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Abstract

We derive an explicit representation for the transition law of a p-
tempered α-stable process of Ornstein-Uhlenbeck-type and use it to
develop a methodology for simulation. Our results apply in both the
univariate and multivariate cases. Special attention is given to the case
where p ≤ α, which is more complicated and requires additional care.

Keywords: Tempered stable distributions, Ornstein-Uhlenbeck pro-
cesses, rejection sampling

1 Introduction

Tempered stable distributions are a rich and flexible class of models that
are obtained by modifying the tails of infinite variance stable distributions
to make them lighter. This leads to distributions that are more realistic for
a variety of application areas. We are particularly interested in the class
of p-tempered α-stable distributions with p > 0 and α ∈ [0, 2). This class
was introduced in [6] and was further studied in [7]. It contains most of the
best known and most heavily used families of tempered stable distributions
including the models studied in [16] and [3], which, themselves, contain im-
portant subclasses such as gamma distributions, inverse Gaussian distribu-
tions, classical tempered stable distributions (CTS), and rapidly decreasing
tempered stable distributions (RDTS).

Associated with each p-tempered α-stable distribution is a non-Gaussian
process of Ornstein-Uhlenbeck-type (henceforth TSOU-process). These pro-
cesses are mean reverting and are useful for a variety of applications. We are
particularly motivated by applications to mathematical finance, where such
processes have been used to model stochastic volatility, stochastic interest
rates, and commodity prices, see [2] and the references in [12], [4], and [9].
In this paper, we derive an explicit representation for the transition law of
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a TSOU-process. We then use this representation to develop a methodology
for simulating increments from the process. Our results apply in both the
univariate and multivariate cases. Further, while they hold for all values of
α, we are particularly concerned with the case where p ≤ α, as it requires
additional care. In the important case when p = 1, this corresponds to the
case of infinite variation.

For α < p, in the special cases of gamma, inverse Gaussian, CTS, and
RDTS distributions, similar results are given in [14], [22], [23], and [4]. For
details, see Remark 1 below. The general case with 0 < α < p was considered
in [9]. However, even for that case, our results often provide a simpler
methodology for simulation. To the best of our knowledge, the case α ≥ p
has only been considered for CTS distributions, see [12].

The rest of this paper is organized as follows. In Section 2, we recall
the definition of p-tempered α-stable distributions and give some properties.
Then, in Section 3, we introduce the incomplete gamma distribution, which
is important for characterizing the transition laws of TSOU-processes. In
Section 4, we formally define TSOU-processes and characterize their transi-
tion laws. In Section 5, we discuss how to use these results for simulation.
A small-scale simulation study is given in Section 6. Proofs are postponed
to Section 7.

Before proceeding, we introduce some notation. Let Rd be the space of
d-dimensional column vectors of real numbers equipped with the usual inner
product 〈·, ·〉 and the usual norm | · |. Let Sd−1 = {x ∈ Rd : |x| = 1} denote
the unit sphere in Rd. Let B(Rd) and B(Sd−1) denote the Borel sets in Rd
and Sd−1, respectively. For a Borel measure M on Rd and s ≥ 0, we write
sM to denote the Borel measure on Rd given by (sM)(B) = sM(B) for
B ∈ B(Rd). If a, b ∈ R, we write a ∨ b and a ∧ b to denote, respectively,
the maximum and the minimum of a and b. If µ is a probability measure
on Rd, we write X ∼ µ to denote that X is an Rd-valued random variable
with distribution µ and we write X1, X2, . . .

iid∼ µ to denote that X1, X2, . . .
are independent and identically distributed Rd-valued random variables each
with distribution µ. For two random variables X and Y , we write X d

= Y
to denote that X and Y have the same distribution. We write U(a, b) to
denote the uniform distribution on the interval (a, b), Pois(ψ) to denote the
Poisson distribution with a mean of ψ, and δx to denote the point mass at
x. We write 1A to denote the indicator function on set A. For sums, we
interpret

∑0
n=1 as 0. If f and g are positive functions and a ∈ [0,∞], we

write f(x) ∼ g(x) as x→ a to denote limx→a f(x)/g(x)→ 1. For x ≥ 0, we
write bxc to denote the integer part of x.
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2 Tempered Stable Distributions

An infinitely divisible distribution µ on Rd is a probability measure with a
characteristic function of the form µ̂(z) = exp{Cµ(z)}, where, for z ∈ Rd,

Cµ(z) = −1

2
〈z,Az〉+ i〈b, z〉+

∫
Rd

(
ei〈z,x〉 − 1− i〈z, x〉h(x)

)
M(dx).

Here, A is a symmetric nonnegative-definite d× d-dimensional matrix called
the Gaussian part, b ∈ Rd is called the shift, and M is a Borel measure,
called the Lévy measure, which satisfies

M({0}) = 0 and
∫
Rd

(|x|2 ∧ 1)M(dx) <∞. (1)

The function h : Rd 7→ R, which we call the h-function, can be any Borel
function satisfying∫

Rd

∣∣∣ei〈z,x〉 − 1− i〈z, x〉h(x)
∣∣∣M(dx) <∞ for all z ∈ Rd.

For a fixed h-function, the parameters A, M , and b uniquely determine the
distribution µ, and we write µ = ID(A,M, b)h. The choice of h does not
affect A and M , but different choices of h require different values for b, see
Section 8 in [18].

