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Abstract
Many statistical problems involve the estimation of a (d × d) orthogonal matrix Q.
Such an estimation is often challenging due to the orthonormality constraints on Q.
To cope with this problem, we use the well-known PLU decomposition, which fac-
torizes any invertible (d × d) matrix as the product of a (d × d) permutation matrix
P , a (d × d) unit lower triangular matrix L, and a (d × d) upper triangular matrix
U . Thanks to the QR decomposition, we find the formulation of U when the PLU
decomposition is applied to Q. We call the result as PLR decomposition; it produces a
one-to-one correspondence between Q and the d (d − 1) /2 entries below the diagonal
of L, which are advantageously unconstrained real values. Thus, once the decompo-
sition is applied, regardless of the objective function under consideration, we can use
any classical unconstrained optimization method to find the minimum (or maximum)
of the objective function with respect to L. For illustrative purposes, we apply the
PLR decomposition in common principle components analysis (CPCA) for the max-
imum likelihood estimation of the common orthogonal matrix when a multivariate
leptokurtic-normal distribution is assumed in each group. Compared to the commonly
used normal distribution, the leptokurtic-normal has an additional parameter govern-
ing the excess kurtosis; this makes the estimation of Q in CPCA more robust against
mild outliers. The usefulness of the PLR decomposition in leptokurtic-normal CPCA
is illustrated by two biometric data analyses.
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1 Introduction

With the term orthogonal matrix we refer to a (d × d) matrix Q whose columns are
mutually orthogonal unit vectors (i.e., orthonormal vectors). As highlighted by Baner-
jee andRoy (2014, p. 209), onemight, perhapsmore properly, call Q an “orthonormal”
matrix, but the more conventional name is an “orthogonal” matrix, and we will adopt
it hereafter. For further characterizations, properties, and details about orthogonal
matrices see, e.g., Lütkepoh (1996, Chapter 9.10), Healy (2000, Chapter 3.5), Schott
(2016, Chapter 1.10), and Searle and Khuri (2017, Chapter 5.4). Orthogonal matrices
are used extensively in statistics, especially in linear models and multivariate analysis
(see, e.g., Graybill 1976 Chapter 11 and James 1954).

The d2 elements of Q are subject to d (d + 1) /2 (orthonormality) constraints. It is
therefore not surprising that they can be represented by only d2 − d (d + 1) /2 =
d (d − 1) /2 independent parameters. A representation is convenient if Q can be
quickly computed from these d (d − 1) /2 independent parameters. Such a represen-
tation should facilitate the search for an orthogonal matrix that satisfies a certain
optimality criterion induced by the chosen estimation method, especially if these
independent parameters were real-valued (Khuri 2003). Methods to parameterize an
orthogonal matrix are reviewed in Khuri and Good (1989). A similar problem is
bumped into when a (d × d) positive-definite matrix �, often encountered in statis-
tics in the form of a covariance matrix, needs to be estimated. Luckily, in this case,
the Cholesky decomposition allows to map the d (d + 1) /2 independent parameters
of � with the d (d + 1) /2 real-valued elements of a (d × d) lower triangular matrix
(Pourahmadi 1999, 2000; Pourahmadi et al. 2007).

Unfortunately, an analogous of the Cholesky decomposition does not exist for Q.
We fill the gap by using the PLU decomposition, which factorizes any invertible
(d × d) matrix as the product of a (d × d) permutation matrix P , a (d × d) unit
lower triangular matrix L, and a (d × d) upper triangular matrix U . Our merit is the
determination of the exact formulation of U when the PLU decomposition is applied
to Q, and we find that by means of the QR decomposition. We call the result as PLR
decomposition; similarly to the Cholesky decomposition, it creates a one-to-one map
between Q and L, whose d (d − 1) /2 entries below the diagonal are advantageously
real-valued.

