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Abstract

We propose the class of asymmetric vector moving average (asVMA) models. The
asymmetry of these models is characterized by different MA filters applied to the
components of vectors of lagged positive and negative innovations. This allows for a
detailed investigation of the interrelationships among past model innovations of dif-
ferent sign. We derive some covariance matrix properties of an asVMA model under
the assumption of Gaussianity. Related to this, we investigate the global invertibility
condition of the proposed model. The paper also introduces a maximum likelihood
estimation procedure and a multivariate Wald-type test statistic for symmetry versus
the alternative of asymmetry. The finite-sample performance of the proposed multi-
variate test is studied by simulation. Furthermore, we devise an exploratory test statistic
based on lagged sample cross-bicovariance estimates. The estimation and testing pro-
cedures are used to uncover asymmetric effects in two US growth rates, and in three
US industrial prices.

Keywords Asymmetries - Cross-bicovariance estimates - Multivariate - Test
performance - Wald-type test statistic

1 Introduction

It is widely believed that there is an asymmetric inertia in many major economic time
series, often attributed to differences in time series dynamics in periods of business-
cycle contraction and expansion. This asymmetric behavior has been documented by,
for instance, Wecker (1981) for US industrial prices. Briannds and De Gooijer (1994)
and Elwood (1998) find empirical evidence of asymmetry in US real GNP growth
rates. Some more recent works include Gonzalo and Martinez (2006) for US GNP
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data, and Tagstan (2017) for Turkish real GNP and industrial production index series.
Further related papers are by Bridnnds and de Luna (1998), Brinnds and Ohlsson
(1999), Nebeling and Salish (2017), and Safadi and Morettin (1998).

A common feature of the above studies is the use of univariate asymmetric moving
average (asMA) models and their variants. The dynamics of these models respond
to innovations with one of two different rules according to whether the innovation is
positive or negative, and hence induces asymmetry. Obviously, the univariate structure
of an asMA model offers limited information about the asymmetry in a data generating
process (DGP) because dynamic interrelationship between several variables is ignored.
This calls for a more flexible multivariate (vector) dynamic specification with similar
features as the univariate asMA model.

The purpose of the paper is to introduce and study the class of asymmetric vector
moving average (asVMA) models. The asVMA model may be viewed as an exten-
sion of the univariate asMA model proposed by Wecker (1981). Roughly speaking,
the asymmetric effect in an asVMA model is characterized by different MA filters
applied to the components of vectors of lagged positive and negative innovations.
This allows for a detailed investigation of the interrelationships among model inno-
vations of different sign. From an empirical standpoint, there are sound reasons for
using vector nonlinear models to detect asymmetries in macroeconomic time series;
see, e.g., Atanasova (2003), Keating (2000), and Weisse (1999).

The rest of the paper is organized as follows. In Sect.2, we introduce the asVMA
model and discuss some covariance properties. Related to this, we briefly investigate
the global invertibility of the proposed model. Section 3 is on estimation and testing.
First, we describe the log-likelihood function. Next, we propose a multivariate Wald-
type test statistic for testing an asVMA against a linear vector MA model. We evaluate
the finite-sample performance of the proposed Wald-type test statistic in a Monte Carlo
simulation study. In Sect.4, we devise an exploratory test statistic based on lagged
sample cross-bicovariance estimates. Section 5 contains two illustrative applications.
A summary is given in Sect. 6. All proofs are relegated to an “Appendix”.

2 Asymmetric vector moving average model and properties

2.1 Model
Consider an m-dimensional stochastic process Y; = (Yi7,..., Y. Let &, =
(&1z - . ., &mr)’ be an m-dimensional i.i.d. white noise process with m x 1 mean vec-

tor 0, and m x m positive definite matrix X, independent of Y,;. Assume that the
dynamic relationships in {Y;, ¢ € Z} are represented through a linear vector filter of

positive innovations &, = (sf;, ..., &) and a linear filter of negative innovations
e =(g1, s &) which satisfy, respectively,
/ !
& = (max{0, e/} ... max{0, em}) = (I = 0)err. ... [(Eme = 0)Eme)

e; = (min{0, ey}, ..., min{0, &y }) = (I(e1r < Oerr, ..., I(eme < 0emr) s
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where 1 (-) denotes the indicator function. Then an m-dimensional asymmetric vector
moving average process of order (g, g), denoted by asVMA(qg, ¢q), is defined as

q
Y, =&+ ZB+€r v T ZB &y
v=l1
q
=&+ Ble,+ Z (B, —B))e,_,, (1

where Bi [bris v]’"s | (w=1,...,q) are m x m parameter matrices.

We see that in (1), each component of the vector process &; is transformed by
separate MA filters and the asymmetry in {Y;,# € Z} depends on the sign of the
innovations. Moreover, in (1) we assume that each component of e; has the option
of moving into one of two possible directions, above and below a fixed value zero.
Note that by introducing a suitable number of zero parameter matrices, the order ¢
can be different for e;r and &, . When (B, — B) = 0,5, (1) reduces to an m-
dimensional VMA(g) process in “standard form”. Also note that for m = 1, model
(1) corresponds to the univariate asMA(g) process proposed by Wecker (1981), i.e.,
Y, = ¢ + 23:1 bl(e—y > 0)er—y + ZZZI by I(g—y < 0)g;_,. For one-step
ahead forecasts of stock returns, Koutmos (1999) used a variant of this model with the
conditional mean given by an asMA (1) model and the conditional standard deviation
given by a threshold GARCH(1, 1) model. Guay and Scaillet (2003) modified the
univariate asMA(g) to allow for contemporaneous asymmetric effects.

