1}^m(I(\delta _i=3-k)+r_i)\frac{B_{ki}^{\alpha _k}\log (B_{ki})}{1-B_{ki}^{\alpha _k}}=+\infty , \end{aligned}$$

therefore, \(\lim \limits _{\alpha _k\rightarrow 0^+}\frac{\partial l}{\partial \alpha _k}=+\infty \).

(2) When \(\alpha _k\rightarrow +\infty \), then \(B_{ki}^{\alpha _k}\rightarrow 0^+\), similarly, \(\sum _{i=1}^mI(\delta _i=k)\log (B_{ki})<0\) is a constant, and we have

$$\begin{aligned} \lim \limits _{\alpha _k\rightarrow +\infty }\frac{m_k}{\alpha _k}=0, \quad \lim \limits _{\alpha _k\rightarrow +\infty }-\sum _{i=1}^m(I(\delta _i=3-k)+r_i)\frac{B_{ki}^{\alpha _k}\log (B_{ki})}{1-B_{ki}^{\alpha _k}}=0, \end{aligned}$$

therefore, \(\lim \limits _{\alpha _k\rightarrow +\infty }\frac{\partial l}{\partial \alpha _k}\) is a negtive constant.

We can further get

$$\begin{aligned} \frac{\partial ^2 l}{\partial \alpha _k^2}=-\frac{m_k}{\alpha _k^2}-\sum _{i=1}^m(I(\delta _i=3-k)+r_i)\frac{B_{ki}^{\alpha _k}\log ^2(B_{ki})}{(1-B_{ki}^{\alpha _k})^2}<0. \end{aligned}$$

So for given \(\lambda _k\), \(\frac{\partial l}{\partial \alpha _k}\) is a monotone decreasing function of \(\alpha _k\) and the equation \(\frac{\partial l}{\partial \alpha _k}=0\) has an unique solution.

II. For given \(\alpha _k>0\) and \(\alpha _k \ne 1\).

(1) When \(\lambda _k\rightarrow +\infty \), then \(B_{ki}\rightarrow 1^-\) and \(\lim \nolimits _{\lambda _k\rightarrow +\infty }B_{ki}^\prime =2x_i^2 \lim \nolimits _{\lambda _k\rightarrow +\infty } \frac{\lambda _k}{e^{(\lambda _k x_i)^2}}=0^+\),

$$\begin{aligned} \begin{aligned} \frac{\partial l}{\partial \lambda _k}=&2\frac{m_k}{\lambda _k}+\sum _{i=1}^m(\alpha _k-1)I(\delta _i=k)\frac{B_{ki}^\prime }{B_{ki}}\\&-2\lambda _k\left[ \sum _{i=1}^mx_i^2I(\delta _i=k)+\sum _{i=1}^m(I(\delta _i=3-k)+r_i)\frac{\alpha _kB_{ki}^{\alpha _k-1}x_i^2 e^{-(\lambda _k x_i)^2}}{1-B_{ki}^{\alpha _k}}\right] , \end{aligned} \end{aligned}$$

where \(\lim \nolimits _{\lambda _k\rightarrow +\infty }2\frac{m_k}{\lambda _k}=0\), \(\lim \nolimits _{\lambda _k\rightarrow +\infty }\sum _{i=1}^m(\alpha _k-1)I(\delta _i=k)\frac{B_{ki}^\prime }{B_{ki}}=0\) and

$$\begin{aligned} \begin{aligned}&\lim \limits _{\lambda _k\rightarrow +\infty }\sum _{i=1}^m(I(\delta _i=3-k)+r_i)\frac{\alpha _kB_{ki}^{\alpha _k-1}x_i^2 e^{-(\lambda _k x_i)^2}}{1-B_{ki}^{\alpha _k}}\\&\quad =\sum _{i=1}^m(I(\delta _i=3-k)+r_i)\alpha _k x_i^2 \lim \limits _{\lambda _k\rightarrow +\infty }\frac{ e^{-(\lambda _k x_i)^2}}{1-B_{ki}^{\alpha _k}}=\sum _{i=1}^m(I(\delta _i=3-k)+r_i)x_i^2. \end{aligned} \end{aligned}$$

Therefore, \(\lim \limits _{\lambda _k\rightarrow +\infty }-2\lambda _k[\cdot ]=-\infty \) such that \(\lim \limits _{\lambda _k\rightarrow +\infty }\frac{\partial l}{\partial \lambda _k}=-\infty \).