Associated with every infinitely divisible distribution µ = ID(A,M, b)h
is a Lévy process, {Xt : t ≥ 0}, which is stochastically continuous and has
independent and stationary increments. The characteristic function of Xt is
(µ̂(z))t. It follows that, for each t ≥ 0, Xt ∼ ID(tA, tM, tb)h. For more on
infinitely divisible distributions and their associated Lévy processes see [18].

A p-tempered α-stable distribution on Rd is an infinitely divisible distri-
bution with no Gaussian part and a Lévy measure of the form

L(B) =

∫
Sd−1

∫ ∞
0

1B(uξ)u−1−αq(ξ, up)duσ(dξ), B ∈ B(Rd), (2)

where p > 0, α ∈ [0, 2), σ is a finite Borel measure on Sd−1,

q(ξ, u) =

∫
(0,∞)

e−suQξ(ds), (3)

and Q̄ = {Qξ : ξ ∈ Sd−1} is a measurable family of probability measures on
(0,∞). When α = 0 we need the additional assumption that∫ ∞

1
q(ξ, u)u−1du <∞ for σ-a.e. ξ

to ensure that L satisfies (1). The class of p-tempered α-stable distributions
was introduced in [6] and was further studied in the monograph [7]. The

3



case where p = 1 had previously been introduced in [16] and the case where
p = 2 had previously been introduced in [3]. The case where p = 1 and
α = 0 corresponds to a large subclass of Thorin’s class of generalized gamma
convolutions, see [1] and the references therein.

It is often convenient to work with a different representation of the Lévy
measure. Toward this end, define the Borel measures

Q(B) =

∫
Sd−1

∫
(0,∞)

1B(sξ)Qξ(ds)σ(dξ), B ∈ B(Rd)

and

R(B) =

∫
Rd

1B

(
x

|x|1+1/p

)
|x|α/pQ(dx), B ∈ B(Rd). (4)

From R we can recover Q by

Q(B) =

∫
Rd

1B

(
x

|x|1+p

)
|x|αR(dx), B ∈ B(Rd).

It can be shown that the Lévy measure, as given by (2), can be written as

L(B) =

∫
Rd

∫ ∞
0

1B(ux)u−1−αe−u
p
duR(dx), B ∈ B(Rd) (5)

and the measure σ can be written as

σ(B) =

∫
Rd

1B

(
x

|x|

)
|x|αR(dx), B ∈ B(Sd−1),

see Chapter 3 in [7]. Further, for fixed α ∈ [0, 2) and p > 0, the mea-
sure R uniquely determines the Lévy measure L. The measure R is called
the Rosiński measure of the distribution, after the author of [16]. A Borel
measure R on Rd is the Rosiński measure of some p-tempered α-stable dis-
tribution if and only if R({0}) = 0 and∫

Rd |x|
αR(dx) <∞ if α ∈ (0, 2)∫

|x|≤2R(dx) +
∫
|x|>2 log |x|R(dx) <∞ if α = 0

. (6)

For simplicity, when α = 1, we generally make the slightly stronger assump-
tion that ∫

|x|≤2
|x|R(dx) +

∫
|x|>2

|x| log |x|R(dx) <∞, (7)

which guarantees that the corresponding distribution has a finite mean.
When R satisfies (6) (and, if α = 1, (7)), we can use the h-function

hα(x) = 1[α≥1] =

{
0 if α ∈ [0, 1)
1 if α ∈ [1, 2)

.
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Definition 1. Fix α ∈ [0, 2) and p > 0. Let R be a Borel measure on Rd
with R({0}) = 0 such that (6) holds. If α = 1, assume further that (7) holds.
We write TSpα(R, b) to denote the distribution ID(0, L, b)hα, where L is of the
form (5) and b ∈ Rd.

We note that one can define a more general class of distributions with
Lévy measures of the form (5), but where R does not satisfy (6). In [7],
distributions where R satisfies (6) are called “proper p-tempered α-stable
distributions.”

3 Incomplete Gamma Distribution

In this section we introduce the incomplete gamma distribution, which is
important for studying the transition laws of TSOU-processes and is needed
in Theorem 1 below. It may also be of independent interest. We begin by
recalling that the probability density function (pdf) of a gamma distribution
is of the form

ζγ

Γ(γ)
uγ−1e−uζ , u > 0,

where γ, ζ > 0 are parameters. We denote this distribution by Ga(γ, ζ). Let

Gγ,ζ(u) =
ζγ

Γ(γ)

∫ u

0
xγ−1e−xζdx

=
1

Γ(γ)

∫ uζ

0
xγ−1e−xdx, u > 0

be the cumulative distribution function (cdf) of this distribution. When γ
is a positive integer, then Lemma 1 in Section 7 below gives

Gγ,ζ(u) = 1− e−uζ
γ−1∑
n=0

ζnun

n!
, u > 0. (8)

Consider the new pdf defined by

fβ,γ,p,η(u) =
1

Kβ,γ,p,η
Gγ,(η−1) (up) e−u

p
u−1−β, u > 0

where Kβ,γ,p,η > 0 is a normalizing constant and β ∈ R, γ > 0, p > 0,
η > 1 are parameters satisfying pγ > β. Since Gγ,(η−1) is, essentially, an
incomplete gamma function, we refer to the distribution with pdf fβ,γ,p,η as
the incomplete gamma distribution and denote it by IGa(β, γ, p, η). When
γ is a positive integer, (8) implies that

fβ,γ,p,η(u) =
1

Kβ,γ,p,η

(
e−u

p − e−upη
γ−1∑
n=0

(η − 1)n

n!
unp

)
u−1−β, u > 0.
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Note that if X ∼ IGa(β, γ, p, η) and κ > β − pγ, then

E[Xκ] =
K(β−κ),γ,p,η

Kβ,γ,p,η
.