For illustrative purposes, we apply the PLR decomposition in common principal
component analysis (CPCA), where the space spanned by the d vectors (principal
components) of Q is assumed to be identical across several known groups, whereas
the variances associated with the common principal components may vary. When the
groups are assumed to be normally distributed, as typically happens, we can use the FG
algorithm developed by Flury and Gautschi (1986) for the estimation of Q. Although
the FG algorithm is distribution-free (Flury 1988, p. 71), under non-normal distribu-
tions it may provide an orthogonal matrix which does not maximize the likelihood.
Motivated by this consideration, we assume groups having a leptokurtic-normal dis-
tribution and use the PLR decomposition to allow Q to be estimated by any standard
unconstrained maximization routine. The leptokurtic-normal is an heavy-tailed gener-
alization of the normal distribution that can be preferred, for example, in the presence
of mild outliers.
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Unconstrained representation of orthogonal matrices 1179

The paper is organized as follow. In Sect. 2 we introduce the PLR decomposition. In
Sect. 3we first define theCPCAbased on leptokurtic-normal groups, and then consider
the PLR decomposition in the estimation of the common orthogonal matrix. In Sect. 4
we illustrate the leptokurtic-normal CPCA in allometric studies by using two well-
knownbiometric data sets, where themethod shows its better performancewith respect
to the consolidated normal CPCA. Nevertheless, we want to stress that our goal is not
to propose a new robust method for estimating the common principal components.
Instead, we simply want to illustrate how, regardless of the way the orthogonal matrix
enters in the considered model, we can use our PLR decomposition, along with any
unconstrained optimization routine, to estimate Q, without the need to define ad-hoc
estimating algorithms. Finally, we give conclusions and avenues for further research
in Sect. 5.

2 PLR decomposition of orthogonal matrices

Before to present the PLR decomposition for orthogonal matrices, Definitions 2.1 and
2.2 recall the well-known QR and PLU decompositions.

Definition 2.1 (QR decomposition) If A is a (d × d) invertible matrix, then there is a
unique (d × d) orthogonal matrix Q, and a unique (d × d) upper triangular matrix R
having a positive diagonal, such that A = QR.

Definition 2.2 (PLU decomposition) If A is a (d ×d) invertible matrix, then there is a
(d×d) permutation matrix P , a (d × d) unit lower triangular matrix L, and a (d × d)

upper triangular matrix U , such that A = PLU .

The following theorem presents the PLR decomposition.

Theorem 2.1 (PLR decomposition) If Q is a (d × d) orthogonal matrix, then it can
be factorized as

Q = PLR−1, (1)

where P and L are defined as in Definition 2.2, and R is the upper triangular matrix,
having a positive diagonal, coming from the QR decomposition of the matrix PL (see
Definition 2.1).

Proof Because Q is an orthogonal matrix, it is invertible and, according to Defini-
tion 2.2, admits the PLU decomposition

Q = PLU . (2)

Because any unit lower triangular matrix is invertible, L, as well as PL, is invertible.
Then, according to Definition 2.1, thematrix PL admits the QR decomposition PL =
QR, which we recall to be unique. Then, it is easy to verify that U must be equal to
R−1, and the theorem is proved. ��

123



1180 L. Bagnato, A. Punzo

L is the key matrix of the PLR decomposition in (1); indeed, P can be thought to as a
sort of nuisance matrix only affecting the ordering of the columns of Q – and we know
that such an ordering is often not of interest – and R is a function of L. In particular,
R is the (unique) upper triangular matrix, having a positive diagonal, coming from
the QR decomposition of PL. Note that, the number of free elements in L (which
are those below the main diagonal) is d (d − 1) /2, as the number of free elements of
the orthogonal matrix Q. This means that: 1) any orthogonal matrix admits the PLR
decomposition in (1), and 2) any pair {P, L} is associated to an orthogonal matrix.

3 Leptokurtic-normal common principal components

The advantages of our PLR decomposition can be appreciated in many statistical
fields. Among them there is the common principal component analysis. Below, we
give an example by considering groups being distributed according to a multivariate
leptokurtic-normal distribution.