2.2 Invertibility

Forecasting with an asVMA model is, in principle, the same as producing forecasts
from a VMA model provided the model is invertible. For each univariate component
of Y,, the empirical invertibility of (1) can be checked by Monte Carlo simulation;
see, e.g., De Gooijer and Brannis (1995). Their approach can be easily extended to the
multivariate case. Alternatively, we can use the following global invertibility condition
(Niglio and Vitale 2013)

AED)P )P < 1, @)

where W is an mq x mq matrix defined by

+ +
ot (Bl .. B ) |
O(m—l)quq

Here, 1(-) is the maximum eigenvalue of a square matrix and p = E[] (lm 1 = 0)]
with 1,, an m x 1 vector consisting of ones.
As anillustration, cons1deratw0 dimensional asVMA(1,1) model with B} = -B;

and with the values of b12 | fixed at zero. The reason for choosing this particular model
will become clear in Sect. 2.3. Using (2) with p = 1/2, we noticed that the shape of the
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Fig.1 Scatter plot of the global 4
invertibility region for the pair of
parameters
BB =0 by, ) 5 ]
(r,s =1,2)ofa
two-dimensional asVMA(1, 1)
model with Bj' = —B5 and |
with b%, | = 0. The black solid a 04
lines represent the condition
BB <1
24
4 |

global invertibility regions are the same for all pairs of parameters (bj;’ b ) (rys =

1, 2). Figure 1 shows a graphical representation where the elements of Bf are taken in
the range [—4, 4] using a step-size of 0.1. Itis interesting to see that the region indicates
invertibility over a wide range of parameter values. In fact, a simple approximation
to the global invertibility region is given by the condition |br+r’1||b;s’1| < 1. This
result follows from approximating the values at the boundaries of the invertibility—

non-invertibility region by nonlinear functions of the parameter combinations.

2.3 Covariance properties

For a linear stationary vector time series process {Y;, t € Z}, the mean vector, variance
and cross-covariance matrices provide useful summary information on the strength
and direction between its components. Given a particular VMA model, these theo-
retical properties are well known. By contrast, explicit expressions for the mean and
covariance of a general asVMA process are more difficult to derive.

Consider as an illustrative example the following m-dimensional asVMA(1, 1)
process
Yi=e +Be i+ B —BH(I(erm1 < 0erim1, s Iemit < 0emi—t)
3)

where we suppressed the subscript v in BE. The next proposition summarizes some
properties of (3).

ees . . iid.
Proposition Let {Y,,t € Z} follow the process in (3) with {e;} ~ N (0,,, X). Then
the unconditional mean vector, the unconditional variance-covariance matrix, and the
unconditional lag-£ cross-covariance matrix are given by, respectively,

E(Y,) = 21, Z:1,) (B~ —BT) 2,1,
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Var(Y,) = X, + %(B*ZS(B*)/ + B+>:8(B+)/) — E(Y)E(Y)),

1B~ +BY)X,, ¢=1,
L) = lyij (O =) = Cov(Yr, Yio) = {érixmf = ¢> 1

We see that unlike the m-dimensional VMA(1) process where E(Y,;) = 0,,, the
mean vector of the asVMA(1, 1) process in (3) is a function of the parameter matri-
ces B~ and BT and is in general a nonzero vector. However, the m-dimensional
asVMA(1, 1) process like the m-dimensional VMA(1) process, has the property that
I'(¢) = 0,,x;, for £ > 1. Thus, it will be hard to distinguish between both processes
on the basis of the sample estimate of I'(¢). Also, setting B~ = —BT, it follows
from the Proposition that I'(¢) = 0,,x,, for all lags £ > 1. When this asymmetry
in parameter configuration occurs it is impossible to distinguish an m-dimensional
asVMA(1, 1) process from an m-dimensional Gaussian white noise process using the
lag-¢ cross-covariance matrix.

Following the proofs in the “Appendix”, the results in the Proposition can be
extended to asVMA processes withg > 1. Then the same confusing situation occurs as
above, i.e., it is impossible to distinguish between an asVMA process with B, = —B;"
and an m-dimensional Gaussian white noise process, based on the unconditional lag-¢
cross-covariance matrix alone. In Sect. 3.2, we overcome this problem by introducing
the proposed Wald-type test statistic.

3 Estimation and testing
For ease of notation, and without loss of generality, we assume throughout this section

that the asVMA model order is fixed at g. In Sect. 5 we present estimation results with
some lags excluded from the fitted model specification.

3.1 Likelihood

Assume that {Yt}tT:1 is generated by the m-dimensional asVMA(q, ¢) model in (1)

with a constant vector term g = (i1,..., i) included on the right-hand side.
For the conditional likelihood approach, we also assume that the initial observations
Yo, Y_1,....Yi_7 are fixed,and g = e_1 = --- = €1_7 = 0,,. This assumption

does not affect the asymptotic properties of the test statistic developed in Sect.3.2. We
define the T x m matrices Y = ((Y1 —w,....,Yr — [L))/, ande = (e1,...,€e7).
In addition, using the vectorizing operation “vec” which forms a vector from a matrix
by stacking the columns of the matrix one underneath the other, we define the mT x 1
vectors

y = vec(Y), e =vec(e)

as well as the m? x 1 parameter vector ﬂff) = vec(Bg)) i=1,2v=1,...,9),
introducing the notation B = B, and B = B/". Next, we introduce the T x T
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lag matrix L with ones on the (sub)diagonal directly below the principal diagonal and
zeros elsewhere, with (L' ® I,)e = (0),,...,0,,,¢&},....e7_) (v =1,...,9).

LetD, = (ijl) — ijz)). Then the model in (1) can be written as

q q
y=e+ ) L'®@BPe+) (QL'®D,)e
v=1 v=1

= (0" + @P)e, (4)

where ©) = (I7 ® I,) + X7_, (L' ® B{”) and ©@ = Y"7_ (QL® ® D,)) are
twomT x mT matrices, and Q = diag{[/(e11 < 0), ..., I(en1 <O0)],.... [{(e1T <
0),....,I(emr <0)]}isa T x T diagonal matrix.