We now give some facts about Kβ,γ,p,η.

Proposition 1. We have

Kβ,γ,p,η =
Γ(γ − β/p)
pΓ(γ)

∫ 1

1/η
(1− u)γ−1u−1−β/pdu,

Kβ,γ,p,η ∼
Γ(γ − β/p)
pΓ(γ + 1)

(η − 1)γ as η ↓ 1.

and, as η →∞

Kβ,γ,p,η ∼


Γ(γ−β/p)
βΓ(γ) ηβ/p, β > 0

p−1 log(η), β = 0
p−1Γ(|β|/p), β < 0

.

Further, if γ is a positive integer, then

Kβ,γ,p,η =
Γ(γ − β/p)

(γ − 1)!

γ−1∑
n=0

(
γ − 1

n

)
(−1)n

1− η−(np−β)/p

np− β
,

where in the case np = β we interpret 1−η−(np−β)/p

np−β by its limiting value of
p−1 ln η.

We now develop an accept-reject algorithm to simulate from IGa(β, γ, p, η).
Toward this end, recall that the generalized gamma distribution has a pdf
of the form

pζγ/p

Γ(γ/p)
uγ−1e−u

pζ , u > 0

where γ, p, ζ > 0 are parameters, see [19]. We denote this distribution by
GGa(γ, p, ζ). It is readily checked that

if X ∼ Ga(γ/p, ζ), then X1/p ∼ GGa(γ, p, ζ). (9)

Proposition 2. We have

fβ,γ,p,η(u) ≤ V1g1(u), u > 0,

where g1 is the pdf of the GGa(pγ − β, p, 1) distribution and

V1 =
(η − 1)γ

pKβ,γ,p,η

Γ(γ − β/p)
Γ(γ + 1)

.
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Let ϕ1(u) = fβ,γ,p,η(u
1/p)/(V1g1(u1/p))) and note that

ϕ1(u) =
Γ(γ + 1)

(η − 1)γ
Gγ,(η−1)(u)u−γ .

With this notation and taking (9) into account, we get the following accept-
reject algorithm for simulating from IGa(β, γ, p, η).

Algorithm 1.
Step 1. Independently simulate U ∼ U(0, 1) and Y ∼ Ga(γ − β/p, 1).
Step 2. If U ≤ ϕ1(Y ) return Y 1/p, otherwise go back to step 1.

On a given iteration, the probability of acceptance is 1/V1. Note that,
by Proposition 1, 1/V1 → 1 as η ↓ 1 and 1/V1 → 0 as η → ∞. Thus, this
algorithm tends to work better when η is close to 1. As we will see, this is
the regime that we are most interested in.

4 TSOU-Processes

In this section we formally define TSOU-processes and characterize their
transition laws. We begin by recalling the definition of a process of Ornstein-
Uhlenbeck-type (henceforth OU-process). Let Z = {Zt : t ≥ 0} be a Lévy
process with Z1 ∼ ID(A,M, b)h and define a process Y = {Yt : t ≥ 0} by
the stochastic differential equation

dYt = −λYtdt+ dZt,

where λ > 0 is a parameter. This has a strong solution of the form

Yt = e−λtY0 +

∫ t

0
e−λ(t−s)dZs.

In this case Y is called an OU-process with parameter λ and Z is called
the background driving Lévy process (BDLP). The process Y is a Markov
process and so long as ∫

|x|>2
log |x|M(dx) <∞

it has a limiting distribution. This distribution is necessarily selfdecompos-
able. Further, every selfdecomposable distribution is the limiting distribution
of some OU-process. For details see [18] or [15].

Theorem 15.10 in [18] implies that all p-tempered α-stable distributions
are selfdecomposable and, thus, that each is the limiting distribution of
some OU-process. We refer to these as p-tempered α-stable OU-processes or
TSOU-processes. We now characterize the BDLP of a TSOU-process.
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Proposition 3. The BDLP of a TSOU-process with parameter λ > 0 and
limiting distribution TSpα(R, b) is the Lévy process {Zt : t ≥ 0} with Z1 ∼
ID(0, λM, λb)hα, where for B ∈ B(Rd)

M(B) =

∫
Rd

∫ ∞
0

1B (ux) (α+ pup)u−1−αe−u
p
duR(dx).

For p = 1 this is given in [16]. Some related results are given in [21].
We now give our main result, which is an explicit representation for the
transition function of a TSOU-process that can be used for simulation.