3.1 Preliminaries

Let
{
xi j ; i = 1, . . . , n j , j = 1, . . . , k

}
, with xi j ∈ IRd , be a set of n = ∑k

j=1 n j

independent observations from k independent groups (or subpopulations) havingmean
μ j and covariance matrix � j . If the inferential interest is on �1, . . . ,�k , then there
is the need to estimate kd (d + 1) /2 parameters. Such a number may be excessive
when k, but especially d, are large, causing problems in the estimation phase. These
problems can often be avoided if �1, . . . ,�k exhibit some common structures, and
several models have been proposed in this direction (see, e.g., Flury 1984, 1986a,
1987; Boik 2002; Greselin et al. 2011). The assessment of a common covariance
structure, in addition to allow for parsimony, can provide more information about the
group conditional distributions (Greselin et al. 2011; Greselin and Punzo 2013) and it
is of intrinsic interest in several fields such as biometry (refer to Sect. 4).

Most of the existing common covariance structures are based on the eigen-
decomposition � j = Q j� j Q′

j , j = 1, . . . , k, where � j = diag
(
λ j1, . . . , λ jd

)
and

Q j denote the eigenvalues and eigenvectorsmatrices, respectively. A famous common
structure assumes that the k covariance matrices have possibly different eigenvalues
but identical eigenvectors, i.e.,

� j = Q� j Q′, j = 1, . . . , k. (3)

Model (3) was proposed by Flury (1984) and is known as the common principal
components (CPC) model. Flury (1984) also derived the maximum likelihood (ML)
estimators of Q and � j , assuming d-variate normality in each group. The asymptotic
distribution of these estimators was studied by Flury (1986b). The corresponding log-
likelihood function can be written as
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Unconstrained representation of orthogonal matrices 1181

lN-CPC (�) = C − 1

2

k∑

j=1

n j

[
d∑

h=1

ln λ jh + tr
(
Q�−1

j Q′S j

)]

, (4)

where � = {
μ j , Q,� j ; j = 1, . . . , k

}
is the whole set of parameters of cardinality

mN-CPC = kd +d (d − 1) /2+ kd, C is a constant that does not depend on the param-
eters, and S j = n−1

j

∑n j
i=1 Si j , with Si j = (

xi j − μ j
) (

xi j − μ j
)′. A closed-form

solution for the ML estimate of Q does not exist, but the Flury-Gautschi (FG) algo-
rithm of Flury andGautschi (1986), which is based on pairwise rotations of orthogonal
vectors (Flury and Constantine 1985), can be used to obtain such a solution. The more
appropriate the CPC model is, the more able the ML-estimated common orthogonal
matrix Q is to simultaneously rotate the sample covariance matrices to nearly diag-
onal form. Flury (1984) also proposed a likelihood-ratio test having the CPC model
under the null and the unconstrained model under the alternative. The monograph by
Flury (1988) provides a rigorous treatise of the CPC and related models, detailing
their properties and offering several examples, with a special focus on biometric data.

3.2 Themodel

However, as confirmed by the simulations of Hallin et al. (2010), the CPC model dis-
cussed above is quite sensitive to the violation of group-specificmultivariate normality
(see, e.g., Boente and Orellana 2001; Boente et al. 2002, 2006, 2009 for examples of
robust CPC approaches). These violations are often due to the presence of mild out-
liers. Contextualizing inCPCA the definition given byRitter (2015, p. 4 and pp. 79–80;
see also Mazza and Punzo 2020), we can define as mild outlier in group j a point that
does not deviate from the reference multivariate normal distribution of that group and
is not strongly outlying but, rather, it produces an overall group-specific distribution
with heavier tails. Therefore, to reduce the influence of these points, more-flexible
elliptically symmetric heavy-tailed distributions can be considered (Ritter 2015, p. 4
and pp. 79). Following this idea, we consider the multivariate leptokurtic-normal dis-
tribution (Bagnato et al. 2017) in CPCA. Compared to the normal distribution, the
leptokurtic-normal has an additional parameter β governing the excess kurtosis and,
advantageously with respect to other heavy-tailed elliptical distributions, its parame-
ters correspond to quantities of direct interest (mean, covariance matrix, and excess
kurtosis). Such a distribution was successfully applied in the modelling of biometric
and financial data (Bagnato et al. 2017; Maruotti et al. 2019).