(2) When \(\lambda _k\rightarrow 0^+\), then \(B_{ki}\rightarrow 0^+\) and \(B_{ki}^\prime \rightarrow 0^+\), based on (3.4), we have

$$\begin{aligned} \lim \limits _{\lambda _k\rightarrow 0^+}2\frac{m_k}{\lambda _k}=+\infty , \quad \lim \limits _{\lambda _k\rightarrow 0^+}-2\lambda _k\sum _{i=1}^mx_i^2I(\delta _i=k)=0. \end{aligned}$$
(A.1)

For \(\lim \limits _{\lambda _k\rightarrow 0^+}\sum _{i=1}^m(\alpha _k-1)I(\delta _i=k)\frac{B_{ki}^\prime }{B_{ki}}\), we can compute it as follows.

$$\begin{aligned} \lim \limits _{\lambda _k\rightarrow 0^+}\frac{B_{ki}^\prime }{B_{ki}}=\lim \limits _{\lambda _k\rightarrow 0^+}\frac{2x_i^2\lambda _ke^{-(\lambda _k x_i)^2}}{1-e^{-(\lambda _k x_i)^2}}=2x_i^2 \lim \limits _{\lambda _k\rightarrow 0^+} \frac{\lambda _k}{1-e^{-(\lambda _k x_i)^2}}=+\infty . \end{aligned}$$

Hence,

$$\begin{aligned} \lim \limits _{\lambda _k\rightarrow 0^+}\sum _{i=1}^m(\alpha _k-1)I(\delta _i=k)\frac{B_{ki}^\prime }{B_{ki}}= \left\{ \begin{aligned}&+\infty , \qquad \alpha _k>1\\&-\infty , \qquad 0<\alpha _k<1 \end{aligned} \right. \end{aligned}$$
(A.2)

We have already known \(B_{ki}^{\alpha _k}\rightarrow 0^+\) and

$$\begin{aligned} B_{ki}^{\alpha _k-1} \rightarrow \left\{ \begin{aligned} 0^+, \qquad&\alpha _k>1\\ +\infty , \qquad&0<\alpha _k<1 \end{aligned} \right. \end{aligned}$$

hence, when \(\alpha _k>1\), \(\lim \limits _{\lambda _k\rightarrow 0^+}-\sum _{i=1}^m(I(\delta _i=3-k)+r_i)\frac{\alpha _kB_{ki}^{\alpha _k-1}B_{ki}^\prime }{1-B_{ki}^{\alpha _k}}=0\), but when \(0<\alpha _k<1\),

$$\begin{aligned}&\lim \limits _{\lambda _k\rightarrow 0^+}-\sum _{i=1}^m(I(\delta _i=3-k)+r_i)\frac{\alpha _kB_{ki}^{\alpha _k-1}B_{ki}^\prime }{1-B_{ki}^{\alpha _k}}\\&\quad =-\sum _{i=1}^m(I(\delta _i=3-k)+r_i)2x^2_i\alpha _k \lim \limits _{\lambda _k\rightarrow 0^+}B_{ki}^{\alpha _k-1}\lambda _k. \end{aligned}$$

And we can get

$$\begin{aligned} \begin{aligned} \lim \limits _{\lambda _k\rightarrow 0^+}B_{ki}^{\alpha _k-1}\lambda _k&=\lim \limits _{\lambda _k\rightarrow 0^+}\frac{\lambda _k}{B_{ki}^{1-\alpha _k}}=\lim \limits _{\lambda _k\rightarrow 0^+} \frac{1}{1-\alpha _k}\frac{B_{ki}^{\alpha _k}}{B_{ki}^\prime }\\&=\lim \limits _{\lambda _k\rightarrow 0^+} \frac{1}{1-\alpha _k}\frac{\alpha _kB_{ki}^{\alpha _k-1}B_{ki}^\prime }{B_{ki}^{\prime \prime }}\\&=\frac{\alpha _k}{1-\alpha _k}\lim \limits _{\lambda _k\rightarrow 0^+}B_{ki}^{\alpha _k-1}\lambda _k \end{aligned} \end{aligned}$$

for arbitrary \(0<\alpha _k<1\), here \(B_{ki}^{\prime \prime }\) is obtained by deriving \(B_{ki}^\prime \) to \(\lambda _k\), namely \(B_{ki}^{\prime \prime }=2x_i^2e^{-(\lambda _k x_i)^2}(1-2x_i^2\lambda _k^2)\). So \(\lim \limits _{\lambda _k\rightarrow 0^+}B_{ki}^{\alpha _k-1}\lambda _k=0\)

We have

$$\begin{aligned} \lim \limits _{\lambda _k\rightarrow 0^+}-\sum _{i=1}^m(I(\delta _i=3-k)+r_i)\frac{\alpha _kB_{ki}^{\alpha _k-1}B_{ki}^\prime }{1-B_{ki}^{\alpha _k}}=0. \end{aligned}$$
(A.3)