Theorem 1. Let Y = {Yt : t ≥ 0} be a TSOU-process with parameter λ > 0
and limiting distribution TSpα(R, b) with p > 0, α ∈ [0, 2) and R satisfying
(6) (or if α = 1, (7)). Assume, in addition, that 0 < R(Rd) < ∞ and set
γ = 1 + bα/pc. If t > 0, then, given Ys = y, we have

Ys+t
d
= e−λty + (1− e−λt)b−

γ−1∑
n=0

bn +X0 + e−λt
γ−1∑
n=1

Xn +
N∑
j=1

VjWj , (10)

where b0, . . . , bγ−1 ∈ Rd are constants and N,X0, X1, . . . , Xγ−1, V1, V2, . . . ,
W1,W2, . . . are independent random variables with:
1. X0 ∼ TSpα(R0, 0) with R0(dx) = (1− e−αλt)R(dx),
2. if γ ≥ 2 then Xn ∼ TSpα−np(Rn, 0) with Rn(dx) = 1

n!(1 − e
−pλt)nR(dx)

for n = 1, 2, . . . , (γ − 1),
3. V1, V2, . . .

iid∼ R1, where R1(dx) = R(dx)/R(Rd),
4. W1,W2, . . .

iid∼ IGa(α, γ, p, epλt),
5. N has a Poisson distribution with mean e−αλtR(Rd)Kα,γ,p,epλt,
6.

b0 =

{
e−αλt

∫
Rd xR(dx)K(α−1),γ,p,epλt α ∈ [1, 2)

0 α ∈ [0, 1)
,

and if γ ≥ 2 then for n = 1, 2, . . . , (γ − 1)

bn =

{
e−λt

∫
Rd xRn(dx)p−1Γ

(
1−α+np

p

)
1 ≤ α < 1 + np

0 otherwise
.

We note that, in the case 0 < α < p, a version of this result is contained
in Theorem 2 of [9]. However, in that paper, the distribution of the product
VjWj is presented in a less intuitive way. In situations where it is easy to
simulate from R1, the representation given in Theorem 1 leads to a method-
ology for simulation that is simpler than the one suggested by the results in
[9].

Remark 1. CTS distributions are one dimension distributions of the form
TSpα(R, b), where p = 1 and R(dx) = aηαδ1/η(dx) for some a, η > 0. When
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α = 0, which corresponds to the class of gamma distributions, a version
of Theorem 1 can be found in [14] and when α = .5, which corresponds to
the class of inverse Gaussian distributions, it can be found in [22]. More
generally, for α ∈ (0, 1) it can be found in [23], and for α ∈ (1, 2) it can be
found in [12]. RDTS distributions are extensions of CTS distributions to the
case where p = 2. In this case the result can be found in [4]. The result in
[12] is the only case with α ≥ p that we have seen in the literature.

Remark 2. A version of Theorem 1 can be obtained when α = 1 and (6)
holds, but (7) does not. In this case we use the h-function given by h(x) =
1[|x|≤1]. Let R be a Rosiński measure with 0 <

∫
Rd (|x| ∨ 1)R(dx) < ∞

and let L be the Lévy measure given by (5) with α = 1 and some p > 0.
Arguments similar to those in the proof of Proposition 3 imply that a TSOU-
process with parameter λ > 0 and limiting distribution ID(0, L, b)h has BDLP
Z = {Zt : t ≥ 0} with Z1 ∼ ID(0, λM, λc)h, where M is as in Proposition 3
and

c = b−
∫
Rd

x

|x|

∫ ∞
|x|−1

(1 + pup)u−2e−u
p
duR(dx) = b−

∫
Rd
xe−|x|

−p
R(dx),

where the last equality follows from (12) below. In this case, (10) holds, but
with X0 ∼ ID(0, (1− e−λt)L, 0)h, bn = 0 for n > 0, and

b0 =
(

1− e−λt
)∫

Rd
xe−|x|

−p
R(dx)

+

∫
Rd
x

∫ |x|−1eλt

|x|−1

(
1

|x|u
− e−λt

)
(1 + pup)u−1e−u

p
duR(dx)

+e−λt
∫
Rd
x

∫ |x|−1

0

(
e−u

p − e−upeλtp
)
u−1duR(dx).

The proof is similar to that of Theorem 1, but with additional care.

5 Simulation of TSOU-Processes

Theorem 1 gives a simple recipe for simulating an increment from a TSOU-
process. Its main ingredients are the ability to simulate from a Poisson distri-
bution, an incomplete gamma distribution, the TSpα−np(Rn, 0) distributions,
and distribution R1. Approaches for simulating from a Poisson distribution
are well known and an accept-reject algorithm for simulating from the in-
complete gamma distribution is given in Section 3 above. To simulate from
TSpα−np(Rn, 0) we can use the inverse transform method. Alternatively there
are shot noise representations given in [16] and [17]. When n = γ−1 we have
α−np < p and we can use the rejection sampling technique developed in [8].
Approaches for simulating from R1 cannot be easily described since R1 can
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be, essentially, any probability measure on Rd. In Section 6 we will give a
useful example, where simulation from R1 is straightforward. On the other
hand, when simulation from R1 is complicated, we can use a modification of
the approach given in [9] for the case α < p. We now extend that approach
to the case where we allow for any α, including α ≥ p.

The idea is that, sometimes, instead of simulating from R1, it is easier to
simulate directly from the distribution of the product VjWj , where Vj ∼ R1

and Wj ∼ IGa(α, γ, p, epλt). To do this, it is often easier to work with the
family of probability measures Q̄ instead of the Rosiński measure R. We
begin by defining, for n = 0, 1, 2, . . . ,

`n(ξ, u) :=
1

n!
(epλt − 1)n

∫
(0,∞)

e−u
pssnQξ(ds), ξ ∈ Sd−1, u > 0.