The probability density function (pdf) of a d-variate leptokurtic-normal (LN) dis-
tribution with mean vectorμ, covariance matrix�, and excess kurtosis β ∈ [0, βmax],
where βmax = min [4d, 4d (d + 2) /5], is given by

fLN (x;μ,�, β) = q (y;β) fN (x;μ,�) , x ∈ IRd , (5)
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1182 L. Bagnato, A. Punzo

where y = (x − μ)′ �−1 (x − μ), fN (·;μ,�) is the pdf of a d-variate normal distri-
bution with mean vector μ and covariance matrix �, and

q (y;β) = 1 + β

8d (d + 2)

[
y2 − 2 (d + 2) y + d (d + 2)

]
, y ≥ 0.

The constraint β ∈ [0, βmax] is the intersection of: (i) β ∈ [0, 4d], which assures that
the pdf is positive elliptical, and (ii) β ∈ [0, 4d (d + 2) /5], which guarantees that the
pdf is unimodal. As a special case, fLN (x;μ,�, β) coincides with fN (x;μ,�) for
β = 0.

The log-likelihood function of the CPC model based on leptokurtic-normal groups
can be written as

lLN-CPC (�) = C − 1

2

k∑

j=1

n j

[
d∑

h=1

ln λ jh + tr
(
Q�−1

j Q′S j

)]

+
k∑

j=1

n j∑

i=1

ln

{
1 + β j

8d(d + 2)

[
tr

(
Q�−1

j Q′Si j
)2

−2(d + 2)tr
(
Q�−1

j Q′Si j
)

+ d(d + 2)
]}

, (6)

where � = {
μ j , Q,� j , β j ; j = 1, . . . , k

}
is the whole set of parameters of cardi-

nality mLN-CPC = mN-CPC + k.

3.3 Computational details

The maximization of lLN-CPC (�) with respect to � does not admit a closed-form
solution (see Bagnato et al. 2017, for the case k = 1). Furthermore, the maximization
problem is constrained due to Q, � j , and β j , j = 1, . . . , k. Finally, even if we were
able to split the log-likelihood function as lLN-CPC (�) = lLN-CPC (�1)+lLN-CPC (�2),
where �1 = {

μ j , β j ; j = 1, . . . , k
}
and �2 = {

Q,� j ; j = 1, . . . , k
}
, we couldn’t

use the FG algorithm to find theML estimate of�2 because the algorithm is implicitly
based on the normality assumption. All these arguments give us the opportunity to
appreciate the advantages of the proposed PLR decomposition.

To make the maximization of lLN-CPC (�) unconstrained, we follow a
transformation/back-transformation approach from the original constrained param-
eters to unconstrained real values. The constrained orthogonal matrix Q is mapped
to a (d × d) unit lower triangular matrix L, having d (d − 1) /2 unconstrained real
valued entries, via the PLR decomposition

Q = PLR−1, (7)

where we recall that P is a (d × d) permutation matrix and R is a (d × d) upper
triangular matrix depending on L (see Definition 2.1). The back-transformation is

L = P ′QR, (8)
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Unconstrained representation of orthogonal matrices 1183

which canbe easily obtainedby starting from theQRdecomposition of PL. The simple
R code (RCore Team 2018) to compute (7) and (8) is given inAppendixA. Concerning
diagonal element λ jh of � j , j = 1, . . . , k and h = 1, . . . , d, the transformation is

λ jh = exp
(
λ̃ jh

)
, (9)

with λ̃ jh ∈ IR, while the back-transformation is

λ̃ jh = log
(
λ jh

)
. (10)

Finally, regarding β j , j = 1, . . . , k, the transformation is

β j = βmax
exp

(
β̃ j

)

1 + exp
(
β̃ j

) , (11)

with β̃ j ∈ IR, while the back-transformation is

β̃ j = log

(
β j

βmax − β j

)
. (12)