Define the (2gm?> + m) x 1 parameter vector

0=, B").....B"Y.B).....BP)). ©)

Then on the assumption of normality of the &, and since e = N@©,,7,.Ir ® X,), the
log-likelihood function, apart from an additive constant term, is given by

T
(0) =Y t0) =-Slog|Z| - 1 XL ez e,
=1
=—Tlog|Z:| - te@r ® 271 6
- 2 g & 2 T & e’ )

where e = ®_1y with @ = @1 + 9(2), and assuming the inverse exist. For a
fixed parameter vector 6, it is clear that maximization of (6) with respect to X yields
. =" eeT.

For a vector autoregressive moving average model with Gaussian distributed errors,
Reinsel et al. (1992, Sect. 2) derived an expression for the vector of partial derivatives
(also called gradient or score vector) of the log-likelihood function with respect to the
parameter vector. Their result carries over to an asVMA(q, ¢g) process. In particular
the expression for the partial derivatives of the log-likelihood function £(0) is given
by

3L(0) e/ »
L =——(I7®X
8 ) Ir® X, e
=70 Iy ® 3. Ve, (7)

where Z = [(Le®1,),..., L& ®1,)]isanmT x (qu2 + m) matrix. In practice,
Eq. (7) needs to be solved by an iterative numerical optimization procedure. Associated
to this, it is often useful to have a convenient expression for the 2gm? x 2gm? Hessian
matrix H(0) of second partial derivatives of £(f). When T — o0, it is well known
that H (@) can be approximated by the outer product of the gradient vector, which is
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equivalent to

04(0 0L(0)\/
H(O) ~ (%)(%) —7©)"'1r 030" 'Z ®)

In Sect. 3.2, we use the inverse of H (6) as an approximation of the variance-covariance
matrix of the vector of parameter estimates.

3.2 Wald-type test statistic

Let B = ((ﬂ(l))/, (ﬁa))’)/ denote the 2gm?* x 1 vector of parameters of an m-
dimensional asVMA(q, ¢g) process, excluding the constant term . It is apparent from
the notations introduced in Sect. 3.1 that the problem of testing the null hypothesis of
symmetry is equivalent to testing the restriction B = B® . A convenient test statis-
tic can be obtained as follows. Let R denote a known restriction matrix of dimension
gm? x (2gm?* + m) such that R@ = r with r a gm>-vector of restricted parameters.
Next, from the partition R = (R; : Ry), where Ry is a gm? x m matrix of zeros and
R; is a gm? x 2gm? matrix, the problem becomes one of testing the null hypothesis

Hy: R = quz versus Hj: RofB # quz. ©)]

Let @ be the vector of parameter estimates of @ under Hy, and H1 (?i) the estimate
of the corresponding covariance matrix evaluated under the null. Then the Wald-type
(W) test statistic is given by

Wr = B RYRH ' (OR']™'RyB, (10)

s . . . D
with B denoting the unrestricted estimator of 8. Under Hy, and as T — oo, Wr —>
X;mz. Any consistent estimate of H (@) will lead to a different variant of the Wald-type
test statistic.

Remark 1 The asymptotic distribution of the restricted estimator @ can be established
using a central limit theorem for martingale difference sequences (see, e.g., White
2001, Ch. 5), and is given by

T'2@ = 0) 2> Naypo s (0, RVR)™), (11)

where V = lim7_, T’lE( — 826(0)/8r8r’). Given (11), the asymptotic distribution
of the Wald-type test statistic (10) follows from White (2001, Thm. 4.31(ii)).

Remark 2 Let {qrf}T’S:l denote the set of lag orders corresponding to the positive
(negative) innovations of an m-dimensional asVMA model. Then, testing for symmetry
imr[r)llies 4rs = q;% = grs. In this case the Wy is asymptotically x? distributed with
Yo >t grs degrees of freedom.
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Table 1 Size of the Wald-type

. . . T =250 T =500 T = 1000 T =2000
test statistic W7 at nominal size

0.05 for DGP-1 (m = 2). 04 0.053 0.057 0.048 0.052
Number of simulations is 1000
02 0.054 0.042 0.041 0.053
0 0.052 0.044 0.052 0.058
0.2 0.050 0.042 0.047 0.059
0.4 0.063 0.056 0.049 0.052

3.3 Test performance of Wr

To study the empirical size of W7, we consider a two-dimensional asVMA(1, 1) (DGP-
1) model with B = ( % 5%), where § = 0, £0.2, £0.4, and {e,;} "~ N'(02, o). To
avoid the effect of any starting-up transient on the generated process, a prior part
consisting of 500 observations was discarded from each series. Based on 1000 Monte
Carlo replications, Table 1 shows the observed sizes of the Wald-type test statistic at
nominal size 0.05 for T = 250, 500, 1000 and 2000. The table reveals that W is
generally well sized. It is also apparent that the observed sizes are about the same for
positive and negative values of §.

In addition, we also studied the size of the Wald-type test statistic for a three-

dimensional asVMA(1,1) model with {&;} <N (03, Iy) with the parameter matrix
given by DGP-4 below. Under the Hy: BT = B~ the size (5% nominal level) of the
test statistic is 0.091 (T = 500), 0.051 (T = 1000), and 0.46 (T = 2000) for § = 0.
For |§] > 0.2, however, we noticed serious size distortions. The size improves slightly
for T = 2000. Nevertheless, caution is needed when interpreting the results of the
Wald-type test when the sample size is relatively small.