Note that `0(ξ, u) = q(ξ, up), where q(ξ, u) is as in (3). Next note that the
distribution of the product VnWn satisfies, for B ∈ B(Rd),

H(B) =

∫
Rd

∫ ∞
0

1B(ux)fα,γ,p,epλt(u)duR1(dx)

=
1

K

∫
Sd−1

∫ ∞
0

1B(uξ)

(
`0(ξ, u)−

γ−1∑
n=0

`n(ξ, ueλt)unp

)
u−1−αduσ(dξ),

where, for simplicity, we write

K = Kα,γ,p,epλtR(Rd) = Kα,γ,p,epλt

∫
Rd

∫
(0,∞)

sα/pQξ(ds)σ(dξ).

Next, we introduce, the quantities

κξ =
1∫∞

0

(
`0(ξ, u)−

∑γ−1
n=0 `n(ξ, ueλt)unp

)
u−1−αdu

, ξ ∈ Sd−1,

the Borel measure on Sd−1

σ1(dξ) =
1

κξK
σ(dξ),

and the family of Borel measures on (0,∞)

Fξ(du) = fξ(u)du, ξ ∈ Sd−1,

where

fξ(u) = κξ

(
`0(ξ, u)−

γ−1∑
n=0

`n(ξ, ueλt)unp

)
u−1−α, u > 0.
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It is not difficult to check that σ1 is a probability measure on Sd−1, that Fξ
is a probability measure on (0,∞) for each ξ ∈ Sd−1, and that

H(dξ,du) = Fξ(du)σ1(dξ), u > 0, ξ ∈ Sd−1.

Thus, we can simulate X from H by first simulating ξ from σ1, then simu-
lating Xξ from Fξ, and finally taking

X = ξXξ.

Note that, even though Xξ is real-valued, the fact that ξ ∈ Sd−1 insures that
X is Rd-valued. We now have X d

= VjWj . It remains to describe approaches
for simulating from σ1 and Fξ.

Simulation from σ1 is straightforward when σ1 is a finite measure, as in
this case the problem reduces to simulating from a multinomial distribution.
This always holds in the important case where the dimension d = 1. For the
simulation of other distributions on the unit sphere, see the monograph [11].
In particular, there has been much work focused on the case of a uniform
distribution, see, e.g. [20] and the references therein. While no method works
in general, one can often set up an approximate simulation method by first
approximating σ1 by a distribution with a finite support, see Lemma 1 in
[5].

We now turn to the problem of simulation from Fξ for a fixed ξ ∈ Sd−1.
Toward this end we introduce the quantity

Cξ,γ =
(eλtp − 1)γ

γ!

∫
(0,∞)

sγQξ(ds).

For the remainder of this section we assume that this quantity is finite. By
Lemma 7.1 in [9], Cξ,γ is finite for σ-a.e. ξ if and only if∫

Rd
|x|α−γpR(dx) <∞.

We next introduce a distribution with pdf

g(u) = α(1− α/p)
(
up−α−11[0<u≤1] + u−1−α1[u>1]

)
=

α

p
(p− α)up−α−11[0<u≤1] +

(
1− α

p

)
αu−1−α1[u>1],

where p > α > 0 are parameters. This a type of log-Laplace distribution,
see e.g. [13] and the references therein. It is a mixture of a beta distribution
and a Pareto distribution and we will denote it by LL(α, p). It is readily
checked that, if U1, U2

iid∼ U(0, 1) and

Y = U
1/(p−α)
1 U

−1/α
2 ,
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then Y ∼ LL(α, p). Alternatively, we can use just one random variable
U1 ∼ U(0, 1) and take

Y =

(
U1

α/p

)1/(p−α)

1[U1≤α/p] +

(
1− U1

1− α/p

)−1/α

1[U1>α/p].

Proposition 4. We have

fξ(u) ≤ V2g2(u), u > 0,

where g2 is the pdf of the LL(α, γp) distribution,

V2 = κξ
γp

α(γp− α)
V ′2 ,

and

V ′2 = max

{
min

{
1, e−γγγ

(epλt − 1)γ

γ!

}
, Cξ,γ

}
.

Let ϕ2(ξ, u) = fξ(u)/(V2g2(u)) and note that

ϕ2(ξ, u) =
`0(ξ, u)−

∑γ−1
n=0 `n(ξ, ueλt)unp

(uγp10≤u≤1 + 1u>1)V ′2

=

∫
(0,∞)

(
e−u

ps − e−supepλt
∑γ−1

n=0
(epλt−1)n

n! snunp
)
Qξ(ds)(

uγp1[0≤u≤1] + 1[u>1]

)
V ′2

.

With this notation we get the following accept-reject algorithm for simulat-
ing from Fξ for a fixed ξ.

Algorithm 2.
Step 1. Independently simulate U ∼ U(0, 1) and Y ∼ LL(α, γp).
Step 2. If U ≤ ϕ2(Y ) return Y , otherwise go back to step 1.

On a given iteration of Algorithm 2, the probability of acceptance is 1/V2.
We are most interested in the case when t is small. To better understand
the behavior of V2 for such t we first note that, by Lemma 1 given in Section
7 below,

κξ ≤
γ!

(epλt − 1)γ
∫∞

0

∫
(0,∞) e

−upseλtpsγQξ(ds)uγp−α−1du

=
γ!p

(epλt − 1)γΓ(γ − α/p)e−λt(pγ−α)
∫

(0,∞) s
α/pQξ(ds)

.

From here it follows that

lim sup
t→0

V2 ≤
max

{
e−γγγ ,

∫
(0,∞) s

γQξ(ds)
}

Γ(γ − α/p)
∫

(0,∞) s
α/pQξ(ds)

γp2

α(γp− α)
.

