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17. listopadu 12, CZ-77146 Olomouc, Czech Republic
bDepartment of Natural Sciences in Kinanthropology,

Faculty of Physical Culture, Palacký University Olomouc,
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Abstract

In the context of functional data analysis, probability density functions as non-
negative functions are characterized by specific properties of scale invariance and
relative scale which enable to represent them with the unit integral constraint with-
out loss of information. On the other hand, all these properties are a challenge
when the densities need to be approximated with spline functions, including con-
struction of the respective spline basis. The Bayes space methodology of density
functions enables to express them as real functions in the standard L2 space us-
ing the centered log-ratio transformation. The resulting functions satisfy the zero
integral constraint. This is a key to propose a new spline basis, holding the same
property, and consequently to build a new class of spline functions, called composi-
tional splines, which can approximate probability density functions in a consistent
way. The paper provides also construction of smoothing compositional splines and
possible orthonormalization of the spline basis which might be useful in some ap-
plications. Finally, statistical processing of densities using the new approximation
tool is demonstrated in case of simplicial functional principal component analysis
with anthropometric data.

Keywords: spline representation, spline with zero integral, compositional spline,
smoothing spline, simplicial functional principal component analysis
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1 Introduction

Probability density functions are popularly known as non-negative functions satisfying
the unit integral constraint. This clearly inhibits their direct processing using standard
methods of functional data analysis [18] since unconstrained functions are assumed there.
The same holds also for approximation of the raw input data using splines which is
commonly considered to be a key step in functional data analysis. But more severely,
in addition to the apparent unit integral constraint of densities which might seem to
represent just a kind of numerical obstruction, density functions are rather characterized
by deeper geometrical properties that need to be taken into account for any reliable
analysis [6, 21, 22]. Specifically, in contrast to functions in the standard L2 space, densities
obey the scale invariance and relative scale properties [9]. Scale invariance means that not
just the representation of densities with the unit integral constraint, but any its positive
multiple conveys the same information about relative contributions of Borel sets on the
whole probability mass. Relative scale can be explained directly with an example: the
relative increase of a probability over a Borel set from 0.05 to 0.1 (2 multiple) differs
from the increase 0.5 to 0.55 (1.1 multiple), although the absolute differences are the
same in both cases. If we restrict to a bounded support I = [a, b] ⊂ R that is mostly
used in practical applications [3, 9, 14, 15], density functions can be represented with
respect to Lebesgue reference measure using the Bayes space B2(I) of functions with
square-integrable logarithm [6, 22].
The Bayes space B2(I) has structure of separable Hilbert space that enables construction
of an isometric isomorphism between B2(I) and L2(I), the L2 space restricted to I. Ac-
cordingly, analogies of summing two functions and multiplication of a function by a real
scalar in the L2 space together with an inner product between two densities are required.
Given two absolutely integrable density functions f, g ∈ B2(I) and a real number α ∈ R
we indicate with f ⊕ g and α� f the perturbation and powering operations, defined as

(f ⊕ g)(x) =
f(x)g(x)∫

I
f(y)g(y) dy

, (α� f)(x) =
f(x)α∫

I
f(y)α dy

, x ∈ I, (1)

respectively. The resulting functions are readily seen to be probability density functions,
though, note that the unit integral constraint representation was chosen just for the sake
of convenient interpretation. In [6], it is proven that B2(I) endowed with the operations
(⊕,�) is a vector space. Note that the neutral elements of perturbation and powering are
e(x) = 1/η, with η = b− a (i.e., the uniform density), and 1, respectively. The difference
between two elements f, g ∈ B2(I), denoted by f 	 g, is obtained as perturbation of f
with the reciprocal of g, i.e., (f 	 g)(x) = (f ⊕ [(−1)� g])(x), x ∈ I. Finally, to complete
the Hilbert space structure, the inner product is defined as

〈f, g〉B =
1

2η

∫
I

∫
I

ln
f(x)

f(y)
ln
g(x)

g(y)
dx dy, f, g ∈ B2(I). (2)

Form of the inner product clearly indicates that the relevant information in densities is
contained in (log-)ratios between elements from the support I.
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Density functions can be considered as functional counterparts to compositional data,
positive vectors carrying relative information [1, 17] that are driven by the Aitchison
geometry [16]. In order to enable their statistical processing using standard multivariate
methods in real space [5], the preferred strategy is to express them either in centered log-
ratio (clr) coefficients [1] with respect to a generating system, or in logratio coordinates,
preferably with respect to an orthonormal basis [7]. The latter coordinates (called also
isometric log-ratio coordinates), as well as the clr coefficients, provide isometry between
the Aitchison geometry and the real Euclidean space. A similar strategy is used also for
densities in the Bayes space [22]. An isometric isomorphism between B2(I) and L2(I) is
represented by the centered log-ratio (clr) transformation [14, 22], defined for f ∈ B2(I)
as

clr(f)(x) ≡ fc(x) = ln f(x)− 1

η

∫
I

ln f(y) dy. (3)

We remark that such an isometry allows to compute operations and inner products among
the elements in B2(I) in terms of their counterpart in L2(I) among the clr-transforms, i.e.

clr(f ⊕ g)(x) = fc(x) + gc(x), clr(α� f)(x) = α · fc(x)

and

〈f, g〉B = 〈fc, gc〉2 =

∫
I

fc(x)gc(x) dx.

However, the clr transformation induces an additional constraint,∫
I

clr(f)(x)dx =

∫
I

ln f(x) dx−
∫
I

1

η

∫
I

ln f(y) dy dx = 0, (4)

that needs to be taken into account for computation and analysis on clr-transformed
density functions. As the clr space is clearly a subspace of L2(I), hereafter it is denoted
as L2

0(I). The inverse clr transformation is obtained as

clr−1[fc](x) =
exp(fc(x))∫

I
exp(fc(y)) dy

; (5)

again as before, the denominator is used just to achieve the unit integral constraint rep-
resentation of the resulting density (without loss of relative information, carried by the
density function).
According to [22], it is not necessary to restrict ourselves to the constrained clr space,
because a basis in B2(I) can be easily constructed. Specifically, let ψ0(x), ψ1(x), ψ2(x), . . .
is a basis in L2(I) and assume that ψ0(x) is a constant function, then ϕ1(x) := exp(ψ1(x)),
ϕ2(x) := exp(ψ2(x)), . . . form a basis in B2(I). Of course, also here an orthonormal basis
is preferable, but it is not always possible in applications. Nevertheless, if this would
be so, then a function f ∈ B2(I) can be projected orthogonally to the space spanned,
e.g., by the first r functions ϕ1(x), ϕ2(x), . . . , ϕr(x). This is done through the respective
coefficients c1, . . . , cr in the basis expansion

f(x) = c1 � ϕ1(x)⊕ c2 � ϕ2(x)⊕ . . .⊕ cr � ϕr(x)⊕ . . . =
∞⊕
i=1

ci � ϕi(x), x ∈ I. (6)