Based on (7), (9) and (11), in the transformation step of our procedure we maximize
the log-likelihood function lLN-CPC with respect to μ (which does not require any
transformation), λ̃ jh , β̃ j , and to the elements below the diagonal of L, j = 1, . . . , k
and h = 1, . . . , d. Operationally, we perform this unconstrained maximization via
the general-purpose optimizer optim() for R, included in the stats package. We try
two different commonly used algorithms for maximization: Nelder-Mead, which is
derivatives-free, and BFGS which uses second-order derivatives. They can be passed
to optim() via the argument method. Once the two algorithms are run, we take the
best solution in terms of likelihood; see, for instance, Punzo and Bagnato (2020) for a
comparison of the two algorithms, in terms of parameter recovery and computational
time, for ML estimation. The choice to run both the algorithms is motivated by two
facts: 1) sometimes the algorithms do not provide the same solution, and 2) it can
happen that an algorithm does not reach convergence. In the back-transformation step
of our procedure, the values of L, λ̃ jh , and β̃ j maximizing lLN-CPC can be simply
inserted in (7), (9) and (11), respectively, in order to obtain the ML estimates of Q,
λ jh , and β j , j = 1, . . . , k and h = 1, . . . , d.

Initial (real) values are required by optim() for maximization. We use the group-
specific sample mean vectors for μ1, . . . ,μk . For Q and �1, . . . ,�k we adopt the
the simple intuitive procedure proposed by Krzanowski (1984), which is based on the
PCA of the pooled sample covariance matrix and the total sample covariance matrix,
followed by comparison of their eigenvectors. Finally, to initialize β j , j = 1, . . . , k,
we use the empirical excess kurtosis if it falls in [0, βmax] (cf. Sect. 3.2); instead, we
put β j = 0, or β j = βmax, if the empirical excess kurtosis is lower than 0, or greater
than βmax, respectively. By means of (8), (10) and (12), the obtained initial values
are transformed so to be passed to optim(). From the transformation (7) related to
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1184 L. Bagnato, A. Punzo

the initial orthogonal matrix Q, we also obtain the permutation matrix P that will be
used by optim(). Note that, fixing the permutation matrix to the initial one does not
reduce the space of orthogonal matrices considered by optim(), but simply affects
the order of the eigenvalues on the diagonal of � j , j = 1, . . . , k. This means that the
ML estimated eigenvalues may not be simultaneously ordered in decreasing order in
all groups. However, having eigenvalues in an arbitrary order is not an issue in CPCA
(Trendafilov 2010).

4 Application to allometric studies

Allometric studies are a natural area of application of the leptokurtic-normal CPCA
proposed in Sect. 3. Allometry can be roughly devised as a tool to study the relation
between parts (morphometric variables) in various organisms (Huxley 1993). Accord-
ing to Jolicoeur (1963), allometry can be summarized by the first principal component
(PC) of the log-transformed measurements. For the practical and theoretical reasons
why it is often useful to transform data to logarithms see, e.g., Pimentel (1979), Rey-
ment (1991), and Bookstein (1997).

When the study involves several groups of specimens, e.g. different sexes or species,
the interest is comparing the group-specific allometric patterns. This aim can be han-
dled by comparing the group-specific PCs (see, e.g., Klingenberg 1996). Comparisons
of allometry within several groups often show that the PCs differ only minimally. In
these cases, it may be feasible to use CPCA, where the groups are assumed to share a
common allometric pattern, i.e., that the major axes of their scatters are parallel (Klin-
genberg et al. 1996). The amount of variation associated with each PC can, instead,
vary between groups. However, classical CPCA implies groups having a multivariate
normal distribution, and this could be rather restrictive in some cases (cf. Sect. 3.2).

Motivated by the above considerations, and using classical real biometric data, we
compare: the CPC model based on normal groups (N-CPC), the CPC model based
on leptokurtic-normal groups (LN-CPC), the model with unconstrained covariance
matrices and normal groups (N-PC), and the model with unconstrained covariance
matrices and leptokurtic-normal groups (LN-PC). The whole analysis is conducted
in R. Parameters of the competing models are estimated by the ML approach. For
uniformity sake, the PLR decomposition is adopted for both the CPC approaches.
For the N-CPC model, the transformation/back-transformation approach based on the
PLR decomposition provided the same estimates of Q of the FG-algorithm in all
our analyses (also those not reported in this paper). Having the competing models a
differing number of parameters, their comparison is accomplished, as usual, via the
Akaike information criterion (AIC; Akaike 1974) and the Bayesian information crite-
rion (BIC; Schwarz 1978). Moreover, likelihood-ratio (LR) tests are used to compare
nested models, and this gives rise to new testing procedures. Just as an example, the
LR test having the N-CPC model under the null and the LN-PC model as alternative
represents a more omnibus version of the LR test proposed by Flury (1984) where a
more restrictive N-PC model is considered under the alternative. Using Wilks’ theo-
rem, the LR statistic, under the null, is distributed approximately as a χ2 with degrees
of freedom given by the difference in the number of estimated parameters between the
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Fig. 1 Scatter plot of the microtus data with variables in logarithmic scale (filled circle denotes microtus
subterraneus, while open circle denotes microtus multiplex)

alternative and the null model; this allows us to compute a p value that, in the sequel,
will be always compared to the classical 5% significance level.

