Skip to main content
Log in

Likelihood-based analysis of doubly-truncated data under the location-scale and AFT model

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Doubly-truncated data arise in many fields, including economics, engineering, medicine, and astronomy. This article develops likelihood-based inference methods for lifetime distributions under the log-location-scale model and the accelerated failure time model based on doubly-truncated data. These parametric models are practically useful, but the methodologies to fit these models to doubly-truncated data are missing. We develop algorithms for obtaining the maximum likelihood estimator under both models, and propose several types of interval estimation methods. Furthermore, we show that the confidence band for the cumulative distribution function has closed-form expressions. We conduct simulations to examine the accuracy of the proposed methods. We illustrate our proposed methods by real data from a field reliability study, called the Equipment-S data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Cheng RCH, Iles TC (1983) Confidence bands for cumulative distribution functions of continuous random variables. Technometrics 25(1):77–86

    Article  Google Scholar 

  • Cochran WG (1968) Errors of measurement in statistics. Technometrics 10(4):637–666

    Article  Google Scholar 

  • Dörre A (2020) Bayesian estimation of a lifetime distribution under double truncation caused by time-restricted data collection. Stat Pap 61(3):945–965

    Article  MathSciNet  Google Scholar 

  • Dörre A, Emura T (2019) Analysis of doubly truncated data: an introduction. Springer, Berlin

    Book  Google Scholar 

  • Efron B, Petrosian V (1999) Nonparametric methods for doubly truncated data. J Am Stat Assoc 94(447):824–834

    Article  MathSciNet  Google Scholar 

  • Emura T, Konno Y (2012) Multivariate normal distribution approaches for dependently truncated data. Stat Pap 53(1):133–149

    Article  MathSciNet  Google Scholar 

  • Emura T, Pan C-H (2020) Parametric likelihood inference and goodness-of-fit for dependently left-truncated data, a copula-based approach. Stat Pap 61(1):479–501

    Article  MathSciNet  Google Scholar 

  • Emura T, Konno Y, Michimae H (2015) Statistical inference based on the nonparametric maximum likelihood estimator under double-truncation. Lifetime Data Anal 21(3):397–418

    Article  MathSciNet  Google Scholar 

  • Emura T, Hu Y, Konno Y (2017) Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation. Stat Pap 58(3):877–909

    Article  MathSciNet  Google Scholar 

  • Emura T, Hu Y, and Huang C (2018) Double.truncation: analysis of doubly-truncated data. CRAN

  • Escobar LA, Hong Y, Meeker WQ (2008) Simultaneous confidence bands and regions for log-location-scale distributions with censored data. Iowa State University Digital Repository, Paper, Statistical Preprints, p 32

  • Frank G, Dörre A (2017) Linear regression with randomly double-truncated data. S Afr Stat J 51(1):1–18

    MathSciNet  MATH  Google Scholar 

  • Härtler G (1987) Estimation and test for the parameters of the Arrhenius model. Qual Reliab Eng Int 3(4):219–225

    Article  Google Scholar 

  • Hoadley B (1971) Asymptotic properties of maximum likelihood estimators for the independent not identically distributed case. Ann Math Stat 42(6):1977–1991

    Article  MathSciNet  Google Scholar 

  • Hong Y, Meeker WQ, Escobar LA (2008) Avoiding problems with normal approximation confidence intervals for probabilities. Technometrics 50(1):64–68

    Article  MathSciNet  Google Scholar 

  • Hu Y, Emura T (2015) Maximum likelihood estimation for a special exponential family under random double-truncation. Comput Stat 30(4):1199–1229

    Article  MathSciNet  Google Scholar 

  • Jeng S, Meeker WQ (2001) Parametric simultaneous confidence bands for cumulative distributions from censored data. Technometrics 43(4):450–461

    Article  MathSciNet  Google Scholar 

  • Lawless JF (2003) Statistical models and methods for lifetime data, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Lehmann EL, Casella G (1998) Theory of point estimation. Springer, Berlin

    MATH  Google Scholar 

  • Menon MV (1963) Estimation of the shape and scale parameters of the Weibull distribution. Technometrics 5(2):175–182

    Article  MathSciNet  Google Scholar 

  • Moreira C, de Uña-Álvarez J (2010) Bootstrapping the NPMLE for doubly truncated data. J Nonparametr Stat 22:567–583

    Article  MathSciNet  Google Scholar 

  • Moreira C, Van Keilegom I (2013) Bandwidth selection for kernel density estimation with doubly truncated data. Comput Stat Data Anal 61:107–123

    Article  MathSciNet  Google Scholar 

  • Moreira C, de Uña-Álvarez J, Van Keilegom I (2014) Goodness-of-fit Tests for a semiparametric model under random double truncation. Comput Stat 29(5):1365–1379

    Article  MathSciNet  Google Scholar 

  • Nelson W (1982) Applied life data analysis. Addison-Wesley, Boston

    Book  Google Scholar 

  • Sankaran PG, Sunoj SM (2004) Identification of models using failure rate and mean residual life of double truncated random variables. Stat Pap 45(1):97–109

    Article  Google Scholar 

  • Scheike TH, Keiding N (2006) Design and analysis of time-to-pregnancy. Stat Methods Med Res 15:127–140