To study the empirical power of W, we employ three m-dimensional asVMA(1, 1)
(m = 2, 3) DGPs with the following parameter configurations,

DGP-2: B— — <0.5 0.2>’ B — < 0.7 —0.3)’

04 03 —-02 —0.5
e (07 0 L o
DGP-3: B _<0.3 0‘5), BT =-B~,
§ -8 0
DGP-4: B =| -8 6§ —-8|,BT"=-B", (§=0.2,04, 0.6, 0.8),
0 -8 &

where in all cases {&;} SN (0,,,I,,,). Note, all DGPs do not have a constant vector
term QL.

Table 2 shows the empirical rejection frequencies of the Wr test statistic at a
5% nominal significance level. The power of the test statistic is reasonable to good,
irrespective of the dimension m and the sample size 7. This also applies to the special
case Bt = —B~ (DGP-3 and DGP-4) which we discussed in Sect.2.3.
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Table 2 Empirical probability of

. DGP m 8 T =200 T =500 T = 1000
rejecting symmetry by the Wp

test statistic when the DGP is 2 2 0.796 0.863 0.879

given by the three

m-dimensional asVMA(1, 1) 3 0.732 0.802 0.857

models (m = 2, 3) specified in 4 3 0.2 0.581 0.661 0.745

Sect. 3.3 0.4 0.684 0.712 0.751
0.6 0.784 0.795 0.802
0.8 0.794 0.796 0.857

Nominal size is 5% and number of simulations is 1000

Table 3 Parameter estimates and their corresponding standard deviations (in parentheses) for DGP-2 and
DGP-3

DGP-2 (m = 2) DGP-3 (m = 2)
bk T=200 T=500 7T=1000 bk T=200 T =500 T =1000
0.5 0.503 0.500 0.500 0.7 0.705 0.704 0.701
(0.121) 0.071) (0.048) (0.118) (0.067) (0.043)
0.2 0.215 0.205 0.201 0 0.003 0.003 0.003
(0.120) (0.070) (0.048) (0.090) (0.055) (0.037)
04 0.412 0.406 0.403 03 0.306 0.302 0.301
(0.137) (0.076) (0.054) (0.113) (0.069) (0.047)
03 0.306 0.304 0.301 05 0.503 0.496 0.501
(0.142) (0.081) (0.057) (0.123) (0.074) (0.053)
0.7 0.715 0.707 0.702 —07  —0.717 —0.711 —0.699
(0.122) (0.068) (0.048) (0.090) (0.052) (0.034)
—02  —0.208 —0.202 —0.201 0 —0.006 —0.005 —0.001
(0.136) (0.079) (0.053) (0.090) (0.055) (0.038)
—03  —0.304 —0.304 —0.299 —03  —0.308 —0.306 ~0.299
(0.114) (0.070) (0.049) (0.115) (0.067) (0.047)
—05  —0519 —0.508 —0.505 —05 0512 ~0.503 —0.503
(0.147) (0.084) (0.059) (0.106) (0.065) (0.042)

Number of simulations is 1000

Table 3 shows parameter estimates and their corresponding standard deviations for
DGP-2 and DGP-3. In all cases the performance of the estimation method is good,
i.e., both the bias and standard deviation of 0 decreases as T increases. This empirical
result is in agreement with the asymptotic result in (11).

4 Two exploratory test statistics

4.1 asMA model

To investigate the possible asymmetry of an asMA model (m = 1), Welsh and Jernigan
(1983) introduced the lag ¢ bicovariance function, defined as Y (£) = Cov(Ytz_ o Y.
They proposed testing the null hypothesis Hy: ¥ (£) = 0. For E(Y;) = 0, an unbiased
and consistent estimator of 7 (¢) is given by 7(£) = (T — £)~! ZzT:£+1 Y? ,Y;. The
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1446 J.G. De Gooijer

authors showed that under the null hypothesis the standardized bicovariance

T
o) =Y Y2 /V3T -0 (12)

t=(+1

has an asymptotic A/(0, 1) distribution. For an asMA (1) process, Q (£) has good power
as demonstrated by Brénnis et al. (1998).

4.2 asVMA model

A natural extension of ) (£) is the lag £ cross-bicovariance function, defined as y; (0 =
E[Yizgterj,,] (i,j = 1,...,m;£ € NT). However, unlike the correlation matrix
used for the identification of linear vector time series processes, the resulting cross-
bicovariance matrix is not symmetric with respect to the principal diagonal since
Vi i (0) # )’7j,- (¢). To obtain a symmetric matrix, we first define the following matrices

771)14(6)1 u S U,
Yuv(£), u > v.
(13)

Vuo(0), u < v,

1) _ 1., ()ym —
r (E)—[yuv ]u,v=1 - { J7vu(€)v u>v,

r0=y3n, = {

Then, a symmetrized lag-¢ cross-bicovariance matrix is given by
~ 1
T = E(r“)(o +T@ (). (14)

Note that the principal diagonal of f(ﬂ) is composed of the elements 77, @) =

1,...,m). The off-diagonals above and below the principal diagonal of I'(¢) are

composed of the elements ()7MU(E)+)7W (6))/2 (u <vyu,v=1,...,m),respectively.
Using (14), the null- and alternative hypotheses of interest are

Ho: T(0) = [7j (D1 ;=) = Opscm versus Hy: T(@) # Oy, (L =1,....9),
(15)
where ¢ € Z7T is a prescribed constant integer. Let fm ) = [Z; (E)];i’jzl

an estimator of f(Z), where Z;;(f) = ZtT:@_H Yizt_lYi,,/«B(T — £). Then, an
exploratory test statistic for testing Hy can be based on the squared Frobenius norm.
That is, the test statistics is given by

denote

O () = Tr(T,, (OT (),

:(Zz,%.(z)Jr%Z(z,»j(z)Jrzﬁ(e))z), C=1,....9). (16
i=1 i)

Large values of Q,,(¢) indicate that Hy should be rejected.