4.1 Skull dimensions of voles

The first analysis considers the microtus data set accompanying the Flury pack-
age (Flury 2012) for R. The data set contains morphological measurements, for eight
variables, on the skulls of 288 specimens of voles found at various places in central
Europe. For 89 of the skulls, the chromosomes were analyzed to identify their mem-
bership to one of k = 2 species; n1 = 43 specimens were frommicrotus multiplex, and
n2 = 46 from microtus subterraneus. Species was not determined for the remaining
199 specimens. Airoldi et al. (1995) report a discriminant analysis and finite mixture
analysis of this data set; see also Flury (2013, Examples 5.4.4 and 9.5.1).

We analyze the sample of n = 89 labeled skulls – because we need to know the
group of membership of the observations for the application of the competing models
– and focus the attention on the logarithm of d = 2 of the available measurements: the
length of palatal bone (in mm/1000) and the skull width across rostrum (in mm/100).
The scatter plot of the observations, with symbols diversified with respect to the
species, is displayed in Fig. 1.
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1186 L. Bagnato, A. Punzo

Formicrotus multiplex voles, the empirical excess kurtosis is 2.341, and theMardia
test of mesokurtosis, as implemented by the mvn() function of the MVN package
(Korkmaz et al. 2019), provides a p value of 0.019; this leads to a rejection of the
null hypothesis of mesokurtosis. This also implies a rejection of bivariate normality.
Instead, for microtus subterraneus voles, the empirical bivariate excess kurtosis is
1.370, corresponding to a p value of 0.170 for the Mardia test. So, the microtus multi-
plex voles motivate the need of a distribution accounting for heavier than normal tails.
Moreover, Fig. 1 seems to suggest that the two scatters for microtus subterraneus and
microtus multiplex have approximately the same orientation (i.e., the same principal
components).

To evaluate if a leptokurtic-normal distribution fits the data in each group better,
and to assess our conjecture about the similarity between orientations, we proceed
with the fitting of the competing models. We could have used the LN distribution
only for the microtus multiplex voles, and the fitting procedure outlined in Sect. 3.3
would have been easily adapted to the case. However, this would have gone beyond
the scope of this real data application, which is to show the versatility of our PLR
decomposition, jointly with any unconstrained optimization routine, in the estimation
of an orthogonal matrix, regardless of the model structure. Table 1 reports the ML-
estimated parameters. Aswe can note, themodels are very similar in terms of estimated
mean vectors. Instead, they differ in terms of estimated eigenvectors and eigenvalues
matrices (compare N-CPC with LN-CPC and N-PC with LN-PC). We can realize
how constraining the LN model to have β = 0 (yielding the N model) can produce
differences in terms of estimated eigenvectors and eigenvalues matrices with respect
to the unconstrained case. Moreover, the differences between N-based and LN-based
models in terms of eigenvectors and eigenvalues matrices seem to intensify as the
estimated β departs from zero. Both these facts are evident when comparing the N-PC
model with the LN-PC model; here, the estimates of the orthogonal matrices differ
mainly in group 1 (microtus multiplex), where a larger empirical/estimated excess
kurtosis is present. Finally, as concerns the models based on the leptokurtic-normal
distribution, the estimates of the excess kurtosesβ1 andβ2 are in linewith the empirical
excess kurtoses (2.341 and 1.370).