    Article  MathSciNet  Google Scholar 

  • Shen PS (2010) Nonparametric analysis of doubly truncated data. Ann Inst Stat Math 62(5):835–853

    Article  MathSciNet  Google Scholar 

  • Shen PS (2011) Testing quasi-independence for doubly truncated data. J Nonparametr Stat 23(3):753–761

    Article  MathSciNet  Google Scholar 

  • Woodroofe M (1985) Estimating a distribution function with truncaed data. Ann Stat 13(1):163–177

    Article  Google Scholar 

  • Ye Z, Tang L (2016) Augmenting the unreturned for field data with information on returned failures only. Technometrics 58(4):513–523

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the associate editor and two anonymous reviewers for their helpful comments that greatly improved this work. Takeshi Emura is financially supported by Ministry of Science and Technology, Taiwan (103-2118-M-008-MY2; 107-2118-M-008-003-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Emura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 876 KB)

Appendices

Appendix A: Derivatives of the log-likelihood function

To obtain he MLE numerically, we need the first and second derivatives of the log-likelihood \(\ell (\varvec{\theta })\). Define notations \(Z_{s}(\varvec{\theta }) = (s - \mu )/\sigma , s \in \{u_i, y_i, v_i\}\) and

$$\begin{aligned} H_{v_i}(\varvec{\theta })&= \frac{\phi \{Z_{v_i}(\varvec{\theta })\}}{\varPhi \{Z_{v_i}(\varvec{\theta })\}-\varPhi \{Z_{u_i}(\varvec{\theta })\}}, \ H_{u_i}(\varvec{\theta }) = \frac{\phi \{Z_{u_i}(\varvec{\theta })\}}{\varPhi \{Z_{v_i}(\varvec{\theta })\}-\varPhi \{Z_{u_i}(\varvec{\theta })\}} \end{aligned}$$
(1)
$$\begin{aligned} K_{v_i}(\varvec{\theta })&= \frac{\phi '\{Z_{v_i}(\varvec{\theta })\}}{\varPhi \{Z_{v_i}(\varvec{\theta })\}-\varPhi \{Z_{u_i}(\varvec{\theta })\}}, \ K_{u_i}(\varvec{\theta }) = \frac{\phi '\{Z_{u_i}(\varvec{\theta })\}}{\varPhi \{Z_{v_i}(\varvec{\theta })\}-\varPhi \{Z_{u_i}(\varvec{\theta })\}} \end{aligned}$$
(2)

Note that \(H_{v_i}(\varvec{\theta })\) is the backward hazard rate at time \(v_i\) and \(H_{u_i}(\varvec{\theta })\) is the forward hazard rate at time \(u_i\) under double-truncation (Sankaran and Sunoj 2004).

The first-order derivatives of the log-likelihood are

$$\begin{aligned} \frac{\partial }{\partial \mu } \ell (\varvec{\theta })&= -\frac{1}{\sigma } \sum _{i=1}^n \frac{\phi '\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} + \frac{1}{\sigma } \sum _{i=1}^n \{H_{v_i}(\varvec{\theta }) - H_{u_i}(\varvec{\theta })\}, \\ \frac{\partial }{\partial \sigma } \ell (\varvec{\theta })&= -\frac{n}{\sigma } - \frac{1}{\sigma } \sum _{i=1}^n \frac{Z_{y_i}(\varvec{\theta }) \cdot \phi '\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}}\\&\ \ \ + \frac{1}{\sigma } \sum _{i=1}^n \{Z_{v_i}(\varvec{\theta }) \cdot H_{v_i}(\varvec{\theta }) - Z_{u_i}(\varvec{\theta }) \cdot H_{u_i}(\varvec{\theta })\}. \end{aligned}$$

