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Abstract
In this paper, it is shown that the performance of various frequency-domain esti-
mators of the memory parameter can be boosted by the inclusion of non-Fourier 
frequencies in addition to the regular Fourier frequencies. A fast two-stage algo-
rithm for the efficient computation of the amplitudes at these additional frequen-
cies is presented. In the first stage, the naïve sine and cosine transforms are com-
puted with a modified version of the Fast Fourier Transform. In the second stage, 
these transforms are amended by taking the violation of the standard orthogonality 
conditions into account. A considerable number of auxiliary quantities, which are 
required in the second stage, do not depend on the data and therefore only need to be 
computed once. The superior performance (in terms of root-mean-square error) of 
the estimators based also on non-Fourier frequencies is demonstrated by extensive 
simulations. Finally, the empirical results obtained by applying these estimators to 
financial high-frequency data show that significant long-range dependence is present 
only in the absolute intraday returns but not in the signed intraday returns.

Keywords  Long-range dependence · Periodogram · Fractional Fourier frequencies · 
Financial high-frequency data

1  Introduction

Long memory refers to statistical dependence between observations far apart in 
time. Indications of long memory have been found in various fields such as hydrol-
ogy, meteorology, geophysics, psychology, economics, and finance (for surveys see, 
e.g., Beran 1994; Graves et  al. 2017). A popular measure of the degree of long-
range dependence is the memory parameter d, which can be defined for a given 
stationary time series in terms of the rate of decay of its autocorrelation function 
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or the steepness of its spectral density near frequency zero. The most widely used 
long memory models are the autoregressive fractionally integrated moving average 
(ARFIMA) models. Pötscher (2002) showed that drawing inferences about d is only 
possible when severely restricted subsets of ARFIMA models are used. Unfortu-
nately, restrictions of this type are not plausible in most applications, with series of 
stock returns being notable exceptions because of the absence of significant short-
term autocorrelation.

A popular semiparametric method of estimating d, which allows to estimate d 
without simultaneously estimating the other model parameters, is based on the log 
periodogram. Since the periodogram is a very erratic estimator for the spectral den-
sity, it seems natural to smooth it prior to its use in the estimation of the memory 
parameter d (Hassler 1993; Peiris and Court 1993; Reisen 1994). While smoothing 
has the expected positive effect on the variance of the estimator, it may also increase 
the bias (Chen et al. 1994; Reschenhofer et al. 2020), which is especially problematic 
when individual estimates are first obtained with a rolling estimation window and 
then combined by averaging. In this paper, we take an opposite approach. Instead of 
reducing the resolution through smoothing, we increase it by doubling the number 
of frequencies. However, there are two problems. First, the Fast Fourier Transform 
allows only the fast computation of the periodogram at the Fourier frequencies. Sec-
ond, the periodogram ordinates can in the case of non-Fourier frequencies no longer 
be interpreted as the squared amplitudes of simple sinusoids. We address the latter 
problem by modifying the periodogram and the former by introducing a two-stage 
algorithm for the fast computation of the modified periodogram. In the first stage, a 
modified version of the Fast Fourier Transform is used for the computation of the 
standard periodogram at non-standard frequencies, which is subsequently subjected 
to a simple and efficient transformation in order to rectify the distortions caused by 
the violation of the standard orthogonality conditions in the case of non-Fourier fre-
quencies. Both a simulation study and an empirical study with financial high-fre-
quency data are carried out to verify the relevance of our approach.

The paper is structured as follows. Section 2 briefly reviews various frequency-
domain estimators for the memory parameter d and explains how they can be modi-
fied by the inclusion of non-Fourier frequencies. In Sect. 3, an efficient algorithm for 
the computation of the modified estimators is described. Sections 4 and 5 present 
the results of the simulation study and the empirical study, respectively. Section 6 
concludes.

2 � Frequency‑domain estimation of the memory parameter

A parametric approach (see Fox and Taqqu 1986) to estimate the memory parameter 
(or fractional differencing parameter) d of the autoregressive fractionally integrated 
moving average (ARFIMA) model

(Granger and Joyeux 1980; Hosking 1981) with spectral density

(1)yt =
(
1 − �1L −⋯ − �pL

p
)−1
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(
1 − �1L −⋯ − �qL

q
)
ut



1757

1 3

Fast computation and practical use of amplitudes at non‑Fourier…

only makes sense when we are sure that the parametric model is correctly specified 
(see, e.g., Robinson 1995; Reschenhofer 2013). The uncertainty regarding the order 
(p, q) of the ARMA model can be avoided by adopting Geweke and Porter-Hudak’s 
(1983) approach. Their semiparametric estimator d̂GPH is obtained as the slope of a 
simple linear regression which explains the log periodogram

of the observations y1,… , yn by the deterministic regressor

where

are the first K Fourier frequencies. Hurvich et al. (1998) showed that this estimator 
is consistent when only Fourier frequencies in the neighborhood of frequency zero 
are used, more precisely when K = o

(
n4∕5

)
 and log2 (n) = o(K).

Because of the irregular behavior of the spectral density (2) in the neighborhood 
of frequency zero, the standard asymptotic results for the normalized periodogram 
ordinates J

(
�j

)
= I

(
�j

)
∕f
(
�j

)
 do not hold when the frequencies �j are too low. 