@ Springer



Asymmetric vector moving average models: estimation and... 1447

Table4 Empirical power of O, (1) when the vector time process follows two m-dimensional asVMA(1, 1)
models (m = 2, 3) for sample sizes T = 50, 100, 200

DGP-6 (m = 2) DGP-6 (m = 3)
8 T =50 T =100 T =200 T =50 T =100 T =200
0.1 0.072 0.088 0.172 0.134 0.268 0.593
0.2 0.184 0.347 0.719 0.534 0.865 0.998
0.3 0.371 0.704 0.973 0.873 0.997 1.000
0.4 0.583 0.898 0.999 0.985 1.000 1.000
0.5 0.743 0.970 1.000 0.999 1.000 1.000

Nominal size is 5%, number of bootstrap replicates B = 500, and number of simulations 1000

Given (16), it is easily verified that under H the asymptotic distribution of Q,, (¢)
is characterized by the sum of two uncorrelated random variables, i.e., Q,,(£) =
(X1 + X»). Here, the distribution of X is Xz(l) multiplied by a constant (m + 1) /2.
Then, the random variable ((m + 1)/2) Xz(l) has a gamma distribution I" (k, ) with
shape parameter k = 1/2 and scale parameter & = (m + 1). The distribution of X,
is (m — 1)/2 times the product of two uncorrelated A/ (0, 1) random variables, say Z,
where the exact probability density function of Z is given by the well-known result
f(z) = (1/m)Kp(z) with K(-) the modified Bessel function of the second kind of
order zero. Clearly, for m = 1 the null distribution of Q;(¢) is x2(1). For m > 2,
however, the null distribution of O, (£) is untractable. In that case, we use a stationary
bootstrap scheme, with automatic block-length selection; see Politis and White (2004)
and Patton et al. (2007).

4.3 Test performance of Q. (£)

To study the empirical power of Q,,(£), we employ two m-dimensional asVMA(1, 1)
(m = 2, 3) DGPs with the following parameter configurations

- 5 -5 102 103
DGP-5: B =-B" = (—5 5)’ X 2(0.2 1)’ 2% (0.3 1)’

§ =50 1020 1 030
DGP-6: B~ =-Bt = (—s b —a), Y= <0A2 1 o.2>, Y, = (0.3 1 0A3>,
0 -8 & 0 02 1 0 03 1

where 8 = 0.1,...,0.5, and {&;} ~ N(0,,, Ly).

For a 5% nominal significance level, Table 4 shows the empirical power of Q,, (£)
at time-lag £ = 1 with respect to three different sample sizes T and five parameter
values 4. It is seen that O, (1) has good power for all dimensions m. For fixed values
of 8, the power improves with increasing sample size 7. Note that for § = 0.1 both
DGPs are close to a vector Gaussian white noise process. But still the rejection rates
are satisfactory. As expected, in all cases the empirical size (not shown here) is close
to the nominal size.
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1448 J.G. De Gooijer

5 lllustrative applications

No general model selection strategy has been developed to determine the most appro-
priate asVMA model in practice. We found it convenient to tackle this problem in
the following way. First, based on the values of the test statistic Q(¢£) the best-fitted
univariate asMA model is obtained for each time series separately. Next, we used these
specifications as initial polynomial estimates for the diagonal elements of the asso-
ciated asVMA model with low order polynomial specifications for the off-diagonal
elements of the vector model. This provides an initial guess of the structure of the
asVMA model, which can be fine-tuned using a suitable model order selection crite-
rion (e.g., AIC(g) = In |f8| +2gm?/T) and by diagnostic checking the residuals. In
addition, the pattern of the lag £ cross-bicovariance matrix T, (¢) and the correspond-
ing test statistic Q,, (£) may suggest directions of model improvement. However, in
the interest of parsimony, we recommend that the initial asVMA model should be kept
simple. Also, deleting asVMA model parameters which are small compared with their
standard errors, may provide a better understanding of the DGP under study.

5.1 GDP and CPI

As a first illustration, we use quarterly US real GDP (seasonally adjusted; not
inflation adjusted) and quarterly US consumer price index (CPI) total all items (sea-
sonally adjusted), covering the period 1960(i)-2017(iv). In particular, we employ
the GDP growth rate, i.e., Y1; = In(GDP,/GDP,_;) and the inflation rate Y5, =
In(CPI,/CPI;_1) (t = 2,...,232). Our analysis starts with presenting results for the
exploratory test statistics discussed in Sect. 4.

Table 5 reports values of the test statistics Q(¢) and Q>(¢) (¢ =1, ..., 10). For
series Y1;, Q(€) has no values exceeding the 95% confidence limits at lags 1-10. For
series Y2;, however, significant values of Q(¢) are at lags 1-7 and 9-10. On the other
hand, the univariate version of the Wald-type test statistic rejects the null hypothesis of
symmetry for both series. In Table 5 the numbers within parentheses are the p-values
of the test statistic 02 (£). We see that at lags 1-6, the null hypothesis in (15) is rejected
at the 5% significance level. This strongly suggest that an asVMA model should be
entertained with parameter matrices specified at the first 6 lags, and perhaps also at
lag 10.