The second-order derivatives of the log-likelihood are

$$\begin{aligned} \frac{\partial ^2}{\partial \mu ^2} \ell (\varvec{\theta })&= \frac{1}{\sigma ^2} \sum _{i=1}^n \frac{\phi ''\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} - \frac{1}{\sigma ^2} \sum _{i=1}^n \left[ \frac{\phi '\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} \right] ^2 \\&\ \ \ - \frac{1}{\sigma ^2} \sum _{i=1}^n \{K_{v_i}(\varvec{\theta })- K_{u_i}(\varvec{\theta })\} + \frac{1}{\sigma ^2} \sum _{i=1}^n \{H_{v_i}(\varvec{\theta })- H_{u_i}(\varvec{\theta })\}^2 \\ \frac{\partial ^2}{\partial \sigma ^2} \ell (\varvec{\theta })&= \frac{n}{\sigma ^2} + \frac{1}{\sigma ^2} \sum _{i=1}^n \left[ \frac{2 Z_{y_i}(\varvec{\theta }) \cdot \phi '\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} + \frac{Z^2_{y_i}(\theta ) \cdot \phi ''\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} \right] \\&\ \ \ - \frac{1}{\sigma ^2} \sum _{i=1}^n \left[ \frac{Z_{y_i}(\varvec{\theta }) \cdot \phi '\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} \right] ^2 \\&\ \ \ -\frac{2}{\sigma ^2} \sum _{i=1}^n \{ Z_{v_i}(\varvec{\theta })\cdot H_{v_i}(\varvec{\theta })- Z_{u_i}(\varvec{\theta })\cdot H_{u_i}(\varvec{\theta })\} \\&\ \ \ -\frac{1}{\sigma ^2} \sum _{i=1}^n \{ Z^2_{v_i}(\varvec{\theta }) \cdot K_{v_i}(\varvec{\theta })- Z^2_{u_i}(\varvec{\theta }) \cdot K_{u_i}(\varvec{\theta })\} \\&\ \ \ + \frac{1}{\sigma ^2} \sum _{i=1}^n \{Z_{v_i}(\varvec{\theta })\cdot H_{v_i}(\varvec{\theta })- Z_{u_i}(\varvec{\theta })\cdot H_{u_i}(\varvec{\theta })\}^2, \\ \frac{\partial }{\partial \mu \partial \sigma } \ell (\varvec{\theta })&= \frac{1}{\sigma ^2} \left[ \frac{\phi '\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} + \frac{Z_{y_i}(\varvec{\theta }) \cdot \phi ''\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} \right] \\&\ \ \ -\frac{1}{\sigma ^2} \sum _{i=1}^n \left[ Z_{y_i}(\varvec{\theta }) \left\{ \frac{\phi '\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} \right\} ^2 \right] \\&\ \ \ -\frac{1}{\sigma ^2} \sum _{i=1}^n \{ Z_{v_i}(\varvec{\theta })\cdot K_{v_i}(\varvec{\theta })- Z_{u_i}(\varvec{\theta })\cdot K_{u_i}(\varvec{\theta })\} \\&\ \ \ + \frac{1}{\sigma ^2} \sum _{i=1}^n \{ H_{v_i}(\varvec{\theta })- H_{u_i}(\varvec{\theta })\}\{Z_{v_i}(\varvec{\theta })\cdot H_{v_i}(\varvec{\theta })- Z_{u_i}(\varvec{\theta })\cdot H_{u_i}(\varvec{\theta })- 1\}. \end{aligned}$$

For the AFT model, we define \(Z_s(\varvec{\theta }) = (s - \beta _0 - {\varvec{x}}_i^{\mathrm T} \varvec{\beta })/\sigma , s \in \{u_i, y_i, v_i\}\) and define \(H_{v_i}(\varvec{\theta }), \ H_{u_i}(\varvec{\theta }), \ K_{v_i}(\varvec{\theta })\) and \(K_{u_i}(\varvec{\theta })\) by Equations (1) and (2).

The first-order derivatives of the log-likelihood are

$$\begin{aligned} \frac{\partial }{\partial \beta _0} \ell (\varvec{\theta })&= -\frac{1}{\sigma } \sum _{i=1}^n \frac{\phi '\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} + \frac{1}{\sigma } \sum _{i=1}^n \{H_{v_i}(\varvec{\theta })- H_{u_i}(\varvec{\theta })\}, \\ \frac{\partial }{\partial \varvec{\beta }} \ell (\varvec{\theta })&= -\frac{1}{\sigma } \sum _{i=1}^n \frac{{\varvec{x}}_i \cdot \phi '\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} + \frac{1}{\sigma } \sum _{i=1}^n {\varvec{x}}_i \cdot \{H_{v_i}(\varvec{\theta })- H_{u_i}(\varvec{\theta })\},\\ \frac{\partial }{\partial \sigma } \ell (\varvec{\theta })&= -\frac{n}{\sigma } - \frac{1}{\sigma } \sum _{i=1}^n \frac{Z_{y_i}(\varvec{\theta })\cdot \phi '\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} \\&\ \ \ + \frac{1}{\sigma } \sum _{i=1}^n \{Z_{v_i}(\varvec{\theta })\cdot H_{v_i}(\varvec{\theta })- Z_{u_i}(\varvec{\theta })\cdot H_{u_i}(\varvec{\theta })\}. \end{aligned}$$