12



Thus the probability of acceptance is bounded away from 0 when t is small.
In some cases we can improve on Algorithm 2. An issue with the log-

Laplace distribution is that it has heavy tails, which can lead to many rejec-
tions when the tails of fξ are lighter. When the support of Qξ is lower
bounded, we can replace the log-Laplace distribution with a generalized
gamma distribution, which has lighter tails. The method is based on the
following result.

Proposition 5. Let ζ = sup{c > 0 : Qξ((0, c)) = 0}. If ζ > 0, then

fξ(u) ≤ V3g3(u), u > 0,

where g3 is the pdf of the GGa(pγ − α, p, ζ) distribution and

V3 = κξζ
α/p−γ Γ(γ − α/p)

p
Cξ,γ .

Let ϕ3(u) = fξ(u
1/p)/(V3g3(u1/p)) and note that

ϕ3(u) =
`0(ξ, u1/p)−

∑γ−1
n=0 `n(ξ, u1/peλt)un

uγe−uζCξ,γ

=

∫
(0,∞)

(
e−us − e−suepλt

∑γ−1
n=0

(epλt−1)n

n! snun
)
Qξ(ds)

uγe−uζCξ,γ
.

Combining this with (9) leads to the following accept-reject algorithm for
simulating from Fξ for a fixed ξ.

Algorithm 3.
Step 1. Independently simulate U ∼ U(0, 1) and Y ∼ Ga(γ − α/p, ζ).
Step 2. If U ≤ ϕ3(Y ) return Y 1/p, otherwise go back to step 1.

It is not difficult to check that

V2

V3
≥ γp

αΓ(γ − α/p+ 1)
ζγ−α/p.

It follows that, V2 > V3 whenever ζ >
(
α
γpΓ(γ − α/p+ 1)

)1/(γ−α/p)
. In this

case, Algorithm 3 will accept with a higher probability than Algorithm 2.

Example. A version of Algorithm 3 was derived in [12] for the case of CTS
limiting distributions with α ∈ (1, 2). Here p = 1 and R(dx) = aζαδ1/ζ(dx)
for some a, ζ > 0. This corresponds to σ(dξ) = aδ1(dξ) and

q1(u) = e−ζu =

∫
(0,∞)

e−usQ1(ds),

13



where Q1(dr) = δζ(ds). It follows that γ = 2 and

ϕ3(u) =
2

(eλt − 1)2ζ2

e−uζ − e−ueλtζ − e−ueλtζζu(eλt − 1)

u2e−uζ
.

In this case, our Algorithm 3 reduces to Algorithm 2 in [12]. We note that
there appears to be a typo in that paper. The formula for what they call
v2,∆ should be as given by ϕ3.

6 Simulation Study

In this section we perform a small-scale simulation study to see how well
our methodology works in practice. We focus on a family of one-dimensional
p-tempered α-stable distributions for which the transition law had not been
previously derived in the case α ≥ p. This is the family of power tempered
stable distributions, which correspond to the case where p = 1,

R(dx) = .5c(α+ `)(α+ `+ 1)(1 + |x|)−2−α−`dx,

and c, ` > 0 are parameters. When R is of this form, we denote the distri-
bution TS1

α(R, 0) by PTα(`, c). These models have a finite mean, but still
fairly heavy tails. In fact, if Y ∼ PTα(`, c), then, for β ≥ 0,

E|Y |β <∞ if and only if β < 1 + α+ `.

Thus, ` controls how heavy the tails of the distribution are.
Power tempered stable distributions were introduced in [7] and then fur-

ther studied in [8] and [9]. However, we use a sightly different parametriza-
tion because the one considered in [8] and [9] is not continuous at α = 1.
Methods to numerically evaluate the pdfs and related quantities of these
distributions are available in the SymTS package [10] for the statistical soft-
ware R. This package also allows for the simulation of random variables
from this distribution using the inverse transform method. For α ∈ (0, 1)
the transition laws for the corresponding TSOU-processes were studied in
[9]. However, the case with α ∈ [1, 2) has not been studied before.

We want to simulate a TSOU-process with parameter λ > 0 and limiting
distribution PTα(`, c), with α ≥ 1, on a discrete grid. For simplicity, we
assume that the points are evenly spaced and thus that we want to simulate
the observations

Y0, Yt, Y2t, . . . , Ynt

for some t > 0. It is readily checked that R(Rd) = c(α + `) < ∞ and thus
that we can use Theorem 1. When α ∈ [1, 2), we have γ = 2. Note that, by
symmetry,

∫
R xR(dx) = 0 and thus that bn = 0 for n = 0, 1. It follows that,

14



if we have simulated Yt(k−1) = y, then we can take

Ykt = e−λty +X0 + e−λtX1 +

N∑
j=1

VjWj ,

whereX0 ∼ PTα(`, (1−e−αλt)c),X1 ∼ PTα−1(`+1, (1−e−λt)c), V1, V2, . . .
iid∼

R1, W1,W2, . . .
iid∼ IGa(α, 2, 1, eλt), and N ∼ Poisson(ψ) are independent

random variables. Here, by Proposition 1,

ψ = (α+ `)ce−αλtKα,2,1,eλt

=

{
(α+ `)cΓ(2−α)

α(α−1)

(
e−αλt − 1 + α

(
1− e−λt

))
α ∈ (1, 2)

(1 + `)ce−λt
(
eλt − 1− λt

)
α = 1

.