3



Functional data analysis relies strongly on approximation of the input functions using
splines [18]. However, splines are mostly utilized purely as an approximation tool, without
considering further methodological consequences. Because statistical processing of density
functions requires a deeper geometrical background, provided by the Bayes spaces, this
should be followed also by the respective spline representation, performed preferably in
the clr space L2

0(I). In [12], a first attempt of constructing a spline representation that
would honor the zero integral constraint (4) was performed. The problem is that B-splines
that form basis for the spline expansion in [12] come from L2(I), but not from L2

0(I). This
paper presents an important step ahead – such splines are constructed that form basis
functions in the clr space L2

0(I). Consequently, the splines can be expressed also directly
in B2(I) and the spline representation formulated in terms of the Bayes space which can
be used for interpretation purposes; hereafter we refer to compositional splines. Apart
from methodological advantages, using compositional splines simplifies construction and
interpretation of spline coefficients that can be considered as coefficients of a (possibly
orthonormal) basis in B2(I).
The paper is organized as follows. In the next section the construction of splines basis
in L2

0(I) is presented together with a comparison to spline functions introduced in [12].
Section 3 is devoted to smoothing splines in L2

0(I) and Section 4 discusses orthogonaliza-
tion of basis functions (that form, by construction, an oblique basis). Section 5 introduces
a new class of splines that reflect the Bayes spaces methodology, compositional splines.
Section 6 demonstrates usefulness of the new approximation tool in context of simplicial
functional principal component analysis with anthropometric data and the final Section
7 concludes.

2 Construction of spline in L2
0(I)

Because the clr transformation enables to process density functions in the standard L2

space, just restricted according to zero integral constraint (4), it is natural that also
construction of compositional splines should start in L2

0(I). Nevertheless, before doing
so, some basic facts about B-spline representation of splines are recalled, see [2, 4, ?] for
details. Let the sequence of knots

λ0 = a < λ1 < · · · < λg < b = λg+1

be given. The (normalized) B-spline of degree 0 (order 1) is defined as

B1
i (x) =

{
1 if x ∈ [λi, λi+1)
0 otherwise

and the (normalized) B-spline of degree k, k ∈ N, (order k + 1) is defined by

Bk+1
i (x) =

x− λi
λi+k − λi

Bk
i (x) +

λi+k+1 − x
λi+k+1 − λi+1

Bk
i+1(x).

Now let the functions Zk+1
i (x) for k ≥ 0, k ∈ N, be defined

Zk+1
i (x) :=

d

dx
Bk+2
i (x), (7)
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i.e., more precisely for k = 0

Z1
i (x) =


1

λi+1 − λi
if x ∈ [λi, λi+1)

−1

λi+2 − λi+1

if x ∈ (λi+1, λi+2]

and for k ≥ 1

Zk+1
i (x) = (k + 1)

(
Bk+1
i (x)

λi+k+1 − λi
−

Bk+1
i+1 (x)

λi+k+2 − λi+1

)
. (8)

Noteworthy, functions Zk+1
i (x) have similar properties as B-splines Bk+1

i (x).

1. They are piecewise polynomials of degree k. Particularly, Z1
i (x) is a piecewise con-

stant polynomial, Z2
i (x) is a piecewise linear polynomial, see Figure 1, Z3

i (x) is a
piecewise quadratic polynomial, see Figure 2. For other examples see Figures 3-5.

2. It is evident that for k ≥ 1 the function Zk+1
i (x) and its derivatives up to order k−1

are all continuous.

3. It is easy to check that for k ≥ 0

supp Zk+1
i (x) = supp Bk+2

i (x) = [λi, λi+k+2],

and of course
Zk+1
i (x) = 0 if x /∈ [λi, λi+k+2].

4. From the perspective of L2
0(I), a crucial point is that the integral of Zk+1

i (x) equals
to zero. If we consider Curry-Schoenberg B-spline Mk+1

i (x) [2], which are defined
as

Mk+1
i (x) :=

k + 1

λi+k+1 − λi
Bk+1
i (x)

with property ∫
R

Mk+1
i (x) dx = 1,

than it is clear that
Zk+1
i (x) = Mk+1

i (x)−Mk+1
i+1 (x) (9)

and ∫
R

Zk+1
i (x) dx = 0.
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Figure 1: The piecewise linear function Z2
i (x) =

d

dx
B3
i (x) with equidistant knots 0, 1, 2, 3.

Figure 2: The piecewise quadratic function Z3
i (x) =

d

dx
B4
i (x) with equidistant knots

0, 1, 2, 3, 4.

Figure 3: The piecewise cubic function Z4
i (x) =

d

dx
B5
i (x) with equidistant knots

0, 1, 2, 3, 4, 5.

It is known that for the vector space S∆λ
k [a, b] of polynomial splines of degree k > 0,

k ∈ N, defined on a finite interval I = [a, b] with the sequence of knots ∆λ = {λi}g+1
i=0 ,

λ0 = a < λ1 < . . . < λg < b = λg+1, the dimension is

dim(S∆λ
k [a, b]) = g + k + 1.

For the construction of all basis functions Bk+1
i (x), it is necessary to consider some addi-
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Figure 4: The piecewise linear function Z2
i (x) =

d

dx
B3
i (x) with nonequidistant knots

0, 1, 10, 30.

Figure 5: The piecewise quadratic function Z3
i (x) =

d

dx
B4
i (x) with nonequidistant knots

0, 1, 10, 30, 50.

tional knots. Without loss of generality we can add coincident knots

λ−k = · · · = λ−1 = λ0 = a, b = λg+1 = λg+2 = · · · = λg+k+1. (10)

Then every spline sk(x) ∈ S∆λ
k [a, b] in L2(I) has a unique representation

sk (x) =

g∑
i=−k

biB
k+1
i (x) . (11)

In [12, 20], the splines with zero integral are studied. There is given the necessary and
sufficient condition for B-splines coefficients of these splines. However, typical B-splines
Bk+1
i (x), thus ignoring the constraint (4) in L2

0(I) for construction of the B-spline basis,
were used there.