The second-order derivatives of the log-likelihood are

$$\begin{aligned} \frac{\partial ^2}{\partial \beta _0^2} \ell (\varvec{\theta })&= \frac{1}{\sigma ^2} \sum _{i=1}^n \frac{\phi ''\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} - \left[ \frac{\phi '\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} \right] ^2 \\&\ \ \ -\frac{1}{\sigma ^2} \sum _{i=1}^n \{K_{v_i}(\varvec{\theta })- K_{u_i}(\varvec{\theta })\} + \frac{1}{\sigma ^2} \sum _{i=1}^n \{H_{v_i}(\varvec{\theta })- H_{u_i}(\varvec{\theta })\}^2, \\ \frac{\partial ^2}{\partial \varvec{\beta }\partial \varvec{\beta }^{\mathrm {T}}} \ell (\varvec{\theta })&= \frac{1}{\sigma ^2} \sum _{i=1}^n \frac{{\varvec{x}}_i {\varvec{x}}_i^{\mathrm T} \phi ''\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} - \left[ \frac{{\varvec{x}}_i \phi '\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} \right] \left[ \frac{{\varvec{x}}_i \phi '\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} \right] ^{\mathrm T} \\&\ \ \ -\frac{1}{\sigma ^2} \sum _{i=1}^n {\varvec{x}}_i {\varvec{x}}_i^{\mathrm T} \{K_{v_i}(\varvec{\theta })- K_{u_i}(\varvec{\theta })\} + \frac{1}{\sigma ^2} \sum _{i=1}^n {\varvec{x}}_i {\varvec{x}}_i^{\mathrm T} \{H_{v_i}(\varvec{\theta })- H_{u_i}(\varvec{\theta })\}^2, \\ \frac{\partial ^2}{\partial \sigma ^2} \ell (\varvec{\theta })&= \frac{n}{\sigma ^2} + \frac{1}{\sigma ^2} \sum _{i=1}^n \left[ \frac{2 Z_{y_i}(\varvec{\theta })\cdot \phi '\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} + \frac{Z^2_{y_i}(\varvec{\theta }) \cdot \phi ''\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} \right] \\&\ \ \ -\frac{1}{\sigma ^2} \sum _{i=1}^n \left[ \frac{Z_{y_i}(\varvec{\theta })\cdot \phi '\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} \right] ^2 \\&\ \ \ -\frac{2}{\sigma ^2} \sum _{i=1}^n \{ Z_{v_i}(\varvec{\theta })\cdot H_{v_i}(\varvec{\theta })- Z_{u_i}(\varvec{\theta })\cdot H_{u_i}(\varvec{\theta })\} \\&\ \ \ -\frac{1}{\sigma ^2} \sum _{i=1}^n \{ Z^2_{v_i}(\varvec{\theta }) \cdot K_{v_i}(\varvec{\theta })- Z^2_{u_i}(\varvec{\theta }) \cdot K_{u_i}(\varvec{\theta })\} \\&\ \ \ +\frac{1}{\sigma ^2} \sum _{i=1}^n \{Z_{v_i}(\varvec{\theta })\cdot H_{v_i}(\varvec{\theta })- Z_{u_i}(\varvec{\theta })\cdot H_{u_i}(\varvec{\theta })\}^2,\\ \frac{\partial ^2}{\partial \beta _0 \partial \varvec{\beta }} \ell (\varvec{\theta })&= \frac{1}{\sigma ^2} \sum _{i=1}^n \frac{{\varvec{x}}_i \cdot \phi ''\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} - \frac{1}{\sigma ^2} \sum _{i=1}^n {\varvec{x}}_i \cdot \left[ \frac{\phi '\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} \right] ^2 \\&\ \ \ -\frac{1}{\sigma ^2} \sum _{i=1}^n {\varvec{x}}_i \cdot \{K_{v_i}(\varvec{\theta })- K_{u_i}(\varvec{\theta })\} + \frac{1}{\sigma ^2} \sum _{i=1}^n {\varvec{x}}_i \cdot \{H_{v_i}(\varvec{\theta })- H_{u_i}(\varvec{\theta })\}^2, \\ \frac{\partial ^2}{\partial \beta _0 \partial \sigma } \ell (\varvec{\theta })&= \frac{1}{\sigma ^2} \sum _{i=1}^n \left[ \frac{\phi '\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} + \frac{Z_{y_i}(\varvec{\theta })\cdot \phi ''\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} \right] \\&\ \ \ -\frac{1}{\sigma ^2} \sum _{i=1}^n Z_{y_i}(\varvec{\theta })\cdot \left[ \frac{\phi '\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} \right] ^2 \\&\ \ \ -\frac{1}{\sigma ^2} \sum _{i=1}^n \{Z_{v_i}(\varvec{\theta })\cdot K_{v_i}(\varvec{\theta })- Z_{u_i}(\varvec{\theta })\cdot K_{u_i}(\varvec{\theta })\} \\&\ \ \ +\frac{1}{\sigma ^2} \sum _{i=1}^n \{H_{v_i}(\varvec{\theta })- H_{u_i}(\varvec{\theta })\} \{ Z_{v_i}(\varvec{\theta })\cdot H_{v_i}(\varvec{\theta })- Z_{u_i}(\varvec{\theta })\cdot H_{u_i}(\varvec{\theta })- 1\}, \\ \frac{\partial ^2}{\partial \varvec{\beta }\partial \sigma } \ell (\varvec{\theta })&= \frac{1}{\sigma ^2} \sum _{i=1}^n \left[ \frac{{\varvec{x}}_i \phi '\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} + \frac{{\varvec{x}}_i Z_{y_i}(\varvec{\theta })\cdot \phi ''\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} \right] \\&\ \ \ -\frac{1}{\sigma ^2} \sum _{i=1}^n {\varvec{x}}_i \left[ \frac{Z_{y_i}(\varvec{\theta })\cdot \phi '\{Z_{y_i}(\varvec{\theta })\}}{\phi \{Z_{y_i}(\varvec{\theta })\}} \right] ^2 \\&\ \ \ -\frac{1}{\sigma ^2} \sum _{i=1}^n {\varvec{x}}_i \{Z_{v_i}(\varvec{\theta })\cdot K_{v_i}(\varvec{\theta })- Z_{u_i}(\varvec{\theta })\cdot K_{u_i}(\varvec{\theta })\} \\&\ \ \ + \frac{1}{\sigma ^2} \sum _{i=1}^n {\varvec{x}}_i \{ H_{v_i}(\varvec{\theta })- H_{u_i}(\varvec{\theta })\} \{Z_{v_i}(\varvec{\theta })\cdot H_{v_i}(\varvec{\theta })- Z_{u_i}(\varvec{\theta })\cdot H_{u_i}(\varvec{\theta }){-} 1\}. \end{aligned}$$

Appendix B: Regularity conditions

We impose the following conditions to derive the asymptotic distribution of the MLEs.