However, Künsch (1986) was able to show that J
(
�j

)
, j = H + 1,… ,H + K , are 

still asymptotically i.i.d. standard exponential provided that (H + 1)∕
√
n → ∞ and 

(H + K)∕n → 0 . Robinson (1995) therefore proposed to remove the very lowest 
Fourier frequencies from the log periodogram regression. The most conservative 
variant d̂tr of Robinson’s estimator is obtained by trimming out only the contribu-
tion from the lowest frequency. Clearly, removing further frequencies will only be 
an option if the removal of the first does not already lead to a deterioration in the 
estimation properties.

Another modification of the log periodogram regression is based on smoothing. 
Hassler (1993), Peiris and Court (1993), Reisen (1994) proposed to smooth the peri-
odogram before it is used for the estimation of the memory parameter d. This can be 
achieved by cutting off the sum in the representation

at a much smaller value than n − 1 and downweighting the higher-order autocovari-
ances 𝛾̂(s) with a suitable lag window such as the Bartlett window or the Parzen 
window. In general, the resulting estimators have typically a smaller variance and a 
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larger bias than those based on the raw periodogram (Chen et al. 1994; Reschenhofer 
et al. 2020). However, the squared bias is not always small relative to the variance. 
For example, in the case of high-frequency financial data, preliminary estimates of 
the memory parameter d must first be obtained separately from the different trading 
sessions because of the overnight gaps and then be combined by averaging. Thus, 
the variance of the global estimator decreases with the number of trading sessions 
but the bias remains fixed. Estimators with a large bias are therefore of no use. We 
may keep the bias small by using an estimator based on minimal smoothing, e.g.,

or by using a more sophisticated smoothing method that does not systematically 
increase the bias. Reschenhofer and Mangat (2020) managed to achieve a reduction 
in the variance which does not come at the expense of an increase in the bias. Their 
estimator is based on running a log periodogram regression repeatedly for differ-
ent partitions of the data. In the simplest case, only the whole sample and the first 
and second halves are used but the frequency range (0,�K] , is kept constant, which 
implies that reducing the sample size by half results in half the number of included 
Fourier frequencies. The simple estimator

where d̂1, d̂21, d̂22 are the OLS estimators for d based on the log periodograms 
L1, L21, L22 of the whole sample and the first and second halves, respectively, can 
easily be extended to the more general estimator

which is based on k partitions.
Reschenhofer (2013) observed that the root mean square error (RMSE), which 

is defined as the square root of the average of squared errors, of Geweke and Por-
ter-Hudak’s (1983) semiparametric estimator d̂GPH can be reduced significantly by 
including additional frequencies. However, he did not examine the effect on other 
estimators and he also did not address the problem of efficiently computing the peri-
odogram at non-Fourier frequencies.

For an arbitrary frequency �k , where k is not necessarily an integer, it is more 
appropriate to define the periodogram by

where

(7)Ĩ
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is the least squares (LS) estimate of the squared amplitude of a (normalized) 
sinusoid

fitted to the data. If

and

then the LS estimates Âk , B̂k simplify to

or, because of (13), to

The definition (10) therefore matches the conventional definition of the perio-
dogram. The conditions (13), (14), (15) are satisfied for the regular Fourier frequen-
cies �k = 2�k∕n, 1 ≤ k ≤ m = [n∕2] (except the last one if n is an even number), 
hence Âk and B̂k can easily be obtained from

where

is the Discrete Fourier Transform (DFT) of y1,… , yn , which can be efficiently com-
puted with the Fast Fourier Transform (FFT; see Cooley and Tukey 1965).
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Since condition (13) is not satisfied for the fractional Fourier frequencies 
�k = 2�k∕n, k = 1∕2, 3∕2,… ,m − 1∕2 , we introduce a two-stage algorithm for 
the efficient computation of the modified periodogram (10) at these frequen-
cies in the next section. This algorithm allows to carry out an extensive simu-
lation study in order to examine the effect of including additional frequencies 
in the log periodogram regression on the performance of various estimators. 
In Sect.  5, we compare the standard estimator d̂GPH based on I1, I2,… , IK with 
the analogous estimator d̂+

GPH
 based on I1, I1.5,… , IK , the estimator d̂tr based on 

I2, I3,… , IK with the estimator d̂+
tr
 based on I2, I2.5,… , IK , the estimator d̂sm based 

on (I1 + I2 + I3)∕3, (I2 + I3 + I4)∕3,… ,
(
IK−2 + IK−1 + IK

)
∕3 with the estimator d̂+

sm
 

based on (I1 + I1.5 + I2)∕3, (I1.5 + I2 + I2.5)∕3,… ,
(
IK−1 + IK−0.5 + IK

)
∕3 , and the 

estimator d̂2 with the estimator

3 � Algorithm

In case of the regular Fourier frequencies �k = 2�k∕n, 1 ≤ k ≤ m = [n∕2] , 
Âk and B̂k are identical to Ã

k
 and B̃

k
 and can therefore be computed with the 

Fast Fourier Transform. For the fractional Fourier frequencies �k = 2�k∕n, 
k = 1∕2, 3∕2,… ,m − 1∕2 , an analogous approach can be used for the computation 
of Ã

k
 and B̃

k
 . Suppose that n is even. Then

where C̃
k
(1) and C̃

k
(2) need to be computed only for 2k ≤ m because

Thus, the number of required calculations is approximately reduced by half. If n is 
divisible by 4 or, in the best case, is even a power of 2, this technique can be applied 
repeatedly. Fortunately, by appending zeroes to the end of the time series (zero pad-
ding), it can always be achieved that n is a power of 2.