Table 2 presents a model comparison in terms of: number of parameters (m), log-
likelihood, AIC, and BIC values (Table 2a) and with respect to the p values from the
LR tests (Table 2b). AIC and BIC in Table 2a indicate LN-CPC as the best model. This
means that, with respect to a model with unconstrained covariance matrices, a more
parsimonious model allowing for common principal components is to be preferred,
but without giving up to groups having a heavier-tailed distribution (the leptokurtic-
normal in this case). By looking at Table 2b, the null N-CPC model of the LR test by
Flury (1984) is not rejected (p value = 0.139). This happens because of the alternative
N-PCmodel used by the test. If wemake the test more omnibus by considering the LN-
PC model as alternative, then the conclusion changes (p value = 0.020); interestingly,
if we change the null hypothesis of this test using a less constrained LN-CPC model,
then the conclusion is in favor of the null (p value = 0.459). The null N-CPC model is
also rejected, with a greater extent, if we use LN-CPC as alternative (p value = 0.010).
Finally, it is also interesting to note that, even if we do not consider a CPC approach,
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Table 2 Model comparison, for the microtus data, in terms of number of parameters (m), log-likelihood,
AIC, and BIC (a) and p values from the LR tests (b)

(a) Number of parameters, log-likelihood, AIC, and BIC
m Log-likelihood AIC BIC

N-CPC 9 289.319 -560.639 -538.241

LN-CPC 11 293.946 -565.891 -538.516

N-PC 10 290.416 -560.831 -535.945

LN-PC 12 294.220 -564.439 -534.575

(b) p values from the LR tests
H1

H0 LN-CPC N-PC LN-PC

N-CPC 0.010 0.139 0.020

LN-CPC – – 0.459

N-PC – – 0.022

the need for leptokurtic-normal groups arises: the p value of the test of N-PC versus
LN-PC is, indeed, 0.022.

4.2 Head dimensions of young Swiss soldiers

The second analysis considers the swiss.soldiers data set considered by Flury
(1988, Example 2.3). The datawere collected by a group of anthropologists on approxi-
mately 900Swiss soldiers,most of them recruits, subdivided in k = 2 groups according
to the gender. All the soldiers were 20 years old at the time of investigation and 25
variables were measured on their heads. The purpose of the study, promoted by the
the Swiss government in the mid-1980s, was to provide sufficient data to construct
new protection masks for the members of the Swiss army.

We start by the subset of the swiss.soldiers data which can be obtained
by merging the swiss.heads (referred to men) and f.swiss.heads (referred
to women) data sets included in the Flury package. The merged data contain the
values of 6 head measurements for a subsample of n = 259 soldiers, with n1 = 59
women and n2 = 200 men. A detailed analysis for the men has been given by Flury
(2011, Example 10.2) and Flury (2013, Example 1.2). In particular, we focus on the
logarithm of d = 3 of the available head measurements: the minimal frontal breadth
(MFB), the true facial height (TFH), and the length from tragion to gnathion (LTG).All
measurements are in millimeters. The matrix of pairwise scatter plots, with symbols
diversified with respect to the gender, is displayed in Fig. 2. For women, the empirical
excess kurtosis is 1.130, and the Mardia test of mesokurtosis provides a p value
of 0.259. As concerns men, the empirical excess kurtosis is 7.621 and the Mardia
test of mesokurtosis provides a practically null p value indicating that a leptokurtic
distribution should be better than the normal for that group. So, in this example, the
group of men justifies the use of the leptokurtic-normal distribution.
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Fig. 2 Matrix of scatter plots of the swiss.soldiers data with variables in logarithmic scale (open
circle denotes women and filled circle denotes men)

Table 3 shows the ML estimated parameters for the competing models. As for the
example on the microtus data of Sect. 4.1, the models behave in a similar way in
terms of estimated mean vectors, but differ in terms of estimated eigenvectors and
eigenvalues matrices if N-CPC is compared with LN-CPC and N-PC with LN-PC.
Such a difference is due to the leptokurtic-normal distributional assumption. For the
LN-based models, the estimates of the excess kurtoses β1 and β2 are in line enough
with the empirical excess kurtoses (1.130 and 7.621).