Assumption (A) There exists a positive definite matrix \({\varvec{I}}(\varvec{\theta })\) such that, as \(n \rightarrow \infty \),

$$\begin{aligned} \sum _{i=1}^n {\varvec{I}}_i(\varvec{\theta }) / n \rightarrow {\varvec{I}}(\varvec{\theta }), \quad \forall \varvec{\theta }. \end{aligned}$$

Assumption (B) The partial derivatives and integration can be exchangeable such that

$$\begin{aligned} \int \frac{\partial }{\partial \varvec{\theta }} \log f_{\varvec{\theta }}(y | Y \in [u_i, v_i]) \cdot f_{\varvec{\theta }}(y | Y \in [u_i, v_i]) \ dy = \frac{\partial }{\partial \varvec{\theta }} \int f_{\varvec{\theta }}(y | Y \in [u_i, v_i]) \ dy = {\varvec{0}}, \\ {\varvec{I}}_i(\varvec{\theta }) = -\int \frac{\partial ^2}{\partial \varvec{\theta }\partial \varvec{\theta }^{\mathrm T}} \log f_{\varvec{\theta }}(y | Y \in [u_i, v_i]) \cdot f_{\varvec{\theta }}(y | Y \in [u_i, v_i]) \ dy. \end{aligned}$$

Assumption (C) There is a measurable function \(M_{jsl}(\cdot )\) such that

$$\begin{aligned} \left| \frac{\partial ^3}{\partial \varvec{\theta }_j \partial \varvec{\theta }_s \partial \varvec{\theta }_l} \log f_{\varvec{\theta }}(y | Y \in [u_i, v_i]) \right| \le M_{jsl}(y), \quad \forall y, \quad \forall \varvec{\theta }, \quad \forall i, \end{aligned}$$

with \(m_{i,jsl} \equiv \mathrm {E}_{\varvec{\theta }^0} \{ M_{jsl}(Y_i) \} < \infty \) and \(m_{i,jsl}^2 \equiv \mathrm {E}_{\varvec{\theta }^0} \{ M_{jsl}(Y_i)^2 \} < \infty \). For some \(m_{jsl}\) and \(m_{jsl}^2\), it holds that \(\sum _{i=1}^n m_{i,jsl}/n \rightarrow m_{jsl}\) and \(\sum _{i=1}^n m_{i,jsl}^2 /n \rightarrow m_{jsl}^2\) as \(n \rightarrow \infty \).

Assumption (D) There is a measurable function \(W_{js}(\cdot )\) such that

$$\begin{aligned} \left| \frac{\partial ^2}{\partial \varvec{\theta }_j \partial \varvec{\theta }_s} \log f_{\varvec{\theta }}(y | Y \in [u_i, v_i]) \right| \le W_{js}(y), \quad \forall y, \quad \forall \varvec{\theta }, \quad \forall i, \end{aligned}$$

with \(w_{i,js} \equiv \mathrm {E}_{\varvec{\theta }^0} \{ W_{js}(Y_i) \} < \infty \) and \(w_{i,js}^2 \equiv \mathrm {E}_{\varvec{\theta }^0} \{ W_{js}(Y_i)^2 \} < \infty \). For some \(w_{js}\) and \(w_{js}^2\), it holds that \(\sum _{i=1}^n w_{i,js}/n \rightarrow w_{js}\) and \(\sum _{i=1}^n w_{i,js}^2 /n \rightarrow w_{js}^2\) as \(n \rightarrow \infty \).

Assumption (E) There is a measurable function \(A_j(\cdot )\) such that

$$\begin{aligned} \left| \frac{\partial }{\partial \varvec{\theta }_j} \log f_{\varvec{\theta }}(y | Y \in [u_i, v_i]) \right| \le A_{j}(y), \quad \forall y, \quad \forall \varvec{\theta }, \quad \forall i, \end{aligned}$$

with \(\sup _y A_j^2(y) < \infty \).

Assumption (A) requires the Fisher information matrix to be stable for large samples. Here, the matrix \({\varvec{I}}(\varvec{\theta })\) is regarded as the asymptotic information matrix. Assumptions (B)–(C) impose the smoothness and boundedness of \(f_{\varvec{\theta }}(y | Y \in [u_i, v_i])\), which are similar to those imposed for the i.i.d. models (pp. 462–463 of Lehmann and Casella 1998). Assumptions (D)–(E) require the boundedness of the score functions and Hessian matrix, as employed by Emura et al. (2017) for the i.n.i.d. models. While these assumptions are too strong without truncation (Hoadley 1971), they can be satisfied under double-truncation since the density is truncated from below and above. See Lemma 4 of Emura et al. (2017).