However, in case of the fractional Fourier frequencies, we obtain with the help of 
standard formulas for sums of trigonometric functions (see Gradshteyn and Ryzhik 
2007, p. 37)
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and

hence condition (13) is violated and we must therefore still try to get the values of 
Âk and B̂k in an efficient manner from C̃

k
 or, equivalently, from Ã

k
 and B̃

k
 . Eliminat-

ing the constant from (12) gives

Thus,

and
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and

do not depend on the data and therefore only need to be computed once. After the 
computation of C̃

k
 , Ã

k
 , and B̃

k
 with the modified Fast Fourier Transform in the first 

stage, the quantities of interest, Âk and B̂k , can easily be obtained with the formulas 
(26) and (27) in the second stage.

4 � Simulations

To investigate the bias-variance tradeoff for different estimators of the memory 
parameter d, we carry out an extensive simulation study. In general, one would 
expect that the bias decreases and the variance increases as the complexity of the 
estimation procedure increases. However, things get more complicated when more 
sophisticated procedures are involved. E.g., Geman et al. (1992) found evidence for 
the bias-variance tradeoff in nonparametric procedures such as the k-nearest neigh-
bors algorithm and kernel regression whereas Neal et al. (2020) found in the context 
of neural networks that both bias and variance can decrease as the number of param-
eters grows. In the case of the log periodogram regression, the number of param-
eters is of dubious relevance. The performance of this procedure critically depends 
on the highest frequency used. Smoothing the periodogram before carrying out the 
regression requires the specification of an additional parameter, namely the cut-off 
point of the lag window. Thus, smoothing increases the number of parameters but 
at the same time also reduces the spectral resolution and thereby increases the bias 
and decreases the variance rather than the other way round. When dealing with the 
bias-variance tradeoff, the complexity of a procedure should therefore not be judged 
solely on the basis of the number of parameters. More important is the flexibility 
to fit the data. Overfitting typically tends to increase the variance while underfit-
ting tends to increase the bias. Since the periodogram may be regarded as a repre-
sentation of the raw data in the frequency domain, it provides a perfect fit. Clearly, 
smoothing compromises this fit. On the other hand, it is also not possible to improve 
the perfect fit by the introduction of additional periodogram ordinates at non-Fourier 
frequencies. These new ordinates are, in a certain sense, just interpolations of the 
original periodogram ordinates. Their inclusion therefore brings about some kind of 
minimal local smoothing which has the big advantage that it does not systematically 
have a negative impact on the bias. This advantage is particularly important when 
estimates obtained from separate samples of fixed size are combined by averaging 
because in this case only the variance decreases as the number of samples increases 
but the bias remains fixed.

With the help of the R-package ‘fracdiff’, 40,000 realizations of length 
n = 390, 3000 of ARFIMA(1,d,0) processes with standard normal innovations and 
parameter values d = −0.25,−0.1, 0, 0.1, 0.25 and �1 = −0.25,−0.1, 0, 0.1, 0.25 , 
respectively, are generated using a burn-in period of 40,000. For each realization, 

(29)�2
k
= (cot (�k∕n)∕n)2 ∼ (�k)−2
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the memory parameter d is estimated with the estimators d̂GPH , d̂tr , d̂sm , and d̂2 , 
which use only the conventional periodogram, and their counterparts d̂+

GPH
 , d̂+

tr
 , d̂+

sm
 , 

and d̂+
2
 , which use also the modified periodogram at fractional Fourier frequencies. 

Tables  1 and 2, 3 and 4, 5 and 6 give the sample bias, the sample variance, and 
the root mean square error for the sample sizes n = 390 and n = 3000 , respectively. 
The smaller sample size corresponds to the number of minutes in a regular trading 
session for U.S. stocks, which starts at 9:30 a.m. and ends at 4:00 p.m. The param-
eter K, which determines the highest frequency to be used for estimation, is set to 
K = n� , where � = 0.5.

The positive effect of including the fractional Fourier frequencies is obvious. 
In each of the 200 cases (25 models, 4 types of estimators, 2 sample sizes), the 

Table 1   Sample bias of the estimators d̂
GPH

 (log periodogram regression), d̂+
GPH

 (log periodogram regres-
sion additionally with non-Fourier frequencies), d̂

tr
 (trimming), d̂+

tr
 (trimming additionally with non-Fou-

rier frequencies), d̂
sm

 (simple smoothing), d̂+
sm

 (smoothing additionally with non-Fourier frequencies), d̂2 
(2 partitions) and d̂+

2
 (2 partitions additionally with non-Fourier frequencies) obtained from 40,000 reali-

zations (length: n = 390 , number of used Fourier frequencies: K = 20 ) of Gaussian ARFIMA(1,d,0) with 
d = −0.25,−0.1, 0, 0.1, 0.25 and �1 = −0.25,−0.1, 0, 0.1, 0.25

d �1 d̂
GPH

d̂
+

GPH
d̂
tr

d̂
+

tr
d̂
sm

d̂
+

sm
d̂2 d̂

+

2

− 0.25 − 0.25 0.0073 0.0098 0.0039 0.0055 0.0002 0.0075 0.0097 0.0126
− 0.1 0.0082 0.0099 0.0053 0.0068 0.0016 0.0078 0.0094 0.0125