In our further analysis, we employed AIC to search over different asVMA specifi-
cations. The “best” fitted model is a two-dimensional asVMA given by

0.007 —0.151 0.426 0.151 0.295
Q= (4.597) B _ | (—0981) (1.99) p— _ | ©3888) (1.545)

0.011, | 1! 0.063 0.639 | 72 0.023 0.047 |’

(8.240) (0.454) (4.351) (0.183) (0.518)

R 0.228 —0.245
By = | (1337 133 |,

By, = (—0.126 —0.152 )
(—0.545) (—101.590)
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Table 6 ML parameter estimates of an asMA(1) model, their t-values (in parentheses), residual variance
382, AIC, and results of the Wald-type test statistic for the first differences of the logarithms of six univariate
time series

Series M bt b G2 x 10 AIC Wr
CSSS hot rolled

yBLS 0.000 0.044 0.069 4.05 —10.06 6.75 x 107
(0.919) (0.202) (0.080)

yNBER 0.002 —0.101 0.339 5.59 —9.74 2.70
(2.114) (—1.207) (1.473)
Tin plate

yBLS 0.000 —0.006 —0.814 323 ~10.29 1.87 x 1072
(0.515) (=0.001) (=2.301)

yNBER 0.000 0.177 —0.020 4.16 —10.04 1.66 x 1071
(0.361) (0.918) (=0.056)
Regular gasoline

yBLS —0.009 0.425 —0.537 374 —7.84 13.97*
(—3.003) (2.606) (—3.764)

yJNBER —0.001 0.170 0.230 2.11 ~10.72 6.95 x 1072
(—0.835) (1.109) (1.977)

* p-value < 0.05

0.615 —0.654 0.256 —0.908
§+ _ | 430D (=2.024) §+ _ | (1.497) (—3.475)
1 0.316 1.120 | 72 0.310 0.061 ’
(17799)  (5.980) (2.276) (0.420)
N —0.265 0.009
Bgr = (~2.114) 0.038) | |
=~ - - = 4.27 0.13 _
Bfy ={ —0.0040.081 | = =< >><10 ’,
O\ Soosny @570 T\013 297

with z-values in parentheses. The Wald-type test statistic is VAVT = 142.60 and AIC=
—20.04.

The Wald-type test statistic is asymptotically distributed as X122 with a p-value of
zero, and hence the Hj of symmetry is rejected at the 5% nominal level. We see that
for Yy, the 7-values of the parameter estimates 27\1_2’1, Eﬁ,l, i;frzyl, Ef’z,z, and Zfr” are
all significant. It implies that for this series there is a strong interrelationship between
the innovations 82_,t71’ sfflfl, 8;:,71, 8;:[72 and 8?:[73 of both time series Yi; and
Y>;. On the other hand, for Y>; we see significant parameter estimates /b\gz,l’ 79\27210,
Z;rz 1» and E;rlz In this case the dynamic structure depends on the innovations 85’ 1>
82_, —10° s{ 1> and 81,_2. The fitted asVMA model is in agreement with common
expectations, i.e., US inflation has a negative, and statistically significant, asymmetric
effect on growth rates in US real GDP.
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Fig.2 Six industrial production series for the period 1957:01-1966:12

5.2 Production price indices

As a second illustration, we reconsider the second application of Wecker (1981, Sect.
4). He fitted univariate asMA (1) models to six series of the first differences of log-
arithms of monthly industrial price series (T = 119), i.e., production price indices.
Three series were obtained from the National Bureau of Labor Statistics (BLS) and
three series from the National Bureau of Economic Research (NBER): Carbon Steel,
Sheet and Strip — Hot rolled, Tin plate, and Regular gasoline. The BLS series are based
on “spot” and quoted prices, while the NBER series are based on contract prices. Fig-
ure 2 shows time plots of the original series, initially compiled by Stigler and Kindahl
(1970); see www.nber.org/chapters/c3321.pdf.

Stigler and Kindahl (1970) noted that there are no systematic trend differences
between the indices for the period 1957-1961, while for the period 1962—1966 the
BLS-based indices rose about 0.7 percent a year relative to the NBER-based indices.
They argue that this phenomenon is due to an asymmetric inertia (delay) in industrial
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prices movements. Price quotations are not revised immediately when, for instance,
market conditions, and transaction prices, change. The asymmetry comes from the
prudence of sellers to be slow in authenticating price reduction and prompt in authen-
ticating price increases. This behavior is best represented by spot or quoted prices,
and therefore by the BLS-based indices. For a buyer it is measured by the price of
a contract, and therefore by the NBER-based indices. Given these observations, the
BLS-based production indices are likely to show more asymmetries in sign-based
persistence of the innovations than the NBER-based indices.

Below, we first investigate the presence of asymmetries by estimating and testing
univariate asMA models for each of the six production series separately. Next, we
capture asymmetries for the three BLS-based (NBER-based) indices jointly as a group
by fitting asVMA models.

5.2.1 asMA models

Wecker (1981) noted that the three BLS-based indices, denoted by Y; [LS (i=1,2,3),
showed statistically significant signs of asymmetry using a likelihood ratio (LR) test
statistic of the form 21og(G2/G?2) where G2 is the estimated standard deviation of
the innovations under Hy (symmetry) and where 33 is the estimated standard devi-
ation under H; (asymmetry). No evidence for asymmetry was found in the three
NBER-based indices, denoted by YitBER (i = 1,2, 3). For more information about
asymmetric effects, however, it is reasonable to fit asMA(1) models to the univariate
time series first. Table 6 summarizes estimation and testing results. The ML parameter
estimates are close to those reported by Wecker (1981, Table 3). But note that in almost
all cases the estimates of b* are not statistically different from zero at the 5% nominal
level. Moreover, with one exception, the Wald-type test statistic indicates that there is
little evidence to reject the null hypothesis of symmetry.

The entries in the first six rows of Table 7 are values of the Q(¢) (¢{ =1, ..., 10)
test statistic. We see that except for the BLS-CSSS Hot rolled series at lag 8, there is
no evidence to reject the null hypothesis Hy: ¥ (£) = 0 at the 5% nominal level. The
null hypothesis is rejected, however, for the NBER-CSSS Hot rolled series at lags 1, 2,
6, and 7. Values of Q3(¢) and their corresponding p-values are reported in rows 7 and
8 of Table 7. For the NBER-CSSS Hot rolled series the test rejects the null hypothesis
in (15) at lag 3, using a 5% nominal level. By contrast, for all remaining lags, Q3(¢)
gives a strong indication not to reject the hypothesis of symmetry, on the basis of the
p-values. This information may be used to drop insignificant parameter values from
the final model specification and, as a result, improves model interpretation.