Appendix C: The derivation of the transformed CI for \(F_{\varvec{\theta }}(t)\)

The derivation is based on inverting the CI for the quantile. Define the pth quantile function \(g(\varvec{\theta }) = y_p = \log (t_p) = \mu + \sigma w_p\), where \(w_p = \varPhi ^{-1}(p)\) for \(0 \le p \le 1\). The SE of \(\widehat{y}_p = \widehat{\mu }+ \widehat{\sigma }w_p\) is

$$\begin{aligned} \mathrm {SE}(\widehat{y}_p) = \sqrt{\begin{bmatrix} 1&w_p \end{bmatrix} \begin{bmatrix} \lambda ^*_{11} &{} \lambda ^*_{12} \\ \lambda ^*_{12} &{} \lambda ^*_{22} \end{bmatrix} \begin{bmatrix} 1 \\ w_p \end{bmatrix}} = \sqrt{\lambda ^*_{11} + 2w_p \lambda ^*_{12} + w_p^2 \lambda ^*_{22}}. \end{aligned}$$

The \((1-\alpha ) 100\%\) CI for the pth quantile is \([\widehat{y}_p(\min ), \widehat{y}_p(\max )]\), where

$$\begin{aligned} \widehat{y}_p(\min )&= \widehat{y}_p - Z_{\alpha /2} \cdot \sqrt{\lambda ^*_{11} + 2 w_p \lambda ^*_{12} + w_p^2 \lambda ^*_{22}},\\ \widehat{y}_p(\max )&= \widehat{y}_p + Z_{\alpha /2} \cdot \sqrt{\lambda ^*_{11} + 2 w_p \lambda ^*_{12} + w_p^2 \lambda ^*_{22}}. \end{aligned}$$

Let \(w_p = a, \varOmega = Z_{\alpha /2}/\widehat{\sigma }\) and \(\widehat{\xi }= \{\log (t) - \widehat{\mu }\}/\widehat{\sigma }\). Inverting the CI for the quantile means that (1) the solution to \(\widehat{y}_p(\min ) = \log (t)\) with respect to p gives the upper CI for \(F_{\varvec{\theta }}(t)\) and (2) the solution to \(\widehat{y}_p(\max ) = \log (t)\) with respect to p gives the lower CI for \(F_{\varvec{\theta }}(t)\). Thus we need to solve

$$\begin{aligned} \widehat{\xi }= w_p - \varOmega \sqrt{\lambda ^*_{11} + 2 w_p \lambda ^*_{12} + w_p^2 \lambda ^*_{22}}, \quad \widehat{\xi }= w_p + \varOmega \sqrt{\lambda ^*_{11} + 2 w_p \lambda ^*_{12} + w_p^2 \lambda ^*_{22}}. \end{aligned}$$

Manipulating these equations, we have

$$\begin{aligned} (1 - \varOmega ^2 \lambda ^*_{22}) a^2 - 2 (\widehat{\xi }+ \varOmega ^2 \lambda ^*_{12})a + (\widehat{\xi }^2 - \varOmega ^2 \lambda ^*_{11}) = 0. \end{aligned}$$

The solutions to the above equation are

$$\begin{aligned} a_{\min } = \widehat{\xi }+ G_1(\varLambda ^*) - G_2(\varLambda ^*), \quad a_{\max } = \widehat{\xi }+ G_1(\varLambda ^*) + G_2(\varLambda ^*), \end{aligned}$$

where

$$\begin{aligned} G_1(\varLambda ^*)&= \frac{\varOmega ^2 (\lambda ^*_{12} + \widehat{\xi }\lambda ^*_{22})}{1 - \varOmega ^2 \lambda ^*_{22}}, \\ G_2(\varLambda ^*)&= \frac{\sqrt{\varOmega ^2 (\lambda ^*_{11} + 2 \widehat{\xi }\lambda ^*_{12} + \widehat{\xi }^2 \lambda ^*_{22}) - \varOmega ^4 (\lambda ^*_{11} \lambda ^*_{22} - \lambda ^*_{12})}}{1 - \varOmega ^2 \lambda ^*_{22}}. \end{aligned}$$

Therefore, the transformed CI for \(F_{\varvec{\theta }}(t)\) is \([\varPhi (a_{\min }), \varPhi (a_{\max })]\) with the restriction \(1 - \varOmega ^2 \lambda ^*_{22} > 0\).

Appendix D: The derivation of the CB for \(F_{\varvec{\theta }}(t)\)

Here we assume the regularity conditions given in “Appendix C”. For the location-scale model, the observed information matrix can be written as

$$\begin{aligned} {\varvec{i}}(\widehat{\varvec{\theta }}) = - \frac{\partial \ell (\varvec{\theta })}{\partial \varvec{\theta }\partial \varvec{\theta }^{\mathrm T}} \Bigg |_{\varvec{\theta }= \widehat{\varvec{\theta }}} = \begin{bmatrix} -\frac{\partial ^2}{\partial \mu ^2} \ell (\varvec{\theta }) &{} -\frac{\partial ^2}{\partial \mu \partial \sigma } \ell (\varvec{\theta }) \\ -\frac{\partial ^2}{\partial \mu \partial \sigma } \ell (\varvec{\theta }) &{} -\frac{\partial ^2}{\partial \sigma ^2} \ell (\varvec{\theta }) \end{bmatrix} \Bigg |_{\varvec{\theta }= \widehat{\varvec{\theta }}} = \frac{n}{\widehat{\sigma }^2} \begin{bmatrix} i_{11} &{} i_{12} \\ i_{12} &{} i_{22}\end{bmatrix}. \end{aligned}$$