0 0.0087 0.0100 0.0050 0.0055 0.0011 0.0072 0.0099 0.0123
0.1 0.0108 0.0125 0.0085 0.0100 0.0049 0.0102 0.0124 0.0151
0.25 0.0135 0.0162 0.0135 0.0145 0.0086 0.0146 0.0154 0.0188

− 0.1 − 0.25 − 0.0012 0.0011 − 0.0018 − 0.0006 − 0.0045 − 0.0006 − 0.0009 0.0023
− 0.1 0.0008 0.0024 − 0.0010 − 0.0002 − 0.0036 0.0002 0.0005 0.0034

0 0.0026 0.0051 0.0019 0.0029 − 0.0007 0.0035 0.0029 0.0061
0.1 0.0040 0.0068 0.0051 0.0060 0.0019 0.0057 0.0044 0.0081
0.25 0.0099 0.0122 0.0114 0.0128 0.0082 0.0109 0.0095 0.0134

0 − 0.25 − 0.0041 − 0.0009 − 0.0061 − 0.0037 − 0.0043 − 0.0022 − 0.0034 − 0.0002
− 0.1 − 0.0020 0.0005 − 0.0021 − 0.0004 − 0.0023 − 0.0005 − 0.002 0.0011

0 0.0003 0.0030 0.0013 0.0023 0.0004 0.0021 0.0003 0.0037
0.1 0.0032 0.0057 0.0038 0.0051 0.0036 0.0050 0.0035 0.0070
0.25 0.0078 0.0107 0.0099 0.0116 0.0096 0.0107 0.0084 0.0123

0.1 − 0.25 − 0.0035 − 0.0015 − 0.0047 − 0.0035 − 0.0005 − 0.0016 − 0.0045 − 0.0014
− 0.1 − 0.0004 0.0012 0.0007 0.0006 0.0026 0.0011 − 0.0013 0.0015

0 − 0.0014 0.0013 − 0.0010 0.0000 0.0028 0.0018 − 0.0011 0.0021
0.1 0.0032 0.0059 0.0048 0.0055 0.0073 0.0064 0.0037 0.0073
0.25 0.0085 0.0109 0.0121 0.0129 0.0128 0.0117 0.0085 0.0120

0.25 − 0.25 0.0019 0.0034 0.0013 0.0019 0.0114 0.0053 0.0018 0.0039
− 0.1 0.0038 0.0051 0.0030 0.0032 0.0140 0.0075 0.0041 0.0063

0 0.0042 0.0060 0.0033 0.0038 0.0148 0.0082 0.0048 0.0072
0.1 0.0073 0.0084 0.0066 0.0071 0.0166 0.0103 0.0071 0.0092
0.25 0.0113 0.0135 0.0133 0.0143 0.0228 0.0164 0.0126 0.0153
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sample variance of the modified estimator is less than the sample variance of 
the original estimator (see Tables  3, 4). This improvement comes at the cost 
of a slightly increased sample bias (see Tables  1, 2). When both the sample 
bias and the sample variance are taken into account, the effect is still positive. 
In all 200 cases, the RMSE of the original estimator is larger than that of its 
modified counterpart. Clearly, the latter estimator will become less competitive 
when averages of several estimates are considered because the variance term 
in the RMSE will become less important as the number of individual estimates 
increases.

Table 2   Sample bias of the estimators d̂
GPH

 (log periodogram regression), d̂+
GPH

 (log periodogram regres-
sion additionally with non-Fourier frequencies), d̂

tr
 (trimming), d̂+

tr
 (trimming additionally with non-Fou-

rier frequencies), d̂
sm

 (simple smoothing), d̂+
sm

 (smoothing additionally with non-Fourier frequencies), d̂2 
(2 partitions) and d̂+

2
 (2 partitions additionally with non-Fourier frequencies) obtained from 40,000 reali-

zations (length: n = 3000 , number of used Fourier frequencies: K = 55 ) of Gaussian ARFIMA(1,d,0) 
with d = −0.25,−0.1, 0, 0.1, 0.25 and �1 = −0.25,−0.1, 0, 0.1, 0.25

d �1 d̂
GPH

d̂
+

GPH
d̂
tr

d̂
+

tr
d̂
sm

d̂
+

sm
d̂2 d̂

+

2

− 0.25 − 0.25 0.0040 0.0051 0.0022 0.0030 0.0010 0.0041 0.0055 0.0069
− 0.1 0.0053 0.0061 0.0037 0.0040 0.0020 0.0049 0.0063 0.0075

0 0.0058 0.0066 0.0043 0.0045 0.0022 0.0053 0.0068 0.0081
0.1 0.0055 0.0061 0.0042 0.0042 0.0017 0.0046 0.0063 0.0075
0.25 0.0062 0.0071 0.0042 0.0049 0.0028 0.0058 0.0071 0.0083

− 0.1 − 0.25 0.0006 0.0018 0.0003 0.0009 − 0.0009 0.0007 0.0007 0.0021
− 0.1 0.0009 0.0020 0.0000 0.0007 − 0.0006 0.0011 0.0007 0.0025

0 0.0005 0.0016 0.0003 0.0008 − 0.0006 0.0009 0.0007 0.0023
0.1 0.0017 0.0024 0.0018 0.0018 0.0002 0.0017 0.0018 0.0032
0.25 0.0019 0.003 0.0018 0.0022 0.0005 0.0021 0.002 0.0035