To simulate from R1, note that

R1(dx) = .5(α+ `+ 1)(1 + |x|)−2−α−`dx,

which is a variant of the Pareto distribution. It is not difficult to check that
if U1 ∼ U(−1, 1) and

V =
U1

|U1|

(
|U1|−1/(1+α+`) − 1

)
, (11)

then V ∼ R1.
For our simulations, we simulate X0 and X1 using the inverse transform

method as implemented in the SymTS package, we simulate the Vi’s using
(11), and we simulate the Wi’s using Algorithm 1. For simplicity, we take
λ = 1, c = 10, and t = 0.1. We start each path by simulating an observation
from the limiting distribution. We then simulate the process at 1000 time
steps. Since the time increment is t = 0.1, this leads to a simulation of the
process up to time T = 100. Plots of these processes for several choices of
α and ` are given in Figure 1. Further, to check whether we are simulating
from the correct limiting distribution, we simulate the process for 50000
time steps and then plot the kernel density estimator (KDE) based on these
observations. Figure 2 gives this plot for each choice of the parameters. The
plots are overlaid with the true pdf of the limiting distribution. Since we
begin each process in the limiting distribution, we do not need a burn-in
period.

We conclude this section by noting that the result in Theorem 1 also
holds for power tempered stable distributions with α ∈ [0, 1) and can be
used for simulation in this case. When α ∈ (0, 1) a different methodology for
simulating such TSOU-processes was given in [9]. However, that approach
does not use the fact that, in this case, it is easy to simulate from R1. Instead,
it uses a more complicated methodology based on a version of our Algorithm
2. For this reason, we recommend using the methodology suggested by the
current paper in this case.
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Figure 1: Simulated TSOU-processes for several choices of the parameters.
In all cases the simulated increments are of length t = 0.1.
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Figure 2: For each choice of the parameters, we simulate a TSOU-process
for 50000 time steps in increments of t = 0.1. For each process, we plot
the KDE (solid line) overlaid with the true pdf of the limiting distribution
(dashed line).
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7 Proofs

We begin with a technical lemma.

Lemma 1. 1. For any t > 0 and any integer k ≥ 1(
1− e−t

k−1∑
n=0

tn

n!

)
=

1

(k − 1)!

∫ t

0
e−xxk−1dx.

2. For any 0 ≤ a < b and any integer k ≥ 1

e−a − e−b
k−1∑
n=0

(b− a)n

n!
=

e−a

(k − 1)!

∫ b−a

0
e−xxk−1dx

and
e−b

k!
(b− a)k ≤ e−a − e−b

k−1∑
n=0

(b− a)n

n!
≤ e−a

k!
(b− a)k.

Proof. The first part follows by integration by parts and induction on k. The
second follows immediately from the first.

Proof of Proposition 1. First note that

Kβ,γ,p,η =
1

pΓ(γ)

∫ ∞
0

∫ u(η−1)

0
e−x−uxγ−1dxu−1−β/pdu

=
1

pΓ(γ)

∫ ∞
0

∫ uη

u
e−v(v − u)γ−1dvu−1−β/pdu

=
1

pΓ(γ)

∫ ∞
0

e−v
∫ v

v/η
(v − u)γ−1u−1−β/pdudv

=
1

pΓ(γ)

∫ ∞
0

e−vvγ−1

∫ v

v/η
(1− u/v)γ−1u−1−β/pdudv

=
Γ(γ − β/p)
pΓ(γ)

∫ 1

1/η
(1− u)γ−1u−1−β/pdu,

where the first, second, and fifth lines follow by change of variables. The
asymptotic formulas follow by L’Hôpital’s rule, except in the case when η →
∞ and β < 0. In this case, they follow by basic properties of the beta
function. The last part of the proposition follows by applying the Binomial
Theorem.

Proof of Proposition 2. Note that

fβ,γ,p,η(u) ≤ 1

Γ(γ)Kβ,γ,p,η

∫ up(η−1)

0
xγ−1dxe−u

p
u−1−β

=
(η − 1)γ

Γ(γ + 1)Kβ,γ,p,η
e−u

p
upγ−β−1.

From here the result is immediate.
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Proof of Proposition 3. Theorem 2.17 in [15] gives the formula for the shift
(after taking into account the fact that we are using a different parametriza-
tion) and implies that

M(B) =

∫
Sd−1

∫ ∞
0

1B (uξ)

(
− ∂

∂u
(q(ξ, up)u−α)

)
duσ(dξ)

=

∫
Sd−1

∫
(0,∞)

∫ ∞
0

1B (uξ) (spup + α)u−1−αe−u
psduQξ(ds)σ(dξ)

=

∫
Rd

∫ ∞
0

1B

(
u
x

|x|

)
(|x|pup + α)u−1−αe−u

p|x|duQ(dx)

=

∫
Rd

∫ ∞
0

1B

(
u

x

|x|1+1/p

)
(pup + α)u−1−αe−u

p
du|x|α/pQ(dx).

Now applying (4) gives the result.