Table 4 presents the model comparison. AIC and BIC in Table 4a select LN-CPC
as the best model, with a stronger extent with respect to the previous example. Such
a greater extent has analogous implications for the p values from the LR tests (see
Table 4b). The null N-CPC model is not rejected if N-PC is considered as alternative
model (p value = 0.278), but it is strongly rejected (with an approximately null p value)
if a LN-based model (LN-CPC or LN-PC) is considered under the alternative. If LN-
CPC is considered as the null model, and LN-PC as alternative, then the conclusion is
in favor of the null (p value = 0.408). Even if we do not consider a CPC approach, the
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Table 4 Model comparison, for the swiss.soldiers data, in terms of number of parameters (m),
log-likelihood, AIC, and BIC (a) and p values from the LR tests (b)

(a) Number of parameters, log-likelihood, AIC, and BIC
m par. Log-likelihood AIC BIC

N-CPC 15 1176.166 −2322.333 −2268.980

LN-CPC 17 1190.986 −2347.973 −2287.506

N-PC 19 1178.091 −2320.182 −2256.159

LN-PC 20 1192.435 −2344.869 −2273.733

(b) p values from the LR tests
H1

H0 LN-CPC N-PC LN-PC

N-CPC 0.000 0.278 0.000

LN-CPC – – 0.408

N-PC – – 0.000

need for leptokurtic-normal groups is even more evident in this example: the p value
of the test of N-PC versus LN-PC is, indeed, practically null.

5 Conclusions

Estimating and modelling a (d × d) covariance matrix � is often difficult because of
the constraint that � must be positive definite. The Cholesky decomposition provides
a remedy to this problem by mapping the d (d + 1) /2 constrained parameters of �

with the d (d + 1) /2 unconstrained real-valued elements of a (d × d) lower triangular
matrix (Pourahmadi 1999, 2000 and Pourahmadi et al. 2007). Analogously, estimating
and modelling a (d × d) orthogonal matrix Q is often cumbersome because of its
orthonormality constraints. Unfortunately, in this case, an analogous of the Cholesky
decomposition does not exist. In this paper we have filled this gap by adapting the
well-known PLU decomposition to orthogonal matrices. We have called the result as
PLR decomposition; it maps, in a unique way, Q to a (d × d) unit lower triangular
matrix with d (d − 1) /2 unconstrained real entries below the diagonal.

For illustrative purposes, we have applied our PLR decomposition in com-
mon principal component analysis (CPCA), based on groups having a heavier-tails
leptokurtic-normal distribution, for maximum likelihood estimation of the common
orthogonal matrix. We have chosen allometry as a natural area of application of the
resulting leptokurtic-normal CPCA and the real data analyses have effectively con-
firmed its good behavior when compared to the classical normal CPCA.

However, the use of the PLR decomposition of an orthogonal matrix is not lim-
ited to CPCA, and other statistical models may benefit from its use. Indeed, the PLR
decomposition may be used to simplify the ML estimation of the orthogonal matrix
related, only to mention a few, to: CPCA based on further non-normal distributions
for the groups, other multiple group models allowing for common covariance struc-
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1192 L. Bagnato, A. Punzo

tures (Flury 1986a; Greselin and Punzo 2013), parsimonious model-based clustering,
classification and discriminant analysis (Banfield and Raftery 1993; Flury et al. 1994;
Celeux and Govaert 1995; Fraley and Raftery 2002; Andrews and McNicholas 2012;
Bagnato et al. 2014; Lin 2014; Vrbik and McNicholas 2014; Dang et al. 2015; Punzo
et al. 2016; Punzo and McNicholas 2016; Punzo et al. 2018; Dotto and Farcomeni
2019), and sophisticated multivariate distributions (Forbes and Wraith 2014; Punzo
and Tortora 2019). We pursue to handle these possibilities in future works.

Funding Open access funding provided by Università Cattolica del Sacro Cuore within the CRUI-CARE
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Appendix

A PLR decomposition in R

library(Matrix)

#--------------#
# From Q to PL #
#--------------#

Q.PL <- function(Q){

PLR <- Matrix ::lu(Q)
ePLR <- Matrix :: expand(PLR)

return(list(P = ePLR$P , L = ePLR$L ))

}

#--------------#
# From PL to Q #
#--------------#

PL.Q <- function(P, L){

A <- P %*% L
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QR <- base::qr(A)
R <- base::qr.R(QR)
Q <- P %*% L %*% solve(R)

return(Q)

}
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