0 − 0.25 − 0.0004 0.0007 − 0.0005 − 0.0001 − 0.0004 0.0004 − 0.0002 0.0014
− 0.1 − 0.0003 0.0010 − 0.0004 0.0004 − 0.0002 0.0004 − 0.0004 0.0012

0 − 0.0005 0.0010 − 0.0010 − 0.0001 − 0.0005 0.0005 − 0.0002 0.0015
0.1 − 0.0001 0.0007 − 0.0003 0.0000 − 0.0007 0.0000 − 0.0004 0.0010
0.25 0.0011 0.0020 0.0010 0.0014 0.0011 0.0016 0.0009 0.0025

0.1 − 0.25 0.0012 0.0017 0.0009 0.0007 0.0016 0.0012 0.0007 0.0019
− 0.1 − 0.0001 0.0007 − 0.0006 − 0.0002 0.0011 0.0006 − 0.0003 0.0009

0 0.0007 0.0018 0.0011 0.0014 0.0022 0.0018 0.0009 0.0024
0.1 0.0014 0.0024 0.0018 0.0022 0.0028 0.0022 0.0013 0.0029
0.25 0.0010 0.0023 0.0012 0.0020 0.0026 0.0023 0.0013 0.0029

0.25 − 0.25 0.0024 0.0031 0.0022 0.0025 0.0062 0.0038 0.0027 0.0037
− 0.1 0.0023 0.0026 0.0024 0.002 0.0064 0.0037 0.0026 0.0033

0 0.0029 0.0034 0.0028 0.0026 0.0069 0.0043 0.0030 0.0040
0.1 0.0027 0.0033 0.0023 0.0025 0.0068 0.0043 0.0028 0.0039
0.25 0.0023 0.0036 0.0019 0.0029 0.0067 0.0044 0.0031 0.0044
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5 � Empirical results

Greene and Fielitz (1977) used the R/S statistic (see Hurst 1951; Mandelbrot and 
Wallis 1969; Mandelbrot 1972, 1975), which is defined as the ratio of the range 
(R) of all partial sums of a time series to its standard deviation (S), in order to 
verify Mandelbrot’s (1971) suspicion that the strength of the statistical depend-
ence of stock prices may decrease very slowly. Indeed, they found indications 
of long-range dependence when they investigated daily stock return series. How-
ever, Lo (1991) argued that the R/S statistic cannot distinguish between short-
range dependence and long-range dependence and proposed therefore a simple 
generalization of the R/S statistic that is robust to general forms of short-range 

Table 3   Sample variance of the estimators d̂
GPH

 (log periodogram regression), d̂+
GPH

 (log periodogram 
regression additionally with non-Fourier frequencies), d̂

tr
 (trimming), d̂+

tr
 (trimming additionally with 

non-Fourier frequencies), d̂
sm

 (simple smoothing), d̂+
sm

 (smoothing additionally with non-Fourier fre-
quencies), d̂2 (2 partitions) and d̂+

2
 (2 partitions additionally with non-Fourier frequencies) obtained 

from 40,000 realizations (length: n = 390 , number of used Fourier frequencies: K = 20 ) of Gaussian 
ARFIMA(1,d,0) with d = −0.25,−0.1, 0, 0.1, 0.25 and �1 = −0.25,−0.1, 0, 0.1, 0.25

d �1 d̂
GPH

d̂
+

GPH
d̂
tr

d̂
+

tr
d̂
sm

d̂
+

sm
d̂2 d̂

+

2

− 0.25 − 0.25 0.0334 0.0290 0.0535 0.0460 0.0331 0.0299 0.0291 0.0282
− 0.1 0.0328 0.0285 0.0525 0.0453 0.0327 0.0296 0.0288 0.0280

0 0.0335 0.0290 0.0534 0.0457 0.0333 0.0300 0.0294 0.0284
0.1 0.0328 0.0284 0.0530 0.0450 0.0327 0.0294 0.0288 0.0278
0.25 0.0331 0.0288 0.0526 0.0455 0.0328 0.0298 0.0291 0.0282

− 0.1 − 0.25 0.0329 0.0292 0.0524 0.0454 0.0322 0.0297 0.0291 0.0286
− 0.1 0.0333 0.0294 0.0533 0.0459 0.0327 0.0300 0.0296 0.0289

0 0.0329 0.0289 0.0528 0.0455 0.0320 0.0295 0.0288 0.0282
0.1 0.0329 0.0291 0.0527 0.0458 0.0323 0.0298 0.0291 0.0287
0.25 0.0323 0.0289 0.0517 0.0452 0.0320 0.0296 0.0291 0.0287

0 − 0.25 0.0328 0.0292 0.0524 0.0455 0.0320 0.0297 0.0294 0.0289
− 0.1 0.0325 0.0291 0.0517 0.0452 0.0316 0.0294 0.0290 0.0287

0 0.0328 0.0294 0.0526 0.0458 0.0323 0.0300 0.0295 0.0290
0.1 0.0326 0.0289 0.0518 0.0445 0.0316 0.0293 0.0292 0.0286
0.25 0.0327 0.0292 0.0529 0.0458 0.0318 0.0297 0.0293 0.0289

0.1 − 0.25 0.0331 0.0296 0.0528 0.0462 0.0322 0.0301 0.0298 0.0294
− 0.1 0.0325 0.0289 0.0523 0.0452 0.0315 0.0293 0.0292 0.0288