Now, regarding the definition (7), we are able to use spline functions Zk+1
i (x) which have

zero integral on I (denoted also as ZB-splines in the sequel). In the following, Z∆λ
k [a, b]

denotes the vector space of polynomial splines of degree k > 0, defined on a finite interval
[a, b] with the sequence of knots ∆λ and having zero integral on [a, b], it means

Z∆λ
k [a, b] := {sk(x) ∈ S∆λ

k [a, b] :

∫
I

sk(x) dx = 0}. (12)
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Theorem 2.1. The dimension of the vector space Z∆λ
k [a, b] defined by the formula (12)

is g + k.

Proof. For spline sk(x) ∈ S∆λ
k [a, b], sk (x) =

g∑
i=−k

biB
k+1
i (x), with the coincident additional

knots it is known, [4], that∫
I

sk(x) dx =
1

k + 1

g∑
i=−k

bi(λi+k+1 − λi).

It means that B-spline coefficients of sk(x) ∈ Z∆λ
k [a, b] ⊂ S∆λ

k [a, b] satisfy condition

0 =
g∑

i=−k
bi(λi+k+1−λi) = Ab with A = (λ1−λ−k, · · · , λg+k+1−λg), b = (b−k, · · · , bg)>.

And it is obvious that codim(Z∆λ
k [a, b]) = 1, thus

dim(Z∆λ
k [a, b]) = dim(S∆λ

k [a, b])− codim(Z∆λ
k [a, b]) = g + k.

Theorem 2.2. For the coincident additional knots (10), the functions Zk+1
−k (x), · · · , Zk+1

g−1 (x)
form a basis for the space Z∆λ

k [a, b].

Proof. SinceMk+1
i (x) form a basis for the spline space S∆λ

k [a, b] and Zk+1
i (x) = Mk+1

i (x)−
Mk+1

i+1 (x), the functions Zk+1
i (x), i = −k, . . . , g − 1, are linearly independent and lie in

Z∆λ
k [a, b] with dim(Z∆λ

k [a, b]) = g+ k. Therefore Zk+1
i (x), i = −k, . . . , g− 1, form a basis

for the Z∆λ
k [a, b].

With regard to this theorem, every spline sk(x) ∈ Z∆λ
k [a, b] has a unique representation

sk (x) =

g−1∑
i=−k

ziZ
k+1
i (x) . (13)

Now we can proceed to matrix notation of sk(x) ∈ Z∆λ
k [a, b]. With respect to (8) and (9),

we are able to write the functions Zk+1
i (x) in matrix notation as

Zk+1
i (x) = (k + 1)

(
Bk+1
i (x) , Bk+1

i+1 (x)
)

1

λi+k+1 − λi
0

0
1

λi+k+2 − λi+1

( 1
−1

)
.

Then it is clear that

(Zk+1
−k (x) , . . . , Zk+1

g−1 (x)) = (Bk+1
−k (x) , . . . , Bk+1

g (x))DK = Bk+1(x)DK,

where

D = (k + 1)diag

(
1

λ1 − λ−k
, . . . ,

1

λg+k+1 − λg

)
= (k + 1)diag

(
1

l1
, . . . ,

1

lg+k+1

)
(14)
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and

K =



1 0 0 · · · 0 0
−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
. . . . . .

...
...

0 0 0 · · · −1 1
0 0 0 · · · 0 −1


∈ Rg+k+1,g+k. (15)

Therefore the spline sk(x) ∈ Z∆λ
k [a, b], sk (x) =

g−1∑
i=−k

biZ
k+1
i (x) can be written in matrix

notation as
sk(x) = Zk+1(x)z = Bk+1(x)DKz, (16)

where Zk+1(x) = (Zk+1
−k (x) , . . . , Zk+1

g−1 (x)) and z = (z−k, . . . , zg−1)>.

Remark 1. The formula (16) is very useful, because we can use the standard B-spline ba-
sis for working with splines honoring the zero integral constraint, which is very convenient
from a computational point of view.

Example 2.1. We consider knots ∆λ = {λi}g+1
i=0 , λ0 = 0 = a < 2 < 5 < 9 < 14 < b =

20 = λ5. The task is to find a cubic spline with the given sequence of knots and which
has zero integral on the interval [0, 20]. It is evident that k = 3, g = 4. We consider the
additional knots

λ−3 = λ−2 = λ−1 = λ0 = a = 0, 20 = b = λ5 = λ6 = λ7 = λ8.

The basis functions of the space Z∆λ
3 [0, 20] are plotted in Figure 7. Every spline s3(x) ∈

Z∆λ
3 [0, 20] can be written as

s3 (x) =
3∑

i=−3

ziZ
4
i (x) . (17)

Thus, e.g., for z = (z−3, . . . , z3)> = (0.5,−1, 2, 3,−8, 9, 1)> the cubic spline s3(x) with
zero integral is plotted in Figure 6.

3 Smoothing spline in L2
0(I)

In [12], the construction of smoothing splines in the space L2
0(I) was studied, however

using standard B-spline basis functions Bk+1
i (x). Now we are able to construct smoothing

splines in this space with new basis functions Zk+1
i (x). For this purpose, let data (xi, yi),

a ≤ xi ≤ b, weights wi > 0, i = 1, . . . , n, sequence of knots ∆λ = {λi}g+1
i=0 , λ0 = a <

λ1 < . . . < λg < b = λg+1, n ≥ g + 1 and a parameter α ∈ (0, 1) be given. For arbitrary
l ∈ {1, . . . , k − 1} our task is to find a spline sk(x) ∈ Z∆λ

k [a, b] ⊂ L2
0(I), which minimizes

the functional

Jl(sk) = (1− α)

∫ b

a

[
s

(l)
k (x)

]2

dx+ α

n∑
i=1

wi [yi − sk(xi)]2 .

9



Figure 6: Cubic spline s3(x) with given coefficients z = (0.5,−1, 2, 3,−8, 9, 1)>.

Figure 7: Basis splines for the space Z∆λ
3 [0, 20].