5.2.2 asVMA models

We employ AIC as a model selection criterion but with the additional condition that
the final selected model should be parsimonious. For a fully specified asVMA model
of dimension m = 3 it is often hard to figure out what is going on. In that case, it makes
sense to drop insignificant parameters. Given this objective, we obtain the following
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estimation results for the BLS-based indices

0.002 - - =0.007
(1.000) (—0.056)
=_ | 0.000 g+ = | 0.032 —0.147 —0.006
=1 @o00) | P1 = | 0.156) (—0.344) (=0.138) |’
—0.010 0.122 —0.107 0.453
(—8.25) (0.314) (—0.216) (11.032)
- - 0.081
(0.375)
- | 0.156 —0.400 —0.064
I 7 ] (0.203) (-4.130) (—3.564)
0.229 —0.417 —0.593
(1.072) (—1.195) (—456.000)
G 8338 i~
Bf=| _ " '_|.By=| _ " _
—0.046 — — —-0.325 — —
. —0.102 . 0485 R 4.02 -0.25 0.81 .
B, = - __| By= O __ ], Ze=[-025 198 —0.74 | x 10
o 0.81 —0.74 37.11

with Wy = 3.82 and AIC = —27.71. The Wald-type test statistic is asymptotically
distributed as X120 with a p-value of 0.95, and hence the Hj of symmetry given by (9)
is not rejected at the 5% nominal level. Note that only four parameter estimates b33 |,

bz_z > b23 1» and b33 | are significantly different from zero.
Similarly, for the three NBER-based indices the “best” asVMA model is given by

0.000 - — 0.055
(0.600) 0.178)
=~ _ 1 0.000 gt = | —0.041 0215 —0.071
=1 ©136) | P1 = | (=0.252) (0.909) (—0.154) |°
—0.001 —0.038 0.211 0.214
(~0.600) (—0.233) (7.389) (0.615)
- - —0.186
(~0.600)
B = | —0.287 —0.041 0.154
1 7| (—0590) (-0.154) (0.962) |~
0.190 —0.071 0.250
(12.417) (~0312) (0.698)
—0.164 —0.012 — —0.079 (%.(0)% -
- —1.028) (—0.652 ~ —0.198) (0.02
B2+=<_>(_>_7B2_=(_)__’
0.010 — — —0.051 — —
_ [ @) S e s (410 048 0.17 p
B, = - _—_ ] Bg= ___ |, X.=1048 397 —0.21 | x 1077,
- 0.17 -0.21 2.21

with W7 = 101.44 and AIC = —29.84.

In this case, the Wald-type test statistic is asymptotically distributed as X120 with
a p-value of zero, and hence the Hly of symmetry given by (9) is rejected at the 5%
nominal level. Note that the rejection of Hl is most likely due to significant, and
positive, values of ’b\;z] and ’b\371,1- Given the size of these parameters, it appears that
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positive innovations persist longer than negative innovations. The remaining asVMA
parameters are indistinguishable from zero. In summary, our multivariate estimation
and testing results cast doubt on Wecker’s univariate test results. That is, we only find
evidence of asymmetric effects in the three NBER-based indices when tested jointly.

6 Summary

In this paper, we introduced the class of asVMA models. The general concept and struc-
ture of these models complement the well-known class of univariate asMA models. We
derived some basic properties of an asVMA model. We also proposed a multivariate
Wald-type test statistic to uncover asymmetric effects in vector time series. Simulation
experiments demonstrated reasonable to good power performance of the Wald-type
test statistic in finite sample cases. We illustrated the proposed test and estimation
procedure by finding evidence of asymmetry in two sets of empirical time series, one
set modeled by a two-dimensional asVMA model, and one set by a three-dimensional
asVMA model. Given these results, we believe that the asVMA model in conjunction
with the proposed test statistic, has great potential to uncover asymmetric phenomena
in multivariate time series with more precision than has been been possible before.
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Appendix: Proofs of results

For ease in presentation, let M) = {e R™|1), & € R®} (i = 1, 2) denote the space
R™ decomposed into two non-overlapping subspaces, where RV = (—o0, 0) and
R® = [0, 00). Furthermore, we define the set of matrix functions B: R” — R™*"™
such that

B(e;-1) =BV 11,61 e RD) +BP (1,8, € RD),

where B() = B~ and B? = B™.
The proof of the Proposition requires the following two lemmas.
) .
Lemmal Let X, = [a,'j]l’.','j=1 = (;'/I]z EZ ), where X1p is an 1 x (m — 1) vector, o

isan (m — 1) x (m — 1) matrix, and |X2,| > 0. Further, let f,,(¢) denote the density
function of {&;,t € Z}. Then
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. O\ () . .
(l) fA(i) gjfm(e)de = (O‘LI)MU)’ (l = 1,2, ] = 1,.. .,m).
1
. @) ) .
(ii) S exe; fm(@)de = (L) (Z— = @) + oya®, (= 1,21,k =
o011 o011 ’
1,...,m),
where
AD ={(z1,....zm) €R™; 21 € RD (22, ..., zm) e R"71),
and

oV = [ fidu, u = [ ufi@du, 0@ = | u®fidu.
RO R® R®

Proof Let U ~ N(0,011) and V ~ AN,,_1(0, ¥2). Then it is well known from the
theory of multivariate statistical analysis that the conditional distribution of V given

that U = u, is normal with mean X 1201_11 u and covariance matrix X,y — X 1201_11 2’12.
Denote the corresponding conditional density function by g,,,—1 (-|u).