0 0.0331 0.0298 0.0526 0.0455 0.0318 0.0299 0.0297 0.0293
0.1 0.0330 0.0293 0.0527 0.0456 0.0317 0.0296 0.0294 0.0290
0.25 0.0331 0.0296 0.0527 0.0460 0.0321 0.0301 0.0295 0.0293

0.25 − 0.25 0.0327 0.0293 0.0528 0.0456 0.0319 0.0297 0.0295 0.0292
− 0.1 0.0326 0.0290 0.0520 0.0450 0.0314 0.0293 0.0292 0.0288

0 0.0328 0.0290 0.0531 0.0457 0.0317 0.0294 0.0293 0.0288
0.1 0.0326 0.0293 0.0524 0.0455 0.0318 0.0297 0.0298 0.0294
0.25 0.0332 0.0296 0.0534 0.0463 0.0322 0.0300 0.0298 0.0294
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dependence. Using this modified R/S statistic, he found little evidence in favor 
of long-range dependence in daily and monthly index returns. Similarly, Bark-
oulas and Baum (1996) found no convincing evidence of long-range dependence 
when they applied the log periodogram regression method of Geweke and Porter-
Hudak (1983) to daily U.S. stock returns and index returns. Negative results were 
also obtained for international data by Cheung and Lai (1995) with both modified 
R/S analysis and log periodogram regression and by Crato (1994) with paramet-
ric methods (ARFIMA models). In contrast to signed returns, absolute returns 
and squared returns actually do appear to exhibit significant long-range depend-
ence (see Crato and de Lima 1994; Lobato and Savin 1998; Grau-Carles 2000).

Table 4   Sample variance of the estimators d̂
GPH

 (log periodogram regression), d̂+
GPH

 (log periodogram 
regression additionally with non-Fourier frequencies), d̂

tr
 (trimming), d̂+

tr
 (trimming additionally with 

non-Fourier frequencies), d̂
sm

 (simple smoothing), d̂+
sm

 (smoothing additionally with non-Fourier fre-
quencies), d̂2 (2 partitions) and d̂+

2
 (2 partitions additionally with non-Fourier frequencies) obtained 

from 40,000 realizations (length: n = 3000 , number of used Fourier frequencies: K = 55 ) of Gaussian 
ARFIMA(1,d,0) with d = −0.25,−0.1, 0, 0.1, 0.25 and �1 = −0.25,−0.1, 0, 0.1, 0.25

d �1 d̂
GPH

d̂
+

GPH
d̂
tr

d̂
+

tr
d̂
sm

d̂
+

sm
d̂2 d̂

+

2

− 0.25 − 0.25 0.0097 0.0081 0.0123 0.0104 0.0080 0.0077 0.0080 0.0075
− 0.1 0.0095 0.0081 0.0122 0.0103 0.0080 0.0076 0.0080 0.0075

0 0.0095 0.0080 0.0121 0.0102 0.0079 0.0076 0.0079 0.0075
0.1 0.0095 0.0081 0.0121 0.0103 0.0081 0.0077 0.0081 0.0076
0.25 0.0097 0.0082 0.0123 0.0104 0.0080 0.0077 0.0081 0.0076

− 0.1 − 0.25 0.0095 0.0082 0.0121 0.0103 0.0079 0.0077 0.0081 0.0076
− 0.1 0.0096 0.0083 0.0123 0.0104 0.0080 0.0077 0.0082 0.0077

0 0.0094 0.0082 0.0120 0.0103 0.0079 0.0077 0.0080 0.0076
0.1 0.0095 0.0082 0.0122 0.0104 0.0079 0.0077 0.0081 0.0077
0.25 0.0095 0.0081 0.0121 0.0103 0.0078 0.0076 0.0080 0.0076

0 − 0.25 0.0094 0.0082 0.0121 0.0103 0.0078 0.0077 0.0081 0.0077
− 0.1 0.0095 0.0084 0.0123 0.0105 0.0079 0.0078 0.0082 0.0078

0 0.0095 0.0082 0.0121 0.0104 0.0078 0.0077 0.0081 0.0077
0.1 0.0095 0.0083 0.0122 0.0104 0.0078 0.0077 0.0081 0.0077
0.25 0.0094 0.0082 0.0121 0.0104 0.0078 0.0077 0.0081 0.0077

0.1 − 0.25 0.0093 0.0082 0.0120 0.0103 0.0077 0.0077 0.0081 0.0077
− 0.1 0.0096 0.0084 0.0123 0.0105 0.0079 0.0078 0.0082 0.0078

0 0.0096 0.0084 0.0122 0.0104 0.0078 0.0077 0.0082 0.0077
0.1 0.0095 0.0083 0.0121 0.0104 0.0078 0.0077 0.0081 0.0077
0.25 0.0095 0.0083 0.0122 0.0104 0.0079 0.0077 0.0082 0.0077

0.25 − 0.25 0.0095 0.0082 0.0122 0.0103 0.0077 0.0076 0.0081 0.0076
− 0.1 0.0095 0.0082 0.0120 0.0102 0.0078 0.0076 0.0081 0.0077