Note that the choice of parameter α and l, where l stands for lth derivation, affects
smoothness of the resulting spline. Let us denote x = (x1, . . . , xn)>, y = (y1, . . . , yn)>,
w = (w1, . . . , wn)> and W = diag (w). Regarding the representation (13) and matrix
notation (16), the functional Jl(sk) can be written as a quadratic function

Jl(z) = (1− α)z>K>DS>l MklSlDKz +

+ α [y −Bk+1(x)DKz]>W [y −Bk+1(x)DKz] ,
(18)

see [10, 11, 12] for details. In fact the matrix

Mkl =
(
mkl
ij

)g
i,j=−k+l

, with mkl
ij =

b∫
a

Bk+1−l
i (x)Bk+1−l

j (x) dx (19)
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is positive definite, because Bk+1−l
i (x) ≥ 0, i = −k + l, . . . , g are basis functions. Up-

per triangular matrix Sl = DlLl . . .D1L1 ∈ Rg+k+1−l,g+k+1 has full row rank. Dj ∈
Rg+k+1−j,g+k+1−j is a diagonal matrix such that

Dj = (k + 1− j) diag (d−k+j, . . . , dg)

with

di =
1

λi+k+1−j − λi
, i = −k + j, . . . , g,

and

Lj :=

 −1 1
. . . . . .

−1 1

 ∈ Rg+k+1−j,g+k+2−j.

Finally, Bk+1(x) ∈ Rn,g+k+1 stands for the collocation matrix, i.e.

Bk+1(x) =
(
Bk+1
i (xj)

)n, g
j=1, i=−k .

Using the notation U := DK,

G := U>
[
(1− α)Sl

>MklSl + αB>k+1(x)WBk+1(x)
]
U (20)

and
g := αK>DB>k+1(x)Wy,

it is possible to rewrite the quadratic function Jl(z) as

Jl(z) = z>Gz− 2z>g + αy>Wy. (21)

Our task is to find a spline sk(x) ∈ Z∆λ
k [a, b] which minimizes the functional Jl(sk), in

other words, we want to find a minimum of the function (21). It is obvious that this
function has just one minimum if and only if the matrix G is positive definite (p.d.).
From (20) it can be easily seen that

G is p.d. ⇔ Bk+1(x) is of full column rank.

From Schoenberg-Whitney theorem and its generalization, see [2] and [10], it is known
that matrix Bk+1(x) is of full column rank if and only if there exists {u−k, . . . , ug} ⊂
{x1, . . . , xn} with ui < ui+1, i = −k, . . . , g− 1, such that λi < ui < λi+k+1, i = −k, . . . , g.
In this case from the necessary and sufficient condition for a unique minimum of quadratic
function, i.e.

∂Jl(z)

∂z>
= 0,

we get a system of linear equations Gz = g and then the unique solution of this system
is given by

z∗ = G−1g. (22)
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Consequently, the resulting smoothing spline is obtained by the formula

s∗k(x) =

g−1∑
i=−k

z∗iZ
k+1
i (x),

in matrix notation using standard B-splines Bk+1
i (x) as

s∗k(x) = Bk+1(t)DKz∗,

where the vector z∗ =
(
z∗−k, . . . , z

∗
g−1

)′
is obtained as

.

4 Orthogonalization of basis functions

A further step is to orthogonalize the basis

Zk+1(x) = (Zk+1
−k (x) , . . . , Zk+1

g−1 (x))>

of the space Z∆λ
k [a, b] that is by construction obligue with respect to the L2 space metric.

For this purpose the idea presented in [19] is used. We search for a linear transformation
Φ such that

Ok+1(x) = ΦZk+1(x)

forms an orthogonal set of basis functions of the space Z∆λ
k [a, b], i.e.

b∫
a

Ok+1(x)O>k+1(x) dx = I.

Regarding the lemma presented in [19] and notation used here, we can formulate the
following statement.

Lemma 4.1. An invertible transformation Φ orthogonalizes the basis functions Zk+1(x)
if and only if it satisfies the condition that

Φ>Φ = Σ−1,

where Σ represents the positive definite matrix

Σ =

b∫
a

Zk+1(x)Z>k+1(x) dx =

 b∫
a

Zk+1
i (x)Zk+1

j (x) dx

g−1

i,j=−k

.

With respect to the definition of basis functions Zk+1(x) =
(
Zk+1
−k (x) , . . . , Zk+1

g−1 (x)
)>

the matrix Σ can be expressed as

Σ = K>DMDK, (23)

12



where M := Mk0. The linear transformation Φ is not unique and can be computed for
example by the Cholesky decomposition. The basis functions

Ok+1(x) = ΦZk+1(x), Ok+1(x) = (Ok+1
−k (x) , . . . , Ok+1

g−1 (x))>

are orthogonal and have a zero integral. The linear and quadratic ZB-splines with zero
integral and their orthogonalization are plotted in Figures 8 and 9.

Figure 8: Linear ZB-splines Z2
i (x) with given knots 0, 0, 1, 2, 3, 3 (left), linear orthogonal

ZB-splines O2
i (x) (right).

Figure 9: Quadratic ZB-splines Z3
i (x) with given knots 0, 0, 0, 1, 2, 3, 4, 4, 4 (left),

quadratic orthogonal ZB-splines O3
i (x) (right).

To sum up, the spline sk(x) with zero integral can be constructed as a linear combination
of orthogonal splines Ok+1

i (x) having zero integral in a form

sk(x) =

g−1∑
i=−k

ziO
k+1
i (x) = Ok+1(x)z.
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On the other hand, the standard and well-known B-splines Bk+1
i (x) can be used to rep-

resent sk(x) ∈ Z∆λ
k [a, b] in matrix form

sk(x) = ΦBk+1(x)DKz.

This formulation seems to be very useful because it allows us to use existing B-spline
codes in software R or Matlab, for example, the collocation matrix or computation of
integrals in (19).

5 Compositional splines in the Bayes space

Construction of splines directly in L2
0(I) has important practical consequences, however,

it is crucial also from the theoretical perspective. Expressing splines as functions in L2
0(I)

enables to back-transform them to the original Bayes space B2(I) using (5). It results in
compositional CB-splines, obtained from (8) as

ζk+1
i (x) =

exp[Zk+1
i (x)]∫

I
exp[Zk+1

i (y)] dy
, i = −k, . . . , g − 1, k ≥ 0. (24)

Accordingly, for instance ZB-splines from Figures 1-5 can be now expressed directly in the
Bayes space B2(I) as CB-splines, see Figures 10-12. Note that CB-splines ζk+1

i (x) fulfill
the unit integral constraint which is, however, not necessary for further considerations. As
a consequence, it is immediate to define vector space C∆λ

k [a, b] of compositional polynomial
splines of degree k > 0, defined on a finite interval [a, b] with the sequence of knots ∆λ.
From isomorphism between C∆λ

k [a, b] and Z∆λ
k [a, b] it holds that

dim
(
C∆λ
k [a, b]

)
= g + k.