According to (A.1), (A.2) and (A.3), for \(\alpha _k>1\), \(\lim \limits _{\lambda _k\rightarrow 0^+}\frac{\partial l}{\partial \lambda _k}=+\infty \). When \(0<\alpha _k<1\), by using L’H\({\hat{o}}\)pital’s rule twice, we have

$$\begin{aligned} \begin{aligned} \lim \limits _{\lambda _k\rightarrow 0^+}\frac{\partial l}{\partial \lambda _k}&=\lim \limits _{\lambda _k\rightarrow 0^+}2\frac{m_k}{\lambda _k}+\sum _{i=1}^m(\alpha _k-1)I(\delta _i=k)\frac{B_{ki}^\prime }{B_{ki}} \\&=\lim \limits _{\lambda _k\rightarrow 0^+}2\sum _{i=1}^{m}I(\delta _i=k)\left[ \frac{1}{\lambda _k}+(\alpha _k-1)\frac{x_i^2\lambda _ke^{-(\lambda _k x_i)^2}}{1-e^{-(\lambda _k x_i)^2}}\right] \\&=\lim \limits _{\lambda _k\rightarrow 0^+}2\sum _{i=1}^{m}I(\delta _i=k) \frac{1-e^{-(\lambda _k x_i)^2}+(\alpha _k-1)x_i^2\lambda _k^2 e^{-(\lambda _k x_i)^2}}{\lambda _k(1-e^{-(\lambda _k x_i)^2})} \\&=+\infty . \end{aligned} \end{aligned}$$

Therefore, the equation \(\frac{\partial l}{\partial \lambda _k}=0\) has solutions, namely, the MLE of \(\lambda _k\) certainly exists.

$$\begin{aligned} \frac{\partial ^2 l}{\partial \lambda _k^2}= & {} -2\frac{m_k}{\lambda _k^2}-2\sum _{i=1}^mx_i^2I(\delta _i=k)+\sum _{i=1}^m(\alpha _k-1)I(\delta _i=k)\frac{B_{ki}^{\prime \prime }B_{ki}-(B_{ki}^\prime )^2}{B_{ki}^2}\nonumber \\&-\alpha _k\sum _{i=1}^m(I(\delta _i=3-k)+r_i) \nonumber \\&\cdot \frac{[(\alpha _k-1)B_{ki}^{\alpha _k-2}(B_{ki}^\prime )^2+B_{ki}^{\alpha _k-1}B_{ki}^{\prime \prime }](1-B_{ki}^{\alpha _k})+(B_{ki}^{\alpha _k-1}B_{ki}^{\prime })^2\alpha _k}{(1-B_{ki}^{\alpha _k})^2} \end{aligned}$$
(A.4)
$$\begin{aligned}= & {} -2\frac{m_k}{\lambda _k^2}-2\sum _{i=1}^mx_i^2I(\delta _i=k)+\sum _{i=1}^m(\alpha _k-1)I(\delta _i=k)\frac{B_{ki}^{\prime \prime }B_{ki}-(B_{ki}^\prime )^2}{B_{ki}^2} \nonumber \\&-\alpha _k\sum _{i=1}^m(I(\delta _i=3-k)+r_i)\nonumber \\&\frac{B_{ki}^{\alpha _k-2}(1-B_{ki}^{\alpha _k})(B_{ki}^{\prime \prime }B_{ki}-(B_{ki}^\prime )^2)+\alpha _kB_{ki}^{\alpha _k-2}(B_{ki}^\prime )^2}{(1-B_{ki}^{\alpha _k})^2}\nonumber \\ \end{aligned}$$
(A.5)

Using the inequality \(e^{-t}>1-2t\) for \(t>0\), we have

$$\begin{aligned} B_{ki}^{\prime \prime }B_{ki}-(B_{ki}^\prime )^2=2x_i^2e^{-(\lambda _k x_i)^2}(1-2x_i^2\lambda _k^2-e^{-(\lambda _k x_i)^2})<0. \end{aligned}$$

When \(\alpha _k>1\), it is evident that \(\frac{\partial ^2 l}{\partial \lambda _k^2}<0\) can be derived from (A.4), and MLE of \(\lambda _k\)(\(k=1,2\)) is unique in this case. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Gui, W. Inference and optimal censoring scheme for progressively Type-II censored competing risks model for generalized Rayleigh distribution. Comput Stat 36, 479–513 (2021). https://doi.org/10.1007/s00180-020-01021-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-020-01021-y

Keywords

Navigation