0 0.0096 0.0082 0.0120 0.0103 0.0078 0.0076 0.0082 0.0077
0.1 0.0095 0.0082 0.0123 0.0104 0.0078 0.0076 0.0082 0.0077
0.25 0.0096 0.0083 0.0124 0.0105 0.0079 0.0077 0.0083 0.0078
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When high-frequency data are available, realized variances (sums of squared 
intraday returns) can be used instead of squared daily returns. Alternatively, the 
unaggregated squared intraday returns can be investigated right away. The latter 
approach has the advantage that the sample size is many times greater than the num-
ber of trading days. A disadvantage is that there are usually gaps between the indi-
vidual trading sessions, which make it necessary to estimate the memory parameter 
d separately for each trading session and compute the final estimate by averaging the 
individual estimates (see Reschenhofer and Mangat 2020). In this case, it is impor-
tant to use an estimator with a small bias because the variance decreases with the 
number of trading sessions but the bias remains fixed. Of course, it might also be 
interesting to adopt the same approach for the signed intraday returns. In Fig. 1, the 

Table 5   RMSE of the estimators d̂
GPH

 (log periodogram regression), d̂+
GPH

 (log periodogram regression 
additionally with non-Fourier frequencies), d̂

tr
 (trimming), d̂+

tr
 (trimming additionally with non-Fourier 

frequencies), d̂
sm

 (simple smoothing), d̂+
sm

 (smoothing additionally with non-Fourier frequencies), d̂2 (2 
partitions) and d̂+

2
 (2 partitions additionally with non-Fourier frequencies) obtained from 40,000 realiza-

tions (length: n = 390 , number of used Fourier frequencies: K = 20 ) of Gaussian ARFIMA(1,d,0) with 
d = −0.25,−0.1, 0, 0.1, 0.25 and �1 = −0.25,−0.1, 0, 0.1, 0.25

d �1 d̂
GPH

d̂
+

GPH
d̂
tr

d̂
+

tr
d̂
sm

d̂
+

sm
d̂2 d̂

+

2

− 0.25 − 0.25 0.1828 0.1705 0.2313 0.2145 0.1818 0.1730 0.1709 0.1683
− 0.1 0.1814 0.1691 0.2292 0.2129 0.1809 0.1721 0.1700 0.1679

0 0.1832 0.1705 0.2311 0.2138 0.1825 0.1734 0.1717 0.1690
0.1 0.1814 0.1688 0.2304 0.2125 0.1809 0.1718 0.1701 0.1675
0.25 0.1823 0.1706 0.2298 0.2137 0.1813 0.1732 0.1711 0.1690

− 0.1 − 0.25 0.1814 0.1709 0.2290 0.2131 0.1796 0.1724 0.1706 0.1690
− 0.1 0.1825 0.1714 0.2310 0.2142 0.1808 0.1732 0.1721 0.1700

0 0.1813 0.1702 0.2299 0.2134 0.1790 0.1717 0.1697 0.1682
0.1 0.1813 0.1708 0.2296 0.2141 0.1796 0.1727 0.1707 0.1697
0.25 0.1801 0.1705 0.2276 0.2130 0.1789 0.1725 0.1709 0.1698

0 − 0.25 0.1812 0.1710 0.2289 0.2134 0.1789 0.1724 0.1714 0.1699
− 0.1 0.1803 0.1706 0.2275 0.2127 0.1779 0.1713 0.1703 0.1693

0 0.1811 0.1716 0.2293 0.2140 0.1798 0.1731 0.1716 0.1704
0.1 0.1806 0.1701 0.2277 0.2111 0.1777 0.1714 0.1709 0.1693
0.25 0.1810 0.1712 0.2303 0.2143 0.1785 0.1727 0.1713 0.1705

0.1 − 0.25 0.1820 0.1719 0.2299 0.2150 0.1794 0.1735 0.1726 0.1714
− 0.1 0.1803 0.1700 0.2286 0.2126 0.1775 0.1713 0.1710 0.1696

0 0.1819 0.1725 0.2293 0.2134 0.1784 0.1730 0.1723 0.1713
0.1 0.1818 0.1714 0.2296 0.2137 0.1781 0.1722 0.1715 0.1703
0.25 0.1822 0.1724 0.2299 0.2149 0.1797 0.1738 0.1721 0.1715

0.25 − 0.25 0.1809 0.1711 0.2299 0.2137 0.1789 0.1724 0.1718 0.1710
− 0.1 0.1805 0.1705 0.2281 0.2121 0.1778 0.1713 0.1710 0.1698

0 0.1810 0.1705 0.2304 0.2137 0.1786 0.1717 0.1712 0.1699
0.1 0.1806 0.1714 0.2290 0.2133 0.1792 0.1727 0.1727 0.1718
0.25 0.1826 0.1727 0.2315 0.2156 0.1808 0.1738 0.1730 0.1721
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estimates obtained from the individual trading sessions are plotted cumulatively. By 
dividing each estimate by the total number of trading sessions, we make sure that 
the final value corresponds to the mean of all estimates. Each subsample consists of 
390 1-min intraday returns of the General Electric Company (GE) stock, which are 
obtained from the first mid-quotes (midpoints of the best bid and ask quotes) in each 
minute. The limit order book data from 2007-06-27 to 2019-04-30 have been down-
loaded from Lobster (https​://lobst​erdat​a.com).