Moreover, from isometric properties of clr transformation it follows that every composi-
tional spline ξk(x) ∈ C∆λ

k [a, b] in B2(I) can be uniquely represented as

ξk(x) =

g−1⊕
i=−k

zi � ζk+1
i (x). (25)

CB-splines ζk+1
i (x) forming the basis are by the default setting (8) not orthogonal. Their

orthogonalization can be done as described in Section 4, i.e. by employing L2
0(I) with the

back-transformation to B2(I).
The resulting compositional splines (with either orthogonal, or non-orthogonal CB-spline
basis) can be used for representation of densities directly in B2(I). This is an important
step in construction of methods of functional data analysis involving density functions, like
for ANOVA modeling [22] or for the SFPCA method introduced in [9] and demonstrated in
the next section. In the latter case CB-splines were indeed already used for construction of
the procedure, although at the respective level of development the authors were not aware
of that. With CB-splines one has a guarantee that methods are developed consistently
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Figure 10: Linear ZB-spline Z2
i (x) (left) and linear CB-spline ζ2

i (x) (right) with equidis-
tant knots 0, 1, 2, 3.

Figure 11: Quadratic ZB-spline Z3
i (x) (left) and quadratic CB-spline ζ3

i (x) (right) with
equidistant knots 0, 1, 2, 3, 4.

Figure 12: Quadratic ZB-spline Z3
i (x) (left) and quadratic CB-spline ζ3

i (x) (right) with
nonequidistant knots 0, 1, 10, 30, 50.

in the Bayes space. Moreover, the possibility of having an orthogonal basis enables to
gain additional features resulting from orthogonality of finite dimensional projection in
combination with approximate properties of spline functions.
As usual, compositional splines can be tuned according to concrete problem, with the
advantage of their direct formulation in the Bayes space sense.

Example 5.1. To illustrate smoothing of concrete data with a compositional spline, 1000
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values from standard normal distribution were simulated and the support was determined
by minimum and maximum simulated values, I = [xmin, xmax]. Data were collected in
a form of histogram, where the breakpoints are equidistantly spaced. The representative
points of the histogram cells are denoted as asterisks in Figure 13 (left) and these points
form the input data (xi, yi), i = 1, . . . , n for smoothing purpose. The y-values stand
for discretized relative contributions to the overall probability mass, therefore discrete clr
transformation [1] is needed to obtain a real vector with zero sum constraint (Figure 13,
right). These data points were smoothed using the procedure from Section 3 and back-
transformed to the original space. In the concrete setting k = 2, l = 1, α = 0.5, ∆λ =
{x1,−2,−1, 0, 1, 2, xn}, wi = 1, ∀i = 1, . . . , n were considered. The resulting spline s2(x)
with zero integral on interval [xmin, xmax] is plotted in Figure 13 (right). In the left plot
the compositional spline ξ2(x) with unit integral by using (5) is depicted.

Figure 13: Smoothing of simulated standard normal values in the Bayes space (left) and
for clr transformed data (right).

6 Application to anthropometric data

For the purpose of illustrating the smoothing procedure outlined in Section 3, a real-
world data set dealing with the most commonly used anthropometric measure relating
to body weight is presented. The data set we consider collects the body weight of ap-
parently healthy Czech adolescents and young adults aged 15-31 years (the total of 4436
records) which were recruited non-randomly by offering free body composition assessment.
Body weight was measured by the InBody 720 device (Biospace Co., Ltd, Seoul, Korea),
recorded as the total body mass rounded to the nearest 0.1 kg.
The raw data for each of N = 16 age groups, i.e. [15, 16) , [16, 17) , . . ., [30, 31), were
turned into a form of histogram data as follows. The sampled values of the body weight
in each age group were divided into equally-spaced classes of the united range 40-110 kg
and the optimal number of classes, denoted by qi, i = 1, . . . , 16, was set according to
the well-known Sturge’s rule separately across the age groups. Because of the insufficient
number of sampled data for males and females in each age group, gender information was
ignored. Although there might be some differences between male and female samples due
to sex dimorphism, they are not that dramatic (e.g., contrary to body height) because the
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weight is influenced also by external factors (nutrition, physical activity), and still allow
for a reasonable aggregation of data. Subsequently, the proportions in classes within each
age group were computed and present zero-values (zero counts in the respective classes)
were imputed by values (2/3) · (1/ni), i = 1, . . . , N according to [13], where ni stands
for the number of observations in ith age group. Finally, the raw discretized density
data fi,j, i = 1, . . . , N, j = 1, . . . , qi which correspond to the midpoints ti,j of classes,
i = 1, . . . , N, j = 1, . . . , qi (i.e., fi,j = f(ti,j)), were obtained by dividing (not necessary

normalized) proportions pi = (pi,1, . . . , pi,qi)
> of counts in classes by the length of the

respective intervals resulting from partition of the weight range in each of age groups.
Figure 14 shows four examples of histograms with different number of classes together
with raw data (Table 1) to be smoothed. To do so, their transformation into real vectors
is needed. We note that if the histogram data are constructed on subintervals of the same
length, i.e. with equally-spaced breakpoints, it enables to use the discrete version of the clr
transformation [1] directly on the vector of proportions pi, i = 1, . . . , N by considering the
scale invariance property. Otherwise, the input of the clr transformation must be vectors
with raw density data fi = (fi,1, . . . , fi,qi)

> , i = 1, . . . , N in order to avoid misleading
results which would not reflect the actual behavior of data. Vectors of clr transforms are
hereafter denoted as clr(fi) = (clr(fi,1), . . . , clr(fi,qi))

> for i = 1, . . . , N and clr values are
listed in Table 2.
Having the collected data (ti,j, clr(fi,j)), we proceed to smooth them with the compo-
sitional smoothing splines using a system of ZB-spline basis functions from the L2