Define the scaled information matrix as \({\varvec{i}}_S(\widehat{\varvec{\theta }}) = \begin{bmatrix} i_{11} &{} i_{12} \\ i_{12} &{} i_{22} \end{bmatrix}\), and the inverse of the scaled information matrix \(\varLambda = \begin{bmatrix} i_{11} &{} i_{12} \\ i_{12} &{} i_{22} \end{bmatrix}^{-1} = \begin{bmatrix} \lambda _{11} &{} \lambda _{12} \\ \lambda _{12} &{} \lambda _{22} \end{bmatrix}\). Letting \(\varvec{\delta }^{\mathrm T} = (0, 1)\), we find \(\min \varvec{\delta }^{\mathrm T} \varvec{\theta }\) for the constrained region \((\widehat{\varvec{\theta }}- \varvec{\theta }) {\varvec{i}}(\widehat{\varvec{\theta }}) (\widehat{\varvec{\theta }}- \varvec{\theta }) \le \gamma \) such that

$$\begin{aligned} \mathrm {argmin}_{\varvec{\theta }} \varvec{\delta }^{\mathrm T} \varvec{\theta }= \mathrm {argmin}_{\varvec{\theta }} \varvec{\delta }^{\mathrm T} (\varvec{\theta }- \widehat{\varvec{\theta }}) = \mathrm {argmin}_{\varvec{\theta }} \left[ \left( \sqrt{{\varvec{i}}^{-1}_S(\widehat{\varvec{\theta }})} \varvec{\delta }\right) ^{\mathrm T} \sqrt{{\varvec{i}}_S(\widehat{\varvec{\theta }})} (\varvec{\theta }- \widehat{\varvec{\theta }}) \right] , \end{aligned}$$

subject to the constraint \((\widehat{\varvec{\theta }}- \varvec{\theta })^{\mathrm T} {\varvec{i}}_S(\widehat{\varvec{\theta }}) (\widehat{\varvec{\theta }}- \varvec{\theta }) \le \widehat{\sigma }^2 (\gamma /n) \equiv \widehat{\sigma }^2 \gamma _0\).

Let \({\varvec{d}}^{\mathrm T} = \left( \sqrt{{\varvec{i}}_S^{-1}(\widehat{\varvec{\theta }})} \varvec{\delta }\right) ^{\mathrm T}\) and \({\varvec{k}}= \sqrt{{\varvec{i}}_S(\widehat{\varvec{\theta }})} (\varvec{\theta }- \widehat{\varvec{\theta }})\), we then have \({\varvec{k}}^{\mathrm T} {\varvec{k}}= \gamma _0 \widehat{\sigma }^2\). From the Cauchy-Schwartz inequality, \({\varvec{d}}^{\mathrm T} {\varvec{k}}\le \sqrt{{\varvec{d}}^{\mathrm T} {\varvec{d}}} \sqrt{{\varvec{k}}^{\mathrm T} {\varvec{k}}} \le \gamma _0 \widehat{\sigma }^2\). The equality holds when \({\varvec{k}}= a {\varvec{d}}\), where a is constant. Since we have \((a {\varvec{d}})^{\mathrm T} (a {\varvec{d}}) = \gamma _0 \widehat{\sigma }^2\), the minimum is attained when \(a = -\sqrt{\gamma _0 \widehat{\sigma }^2 / {\varvec{d}}^{\mathrm T} {\varvec{d}}}\) at

$$\begin{aligned} {\varvec{k}}&= -\sqrt{\gamma _0 \widehat{\sigma }^2 / {\varvec{d}}^{\mathrm T} {\varvec{d}}} \times {\varvec{d}}= -\sqrt{\gamma _0 \widehat{\sigma }^2 / \varvec{\delta }^{\mathrm T} {\varvec{i}}^{-1}_S(\widehat{\varvec{\theta }}) \varvec{\delta }} \times \sqrt{{\varvec{i}}^{-1}_S(\widehat{\varvec{\theta }})} \varvec{\delta }. \end{aligned}$$

This minimum is attained when

$$\begin{aligned} \varvec{\theta }= \widehat{\varvec{\theta }}- \sqrt{\gamma _0 \widehat{\sigma }^2 / \varvec{\delta }^{\mathrm T} {\varvec{i}}_S^{-1}(\widehat{\varvec{\theta }}) \varvec{\delta }} \times {\varvec{i}}_S^{-1}(\widehat{\varvec{\theta }}) \varvec{\delta }\end{aligned}$$

and

$$\begin{aligned} \sigma _{(\min )} = \min \varvec{\delta }^{\mathrm T} \varvec{\theta }= \widehat{\sigma }- \widehat{\sigma }^2 \sqrt{\gamma _0 \varvec{\delta }^{\mathrm T} {\varvec{i}}_S^{-1}(\widehat{\varvec{\theta }}) \varvec{\delta }} = \widehat{\sigma }(1 - \sqrt{\gamma _0 \lambda _{22}}). \end{aligned}$$