(1) Since f, (V) = gm_1(v|u) f1(u) withv = (v, ..., v,)’, we have for j = 1

/ 1 fule)de = / i () g1 (vI)dudy
0 A

- / ufitn( f gn1 (VIydv )du = 0.
RG) Rm—1

In a similar way, for j > 1,

./Aﬂ) €j fm(e)de = /R(f) N (“)(/Rm_l ngmfl(v|u)dv)du

= /.(‘) fl(u)aludu — (E)M(i).
Rl

o011 o011

(ii) Clearly, for k = j = 1 the term on the right-hand side becomes oD — gpa® 4+
o™ = ¢, Then, similar to part (i), we have

/ &} fu(e)de =/ u? f1 (W) gm—1 (v|u)dudv
AW 0

:/ u2f1(u)(/ gm_l(vlu)dv>du:(7(i).
R® Rm—1

Fork = 1, j # 1, the term on the right-hand side becomes (01 /o110 ). Again,
this result follows in a similar way as above, i.e.,

f 616 fu(e)de = / i)V g1 (VI)dudy
AD A
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- /I‘R(l‘) ufi (M)</Rm71 ngm—l(V|M)dV)du

o; oj .
Z/ ufi (M)Lludu = (i)a(’).
R® o11

o011

Fork # 1, j # 1, we have

/ ekej fm(e)de
(i)
— [ ([ v vy

Jj1

Okl o

= [ awf [ (- P - 2
R® Rm—1 [ea] O11

+%uvj+ﬂuvk u? Okl /1>gm 1(v|u)dv}du

o11 o11 of)
Ok10j1 | Okl Oj1 0j1 Okl 0k10,1

/ fi@)\oxj — / +—uLu+4u—u—u2—2]>du
o11 o11 o1l o11 O11 o

, . L
Ukl"fl)aa) 1+ PTG @) T ("_ _ a<">) + oyja®.

( o o011 o11

o011
]

Lemma 2 Letr and s be two m-dimensional non-random vectors in R™. Then, using
Lemma 1, it follows that

(i) S a0 ¥'e f(e)de = (0 /o1DF'EY,, (i = 1,2), where T}, = (011, Z12)'.
(ii) [ a0 1'ee’s fn(e)de = yOr/ Z’szTzs +a®Dr'E,s, (i = 1,2), where

Proof (i) Using result (i) of Lemma 1, we have

/Am r'e fru(e)de = /A(l_) j;rﬂ?jfm(é‘)de

(i1) Using result (ii) of Lemma 1, we have

/(l_) r'ee’sf,(e)de = /A@ (éqq)(ésk«?k)fm(é‘)ds
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m m

=22 riselogjojiy® + oije?)

j=lk=1
(D) ek e (i) 4/
—y 1‘21221254—0[ I‘ESS.

O

Proof of Proposition To obtain the required moments, we introduce an m x m orthog-
onal matrix Q with first column given by 1,,. Applying the nonsingular linear
transformation Q’e to & with Jacobian |Q| # 0, we have

Qec AV e eecMD, (i=1,2).

Let ¢(¢&) be the density function of A, (0, X.), and ¥ (¢) the density function of
Ny (0, Q'X.Q). Then there exists a bounded continuous function g(-) such that

/ ,g(e)w(e)dezf | g(s—‘<e>)¢(s—1<e>)de=/ QU @z, (=1,2),
M@ E(MD) A

with & : ¢ — Q’e. Hence, the first moment of {Y;, ¢ € Z} is given by

E(Y;) = E(e;) + E[B(e;—1)&:-1]
2 2
_ (@) _ (@)
= E(e;) + ;/Mm BDep(e)de = ;/Am BV Qzy (z)dz.

Note that the covariance matrix Q'X,Q has Q'X .1, as first column. Then, using result
(i) of Lemma 2, we have

2 2
E(Y;) = Z n B(’)QQ/Eslm =15 > uPBOE 1,
i=1 mj=1
1
=——u?BY-B?)x%1, = 271,%.1,)"*(BY - B?)2,1,,
1,%.1,"

since —u = u® = 1/, x.1,,/2m)"/2.
The variance of {Y;, r € Z} is given by Var(Y,) = E(Y,Y}) — E(Y;)E(Y}). Using
result (ii) of Lemma 2, the first term on the right-hand side can be written as

E(Y,Y) =2, + Z/ ) Bee'(BV) p(e)de = =,

+ Z/ B®Qzz’ Q( B(’)) Y (z)dz
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2 2
=%+ y“BY%1,1,2 (BY) + ) «"BVx, (BY)
i=l i=1

=3 + %(B(])EE(B(”)/ + B<2)28(B<2>)’),

since ¢V = ¢@ = 1/2, and

. ® @ 1 ¥.1 1 1/2
yo):"_z_o‘_:msm : 2_// =0, (i=1,2).
011 o11 2 (lmzslm) lmzslm

The cross-covariance matrix at lag £ = 1 is given by

') =Cov(Y;,Y;—1) = Cov(e;, &;-1) + Cov(e,, B(e,_z)st_z)
+ Cov(B(s,_l)et_l, et_1) + Cov(B(s,_l)st_l, B(e,_z)e,_z)
= COV(B(é'tfl)é‘tfl» €t71)
=E(B(ei—1)e—1€_;) — E(Ber—1)e—1) (E(e,—1)’
= E(B(st_l)e,_lsgfl).

Next, using result (ii) of Lemma 2, we have

2
r(l) = E(B(et_l)st_lé';il) = Z:\/\M(i) B(i)ee/(p(e)de

- Z / B Quz Q'y (z)dz

= Zy(’)B“)QQ 21,1, %.QQ +Za(’)B(’)QQ 2:.QQ

i=1 i=1
2 2
= (X rOBY)z 1,1, 5 + (D oVBO)x
i=1 i=1
1
= ;BY + Bz,

since y@ = 0 and «? = 1/2 (i = 1,2). When £ > 1, it is easy to see that
I'(¢) = 0,,,%,,n. This completes the proof of the Proposition. O
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