0(I).
They are considered on domain I = [40, 107] which has been modified in order to avoid
undesired artifacts in densities at their right-hand side. For all N observations, the same
strategy was followed to set the values of the input parameters for the smoothing pro-
cedure. We employed cubic smoothing splines (k = 3, l = 2) with the given sequence of
knots ∆λ = {40, 62, 84, 107}, the vectors of weights wi for all input data equal to vectors
of ones and the smoothing parameter α was set to 0.5. That is, when minimizing the
penalized functional (18), the same importance is assigned to both smoothness of the
smoothing splines as well as to their approximative properties. The resulting composi-
tional smoothing splines are obtained via their clr representation

si3(t) =
1∑

ν=−3

zi,νZ
4
ν (t), i = 1, . . . , N, t ∈ I; (26)

the corresponding ZB-spline coefficients are reported in Table 3.
Figure 15a displays an example of three raw density data from Figure 14 together with
smoothed curves in the L2

0 space (right) and after the inverse transformation (5) in the
B2 space (left). The whole sample of smoothed density functions (Figure 15b) is plotted
on blue scale distinguishing the age groups. Two trends are apparent – in the younger
age groups, the estimated density functions are right skewed and exhibit lower variability
while with increasing age they become more symmetric followed by higher variability.
Nevertheless, density function in age group [23, 24) does not fully respect this behavior:
the variability trend holds, but the distribution of weights is more similar to those in
younger age groups as it is skewed more to the left. In general, it seems that adolescents
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Figure 14: Histograms for four age groups: [15, 16) , [22, 23) , [23, 24) and [30, 31) to-
gether with estimated probability density functions via compositional smoothing splines.
Asterisks indicate discrete data (ti,j, fi,j), i = 1, 8, 9, 16, j = 1, 2, . . . , qi, and pij, i =
1, 8, 9, 16, j = 1, 2, . . . , qi indicate proportions of equidistant classes resulted for given
partition of the range weight body values.

appear to be predominantly of a lower body weight than the older persons whose weight
is more spread over the weight classes and more pronounced in the middle part of the
distribution. Accordingly, there is also a higher incidence of higher weights in comparison
with the younger adolescents.
Importantly, the quality of smoothing is the same irrespective of the shape of the distri-
bution. It might just happen that the smoothed densities exhibit heavier tails although
they are not indicated by the data fi,j, even with some artifacts typical for overfitting.
This is obviously due to keeping the zero integral constraint, which is more sensitive to
deviations from monotonic character of densities at their tails. A possible way out, ap-
plied here, was to reduce slightly the range from I = [40, 110] to I = [40, 107] in order to
keep predominantly the monotonic behavior of (normalized) counts fi,j at the right tails.
Of course, the smoothed data can be further analyzed using methods of functional data
analysis [18], adapted in order to respect specific properties of densities. It is demonstrated
here for case of the compositional functional principal component analysis (SFPCA) [9].
This statistical tool has been recently designed based on the Bayes space methodology,
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(a) Example of smoothed raw density data in B2 (left) and L2
0 (right) spaces.
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(b) Smoothed raw density data in B2 (left) and L2
0 (right) spaces.

Figure 15: Smoothed weight density functions via compositional smoothing splines in
B2 space and its clr transformation in L2

0 (right) spaces. Data are displayed on blue
scale distinguishing age groups: with increasing age, the intensity of blue color increases.
Vertical dashed gray lines indicate knots position.

so it enables to capture the main modes of relative variability in a data set consisting
of sampled density functions. Given a data set of N zero-mean functional observations
X1, . . . , XN in B2(I), SFPCA aims to find the (normalized and orthogonal) directions of
maximum variability in dataset, i.e., a collection of density functions {θκ}κ≥1 called sim-
plicial functional principal components (SPFCs) which maximize the following objective
function over θ ∈ B2(I),

N∑
i=1

〈Xi, θ〉2B subject to ‖θ‖B = 1; with 〈θ, θκ〉B = 0, κ < K, (27)

where the orthogonality condition is assumed to be fulfilled for K ≥ 2. Since 〈Xi, θ〉B
represents a projection of Xi along the direction θ ∈ B2(I), in fact we look for orthogonal
basis functions in B2(I) maximizing the relative variability of these projections. The
maximization task (27) is efficiently implemented by applying the clr transformation (3)
and the output can be back-transformed from the L2(I) to the B2(I) space, as detailed
in [9].
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The interpretation of SFPCs can be performed by displaying:

• individual SFPCs (as clr transformed density functions, SFPCs always represent
contrasts between the parts of domain I);

• overall mean density function X̄ along with its perturbation by SFPCs powered by
a suitable constant,

X̄ ⊕√ρκ � θκ, X̄ 	√ρκ � θκ, (28)

where ρκ is an amount of the variability of the dataset along the direction xκ and
it holds ρ1 ≥ ρ2 ≥ . . .. This is a natural choice because SFPCs represent variation
around the overall mean density function;

• the projection of dataset along the directions θκ,

〈Xi, θκ〉B � θκ = xiκ � θκ, i = 1, . . . , N,

where xiκ = 〈Xi, θκ〉B , i = 1, . . . , N are so called principal component scores associ-
ated with the κth SFPCs θκ. The scores can be plotted for pairs of the first SFPCs
to assess the relationship among sampled density functions or to reveal presence of
outlying observations;

• to complete the above interpretation it is important to note that the original func-
tions X1, . . . , XN and the eigenfunctions θκ, κ ≥ 1 are based on a CB-spline basis
expansion

Xi(·) =
1⊕

ν=−3

ci,ν � ζν(·), θκ(·) =
1⊕

ν=−3

bκ,ν � ζν(·), (29)

respectively, by considering (26).

SFPCA is also a statistical method for reducing dimensionality of dataset. The number
of SFPCs can be determined from the scree plot which displays cumulative percentage
of the total variance explained by each subsequent SFPC. That is, the dimensionality is
identified by a point in scree plot at which explained variability drops off.
For the actual computation, CB-splines (29) of the input functional observations, repre-
sented by the corresponding ZB-splines (26), were expressed by B-splines with B-spline
coefficients (listed in Table 4) using formula (16). The output of SFPCA for body weight
density functions is reported in Figure 16. According to scree plot (Figure 16b), two or
three SFPCs should be taken, but we resort to use only first two of them which capture
together almost 85% of the total variability of the data set. The first SFPC (Figure 16c)
represents the contrast between the weight below and above 78 kg, which could be consid-
ered as a reference (average) weight. Hence, higher scores along the SFPC1 are expected
for age groups with higher incidence of individuals with higher body weight than the av-
erage, and, conversely, lower scores are associated with age groups with higher incidence
of individuals with lower body weight then the average. The interpretation of SFPC1 can
be obviously linked with age, see Figure 16b. The scree plot more or less separates rather
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Table 1: Histogram data for four age groups: [15, 16) , [22, 23) , [23, 24) and [30, 31). fi are
raw density values at midpoints ti = (ti,1, . . . , ti,qi)

> of weight classes with proportions pi
for i = 1, 8, 9, 16; qi indicates the number of the weight classes.