This gives the restriction \((1 - \sqrt{\gamma _0 \lambda _{22}}) > 0\), that is, \(i_{11}(i_{22} - \gamma _0) - i_{12}^2 > 0\). Similarly, under \({\varvec{c}}^{\mathrm T} = (1, w_p)\) for the pth quantile,

$$\begin{aligned} \mathrm {argmin}_{\varvec{\theta }} {\varvec{c}}^{\mathrm T} \varvec{\theta }= \mathrm {argmin}_{\varvec{\theta }} {\varvec{c}}^{\mathrm T} (\varvec{\theta }- \widehat{\varvec{\theta }}) = \mathrm {argmin}_{\varvec{\theta }} \left[ \left( \sqrt{{\varvec{i}}_S^{-1}(\widehat{\varvec{\theta }})} {\varvec{c}}\right) ^{\mathrm T} \sqrt{{\varvec{i}}_S(\widehat{\varvec{\theta }})} (\varvec{\theta }- \widehat{\varvec{\theta }}) \right] . \end{aligned}$$

The maximum and minimum hold when

$$\begin{aligned} \varvec{\theta }_{(\max )}&= \widehat{\varvec{\theta }}+ \sqrt{\gamma _0 \widehat{\sigma }^2 / {\varvec{c}}^{\mathrm T} {\varvec{i}}_S^{-1} (\widehat{\varvec{\theta }}) {\varvec{c}}} \times \sqrt{{\varvec{i}}_S^{-1}(\widehat{\varvec{\theta }})} {\varvec{c}},\\ \varvec{\theta }_{(\min )}&= \widehat{\varvec{\theta }}- \sqrt{\gamma _0 \widehat{\sigma }^2 / {\varvec{c}}^{\mathrm T} {\varvec{i}}_S^{-1}(\widehat{\varvec{\theta }}) {\varvec{c}}} \times \sqrt{{\varvec{i}}_S^{-1}(\widehat{\varvec{\theta }})} {\varvec{c}}. \end{aligned}$$

The CBs for the quantile function are

$$\begin{aligned} \widehat{y}_p(\max ) = \max {\varvec{c}}^{\mathrm T} \varvec{\theta }= {\varvec{c}}^{\mathrm T} \varvec{\theta }_{(\max )} = (\widehat{\mu }+ w_p \widehat{\sigma }) + \widehat{\sigma }\sqrt{\gamma _0(\lambda _{11} + 2 w_p \lambda _{12} + w_p^2 \lambda _{22})}, \\ \widehat{y}_p(\min ) = \min {\varvec{c}}^{\mathrm T} \varvec{\theta }= {\varvec{c}}^{\mathrm T} \varvec{\theta }_{(\min )} = (\widehat{\mu }+ w_p \widehat{\sigma }) - \widehat{\sigma }\sqrt{\gamma _0(\lambda _{11} + 2 w_p \lambda _{12} + w_p^2 \lambda _{22})}. \end{aligned}$$

The CBs for \(F_{\varvec{\theta }}(t)\) are derived by inverting the CB for the quantile function, that is,

$$\begin{aligned} \widehat{\xi }= q - \sqrt{\gamma _0(\lambda _{11} + 2q\lambda _{12} + q^2 \lambda _{22})}, \end{aligned}$$

where \(\widehat{\xi }= (y - \widehat{\mu })/\widehat{\sigma }= \{\log (t) - \widehat{\mu }\}/\widehat{\sigma }\) and \(w_p = q\). This equation yields the solutions

$$\begin{aligned} q_{\min } = \widehat{\xi }+ h_1(\varLambda , \widehat{p}) - h_2(\varLambda , \widehat{p}) \quad \text {and} \quad q_{\max } = \widehat{\xi }+ h_1(\varLambda , \widehat{p}) + h_2(\varLambda , \widehat{p}), \end{aligned}$$

where \(\widehat{p} = \varPhi [\{\log (t) - \widehat{\mu }\}/\widehat{\sigma }], w_{\widehat{p}} = \varPhi {-1}(\widehat{p}) = \{\log (t) - \widehat{\mu }\}/\widehat{\sigma }\),

$$\begin{aligned} h_1(\varLambda , \widehat{p})&= \frac{\gamma _0(\lambda _{12} + w_{\widehat{p}} \lambda _{22})}{1 - \gamma _0 \lambda _{22}},\\ h_2(\varLambda , \widehat{p})&= \frac{\sqrt{\gamma _0(\lambda _{11} + 2 w_{\widehat{p}} + w_{\widehat{p}} \lambda _{22}^2) - \gamma _0^2(\lambda _{11} \lambda _{22} - \lambda _{12}^2)}}{1 - \gamma _0 \lambda _{22}} \end{aligned}$$

Therefore, the CB for \(F_{\varvec{\theta }}(t)\) is \([\varPhi (q_{\min }), \varPhi (q_{\max })]\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dörre, A., Huang, CY., Tseng, YK. et al. Likelihood-based analysis of doubly-truncated data under the location-scale and AFT model. Comput Stat 36, 375–408 (2021). https://doi.org/10.1007/s00180-020-01027-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-020-01027-6

Keywords

Navigation