Lemma 2. In the context of Theorem 1, Y is a Markov process with tempo-
rally homogenous transition function Pt(y,dx) having characteristic function∫
Rd e

i〈x,z〉Pt(y,dx) = exp {Ct(y, z)}, where

Ct(y, z) = e−αλtR(Rd)Kα,γ,p,eλtp

∫
Rd

∫ ∞
0

ψ0(z, ux)fα,γ,p,eλtp(u)duR1(dx)

+

∫
Rd

∫ ∞
0

ψα(z, ux)u−1−αe−u
p
duR0(dx)

+

γ−1∑
n=1

∫
Rd

∫ ∞
0

ψα−np(ze
−λt, ux)e−u

p
u−1−(α−np)duRn(dx)

+ie−λt〈y, z〉+ i
(

1− e−λt
)
〈b, z〉 −

γ−1∑
n=0

i〈z, bn〉

and

ψα(z, x) = ei〈z,x〉 − 1− i〈z, x〉1[α≥1].

Proof. Proposition 2.13 in [15] implies that

Ct(y, z) = ie−λt〈y, z〉+ i
(

1− e−λt
)
〈b, z〉+ λ

∫ t

0

∫
Rd
ψα(e−λsz, x)M(dx)ds,

where M is as in Proposition 3. Now using the fact that ψα(az, x) =
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ψα(z, ax) for any a ∈ R

λ

∫ t

0

∫
Rd
ψα(e−λsz, x)M(dx)ds

= λ

∫
Rd

∫ ∞
0

∫ t

0
ψα(z, xue−λs)(α+ pup)u−1−αe−u

p
dsduR(dx)

=

∫
Rd

∫ ∞
0

∫ u

ue−λt
ψα(z, xv)(α+ pup)u−1−αe−u

p
v−1dvduR(dx)

=

∫
Rd

∫ ∞
0

ψα(z, xv)

∫ veλt

v
(α+ pup)u−1−αe−u

p
duv−1dvR(dx)

=

∫
Rd

∫ ∞
0

ψα(z, xv)
(
e−v

p − e−αλte−vpepλt
)
v−1−αdvR(dx)

=
(

1− e−λtα
)∫

Rd

∫ ∞
0

ψα(z, ux)u−1−αe−u
p
duR(dx)

+e−αλt
∫
Rd

∫ ∞
0

ψα(z, ux)
(
e−u

p − e−upeλtp
)
u−1−αduR(dx),

where the fifth line follows by the fact that

− d

du
u−αe−u

p
= (α+ pup)u−1−αe−u

p
. (12)

From here we just need to put the last line into the appropriate form. This
line can be written as

γ−1∑
n=1

e(pn−α)λt

∫
Rd

∫ ∞
0

ψα(z, ux)e−u
peλtpu−1−(α−np)duRn(dx)

+e−αλt
∫
Rd

∫ ∞
0

ψα(z, ux)

(
e−u

p − e−upeλtp
γ−1∑
n=0

(epλt − 1)n

n!
unp

)
u−1−αduR(dx)

=

γ−1∑
n=1

∫
Rd

∫ ∞
0

ψα(z, e−λtux)e−u
p
u−1−(α−np)duRn(dx)

+e−αλtKα,γ,p,eλtp

∫
Rd

∫ ∞
0

ψα(z, ux)fα,γ,p,eλtp(u)duR(dx)

=

γ−1∑
n=1

∫
Rd

∫ ∞
0

ψα−np(e
−λtz, ux)e−u

p
u−1−(α−np)duRn(dx)−

γ−1∑
n=0

i〈z, bn〉

+e−αλtR(Rd)Kα,γ,p,eλtp

∫
Rd

∫ ∞
0

ψ0(z, ux)fα,γ,p,eλtp(u)duR1(dx),

which completes the proof.

Proof of Theorem 1. The result follows by noting that that the character-
istic function of the random variable given by (10) is

∫
Rd e

i〈x,y〉Pt(y,dx) =
exp {Ct(y, z)}, where Ct(y, z) is of the form required by Lemma 2.
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Proof of Proposition 4. Lemma 1 implies that

fξ(u) = κξ

∫
(0,∞)

(
e−u

ps − e−upepλts
γ−1∑
n=0

1

n!
(epλt − 1)nsnunp

)
Qξ(ds)u

−α−1

≤ κξ
(epλt − 1)γ

γ!
u−α−1

∫
(0,∞)

e−u
ps(sup)γQξ(ds).

It follows that

fξ(u) ≤ κξ
(epλt − 1)γ

γ!
uγp−α−1

∫
(0,∞)

e−u
pssγQξ(ds) ≤ κξCξ,γupγ−α−1.

and similarly, since e−xxγ ≤ e−γγγ for x ≥ 0 andQξ is a probability measure,
we have

fξ(u) ≤ e−γγγ
κξ
γ!

(epλt − 1)γu−α−1.

On the other hand, since 0 ≤ `0(ξ, u) ≤ 1 and
∑γ−1

n=0 `n(ξ, ueλt)unp ≥ 0 it
follows that for any u > 0

fξ(u) = κξ

(
`0(ξ, u)−

γ−1∑
n=0

`n(ξ, ueλt)unp

)
u−1−α ≤ κξu−1−α.

Combining these three bounds gives the result.

Proof of Proposition 5. Lemma 1 implies that

fξ(u) = κξ

∫
[ζ,∞)

(
e−u

ps − e−upepλts
γ−1∑
n=0

(epλt − 1)n

n!
snunp

)
Qξ(ds)u

−1−α

≤ κξ
(epλt − 1)γ

γ!

∫
[ζ,∞)

e−u
pssγQξ(ds)u

pγ−α−1

≤ κξCξ,γe
−upζupγ−1−α.

From here the result follows.
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