[15, 16)
p1 0.0656 0.2625 0.3375 0.2156 0.0750 0.0281 0.0094 0.0062

q1 = 8f1 0.0075 0.0300 0.0386 0.0246 0.0086 0.0032 0.0011 0.0007
t1 44.375 53.125 61.875 70.625 79.375 88.125 96.875 105.625

[22, 23)
p8 0.0156 0.0869 0.1804 0.2138 0.2272 0.1514 0.0935 0.0200 0.0067 0.0045

q8 = 10f8 0.0022 0.0124 0.0258 0.0305 0.0325 0.0216 0.0134 0.0029 0.0010 0.0006
t8 43.5 50.5 57.5 64.5 71.5 78.5 85.5 92.5 99.5 106.5

[23, 24)
p9 0.0078 0.0908 0.2100 0.1971 0.1659 0.1659 0.1011 0.0259 0.0337 0.0017

q9 = 10f9 0.0011 0.0130 0.0300 0.0282 0.0237 0.0237 0.0144 0.0037 0.0048 0.0002
t9 43.5 50.5 57.5 64.5 71.5 78.5 85.5 92.5 99.5 106.5

[30, 31)
p16 0.0568 0.1023 0.2045 0.2386 0.2159 0.1364 0.0455

q16 = 7f16 0.0057 0.0102 0.0205 0.0239 0.0216 0.0136 0.0045
t16 45.0 55.0 65.0 75.0 85.0 95.0 105.0

right skewed weight density functions of younger age groups (located on the left in the
scree plot) from those more symmetric ones associated with older age groups (located on
the right in the scree plot).
The second SFPC (Figure 16d) characterizes the variability within the tails of density
functions, i.e. the main contribution to the variability along SFPC2 is provided by the
lowest and highest weight values (≤ 51 kg and ≥ 98 kg respectively). It contrasts low
and high weights (associated with high scores along the SFPC2) against middle weight
values (associated with low scores along the SFPC2), see Figure 16b. The consistent
interpretation can be also observed from Figure 16e which displays the variation along
the first two directions – SFPC1 and SFPC2 – with respect to sample mean f̄(t), t ∈ I
(i.e. f̄ ⊕ /	 2

√
ρκ � SFPCκ, κ = 1, 2).

Figures 16f and 16g, respectively, represent two main modes of variability in the data
set (〈fi, θκ〉B � θκ, κ = 1, 2, i = 1, . . . , N). For instance, the variation along SFPC2 is
confirmed to be exhibited in tails of density functions and the observations with lowest
(gold curve) and highest score (red curve) further support the conclusions made so far.
The high scores along the second direction thus reflect heavier tails and, conversely, the
low scores along the second direction reflects low incidence of individuals with extreme
(both small and high) weights. Nevertheless, the relationship of scores (Figure 16b) is
apparent: at the beginning, they continue to fall, reach a bottom and then continue to
grow. The relationship might be partially explained by unequal representation of men and
women in age groups and unequal number of observations in these age groups. Another
reason might be that data corresponding to age groups with low SFPC2 scores were
collected mostly from students of the Faculty of Physical Culture at Palacký University
in Olomouc, Czech Republic, which form more homogeneous population than an average
one. In any case, the second SFPC reveals an interesting feature which is worth to be
further investigated.

7 Conclusions

The compositional splines, which enable to construct a spline basis in the clr space of
density functions (ZB-spline basis) and consequently also in the original space of densi-
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(e) Variability around the mean weight density function (f̄ ⊕ /	 2
√
ρκ � SFPCκ, κ = 1, 2).
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Figure 16: SFPCA results for weight density functions. In panel (e), the red curve
indicates adding (⊕) of 2

√
ρκ multiple of SFPCκ and the blue curve indicates subtracting

(	) of 2
√
ρκ multiple of SFPCν to the overall mean weight density function f̄(t), t ∈ I,

indicated by the black curve (left: κ = 1 and right: κ = 2, respectively); ρκ is the standard
deviation along SFPCκ, κ = 1, 2.
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Table 2: Input data for smoothing procedure: clr(fi) are raw clr density values at mid-
points ti = (ti,1, . . . , ti,qi)

> of the weight classes for i = 1, 2, . . . , N ; qi indicates the number
of the weight classes.

[15, 16)
clr [f1] 0.100 1.486 1.737 1.289 0.233 -0.748 -1.846 -2.252

q1 = 8t1 44.375 53.125 61.875 70.625 79.375 88.125 96.875 105.625

[16, 17)
clr [f2] -0.210 1.217 1.760 1.636 0.396 -0.392 -2.001 -2.407

q2 = 8t2 44.375 53.125 61.875 70.625 79.375 88.125 96.875 105.625

[17, 18)
clr [f3] -1.375 0.570 1.316 1.669 1.381 0.534 -0.364 -2.069 -1.663

q3 = 9t3 43.889 51.667 59.444 67.222 75.000 82.778 90.556 98.333 106.111

[18, 19)
clr [f4] -1.354 0.592 1.419 1.443 1.406 1.131 0.563 -0.661 -1.171 -3.369

q4 = 10t4 43.5 50.5 57.5 64.5 71.5 78.5 85.5 92.5 99.5 106.5

[19, 20)
clr [f5] -1.536 0.628 1.408 1.555 1.535 1.209 0.302 -0.774 -1.536 -2.789

q5 = 10t5 43.5 50.5 57.5 64.5 71.5 78.5 85.5 92.5 99.5 106.5

[20, 21)
clr [f6] -1.341 0.674 1.333 1.558 1.638 1.452 0.422 -0.568 -2.034 -3.133

q6 = 10t6 43.5 50.5 57.5 64.5 71.5 78.5 85.5 92.5 99.5 106.5

[21, 22)
clr [f7] -1.746 0.451 1.185 1.463 1.411 1.131 0.531 -0.242 -1.746 -2.439

q7 = 10t7 43.5 50.5 57.5 64.5 71.5 78.5 85.5 92.5 99.5 106.5

[22, 23)
clr [f8] -1.168 0.550 1.281 1.450 1.511 1.106 0.624 -0.917 -2.015 -2.421

q8 = 10t8 43.5 50.5 57.5 64.5 71.5 78.5 85.5 92.5 99.5 106.5

[23, 24)
clr [f9] -1.884 0.573 1.412 1.348 1.177 1.177 0.681 -0.680 -0.417 -3.388

q9 = 10t9 43.5 50.5 57.5 64.5 71.5 78.5 85.5 92.5 99.5 106.5

[24, 25)
clr [f10] -1.602 0.595 1.186 1.274 1.106 0.796 0.056 -0.423 -2.988

q10 = 9t10 43.889 51.667 59.444 67.222 75.000 82.778 90.556 98.333 106.111

[25, 26)
clr [f11] -1.401 0.471 0.768 0.824 1.145 0.850 0.209 -1.178 -1.688

q11 = 9t11 43.889 51.667 59.444 67.222 75.000 82.778 90.556 98.333 106.111

[26, 27)
clr [f12] -1.045 0.513 0.901 1.180 1.258 0.513 -0.485 -2.836

q12 = 8t12 44.375 53.125 61.875 70.625 79.375 88.125 96.875 105.625

[27, 28)
clr [f13] -0.816 0.570 0.742 0.742 1.056 0.570 -0.256 -2.608

q13 = 8t13 44.375 53.125 61.875 70.625 79.375 88.125 96.875 105.625

[28, 29)
clr [f14] -1.155 0.579 0.790 0.965 0.690 -0.308 -1.561

q14 = 7t14 45.0 55.0 65.0 75.0 85.0 95.0 105.0

[29, 30)
clr [f15] -1.060 0.480 0.837 0.674 0.614 -0.773 -0.773

q15 = 7t15 45.0 55.0 65.0 75.0 85.0 95.0 105.0

[30, 31)
clr [f16] –0.756 -0.168 0.525 0.679 0.579 0.120 -0.979

q16 = 7t16 45.0 55.0 65.0 75.0 85.0 95.0 105.0

Table 3: ZB-spline coefficients for clr transformed density functions of N = 16 age groups.

age group spline coefficients, zi = (zi,−3, . . . , zi,1)
>
, i = 1, . . . , N

[15, 16) -6.950 6.647 46.536 40.973 13.163
[16, 17) -7.806 -0.596 41.616 45.181 14.083
[17, 18) -16.677 -11.292 18.284 43.917 9.102
[18, 19) -17.067 -8.988 21.373 33.533 20.188
[19, 20) -18.483 -9.902 22.408 38.249 16.447
[20, 21) -17.242 -7.010 18.199 46.788 18.682
[21, 22) -20.452 -10.875 11.653 36.887 14.797
[22, 23) -15.236 -5.368 16.735 46.421 14.071
[23, 24) -22.485 -12.348 17.033 23.450 20.153
[24, 25) -19.873 -14.176 13.567 20.115 19.448
[25, 26) -19.011 -5.949 -4.623 30.860 9.973
[26, 27) -14.997 -10.545 2.638 28.225 19.143
[27, 28) -14.461 -4.455 -0.689 21.892 18.070
[28, 29) -18.518 -11.045 -2.723 21.744 10.395
[29, 30) -16.445 -9.417 -1.814 23.562 2.889
[30, 31) -5.077 -15.534 -4.171 8.220 7.618
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Table 4: B-spline coefficients for clr transformed density functions of N = 16 age groups.

age group spline coefficients, bi = (bi,−3, . . . , bi,2)
>
, i = 1, . . . , N

[15, 16) -1.264 1.236 2.381 -0.332 -2.472 -2.289
[16, 17) -1.419 0.655 2.520 0.213 -2.764 -2.449
[17, 18) -3.032 0.490 1.766 1.530 -3.095 -1.583
[18, 19) -3.103 0.734 1.813 0.726 -1.186 -3.511
[19, 20) -3.361 0.780 1.929 0.946 -1.938 -2.860
[20, 21) -3.135 0.930 1.505 1.707 -2.498 -3.249
[21, 22) -3.719 0.871 1.345 1.507 -1.964 -2.573
[22, 23) -2.770 0.897 1.320 1.772 -2.876 -2.447
[23, 24) -4.088 0.922 1.754 0.383 -0.293 -3.505
[24, 25) -3.613 0.518 1.656 0.391 -0.059 -3.382
[25, 26) -3.456 1.187 0.079 2.118 -1.857 -1.734
[26, 27) -2.727 0.405 0.787 1.528 -0.807 -3.329
[27, 28) -2.629 0.910 0.225 1.348 -0.340 -3.143
[28, 29) -3.367 0.679 0.497 1.461 -1.009 -1.808
[29, 30) -2.990 0.639 0.454 1.515 -1.838 -0.502
[30, 31) -0.923 -0.951 0.678 0.740 -0.053 -1.325

ties (CB-spline basis), might become an important contribution within the Bayes space
methodology for processing of functional data carrying relative information. They provide
a solid theoretical base for further developments of the approximation theory in context
of the Bayes spaces, but even more importantly, compositional splines can be used also
for adaptation of popular methods of functional data analysis for density functions. Here
the case of compositional functional principal component analysis was presented, but sim-
ilarly, e.g., regression analysis or classification methods could be developed. Also further
tuning of the compositional splines is possible, here represented by the smoothing com-
positional splines or by orthonormalization of the ZB-basis. The latter case be used
for an orthogonal projection of a density function on a subset of CB-splines, to further
applications within the approximation theory or also for development of the theoretical
framework of functional data analysis.
The pending challenge is to generalize the methodology introduced above also to p di-
mensional density functions, p > 1, which can be formally extended from any univariate
density f(x), x ∈ I = [a, b] to f(x), where x = (x1, . . . , xp)

> ∈ I = I1×. . .×Ip = [a1, b1]×
. . .× [ap, bp], in Equations (1) to (6); η = b− a would be replaced by H =

∏p
i=1(bi − ai).

Currently an approach which focuses on keeping the zero integral constraint of the clr
transformed densities was developed in [8] as a generalization of [12], which, however,
does not lead to a compositional counterpart of the B-spline basis. A consistent approach
in this direction is currently under development.
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