Figure 1a, b suggests that the memory parameter is close to zero for the signed 
returns and somewhere between 0.2 and 0.3 for the transformed absolute returns. 
The discrepancies between the results obtained with the original estimators and the 
modified estimators, respectively, are relatively small. In case of the GPH-estimator, 

Table 6   RMSE of the estimators d̂
GPH

 (log periodogram regression), d̂+
GPH

 (log periodogram regression 
additionally with non-Fourier frequencies), d̂

tr
 (trimming), d̂+

tr
 (trimming additionally with non-Fourier 

frequencies), d̂
sm

 (simple smoothing), d̂+
sm

 (smoothing additionally with non-Fourier frequencies), d̂2 (2 
partitions) and d̂+

2
 (2 partitions additionally with non-Fourier frequencies) obtained from 40,000 realiza-

tions (length: n = 3000 , number of used Fourier frequencies: K = 55 ) of Gaussian ARFIMA(1,d,0) with 
d = −0.25,−0.1, 0, 0.1, 0.25 and �1 = −0.25,−0.1, 0, 0.1, 0.25

d �1 d̂
GPH

d̂
+

GPH
d̂
tr

d̂
+

tr
d̂
sm

d̂
+

sm
d̂2 d̂

+

2

− 0.25 − 0.25 0.0984 0.0904 0.1110 0.1019 0.0897 0.0877 0.0898 0.0871
− 0.1 0.0978 0.0901 0.1104 0.1013 0.0894 0.0875 0.0896 0.0868

0 0.0975 0.0899 0.1103 0.1012 0.089 0.0873 0.0893 0.0867
0.1 0.0976 0.0903 0.1103 0.1017 0.0898 0.0881 0.0900 0.0873
0.25 0.0985 0.0910 0.1109 0.1022 0.0898 0.0881 0.0904 0.0876

− 0.1 − 0.25 0.0976 0.0906 0.1101 0.1015 0.0887 0.0877 0.0899 0.0874
− 0.1 0.0979 0.0909 0.1109 0.1020 0.0892 0.0880 0.0907 0.0880

0 0.0972 0.0904 0.1094 0.1014 0.0886 0.0875 0.0895 0.0872
0.1 0.0977 0.0909 0.1106 0.1021 0.0889 0.0880 0.0901 0.0876
0.25 0.0974 0.0902 0.1101 0.1013 0.0884 0.0875 0.0896 0.0871

0 − 0.25 0.0967 0.0904 0.1099 0.1017 0.0884 0.0877 0.0899 0.0877
− 0.1 0.0977 0.0914 0.1108 0.1025 0.0889 0.0882 0.0905 0.0882

0 0.0973 0.0904 0.1102 0.1018 0.0883 0.0876 0.0899 0.0875
0.1 0.0974 0.0908 0.1106 0.1018 0.0883 0.0877 0.0900 0.0877
0.25 0.0968 0.0904 0.1101 0.1019 0.0886 0.0878 0.0900 0.0878

0.1 − 0.25 0.0967 0.0907 0.1097 0.1017 0.0880 0.0875 0.0898 0.0879
− 0.1 0.0981 0.0917 0.1108 0.1024 0.0890 0.0883 0.0907 0.0883

0 0.0980 0.0914 0.1106 0.1020 0.0881 0.0877 0.0906 0.0881
0.1 0.0973 0.0910 0.1102 0.1020 0.0882 0.0877 0.0900 0.0879
0.25 0.0976 0.0909 0.1105 0.1019 0.0886 0.0879 0.0903 0.0880

0.25 − 0.25 0.0973 0.0905 0.1103 0.1013 0.0881 0.0870 0.0901 0.0875
− 0.1 0.0973 0.0906 0.1096 0.1010 0.0883 0.0873 0.0903 0.0878

0 0.0978 0.0908 0.1098 0.1015 0.0885 0.0875 0.0904 0.0878
0.1 0.0976 0.0906 0.1110 0.1019 0.0886 0.0876 0.0905 0.0879
0.25 0.0982 0.0914 0.1112 0.1023 0.0890 0.0880 0.0909 0.0884

https://lobsterdata.com
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the difference between the means is − 0.0034 (see Table  7) and the difference 
between the biases is − 0.0027 for d = 0 , �1 = 0 (see Table 1). The agreement is 
less good in case of the other estimators. For the transformed absolute returns, the 
estimates produced by the modified estimators are generally greater than those pro-
duced by the original estimators, which is inconsistent with the results of the simu-
lation study. This discrepancy may indicate that the transformation of the absolute 
returns does not achieve approximate normality. However, Table 7 shows that the 
inclusion of the fractional Fourier frequencies always leads to a reduction in the var-
iance, which is of crucial importance in any conventional study with only a single 
sample of observations.

6 � Discussion

A standard approach to improve the performance of frequency-domain methods for 
the estimation of the memory parameter d is to smooth the periodogram before it is 
put to use. While this approach usually leads to a reduction of the variance of the 
estimator, it has the opposite effect on the size of the bias. Alternatively, a reduc-
tion in the variance can also be achieved by additionally including fractional Fourier 
frequencies. Unfortunately, there are two problems. Firstly, the Fast Fourier Trans-
form cannot be used for the calculation of the periodogram at these frequencies. 

Fig. 1   Cumulative plots of the estimates obtained by applying d̂
GPH

 (pink), d̂+
GPH

 (green), d̂
tr
 (gold), d̂+

tr
 

(red), d̂
sm

 (magenta), d̂+
sm

 (blue), d̂2 (yellowgreen) and d̂+
2
 (orange) to the a  1-min intraday log returns 

r
t(s), s = 1,… , 390 , b transformed absolute 1-min intraday log returns log

(
� + ||rt(s)||

)
 with � = 10−6 of 

GE stock



1770	 E. Reschenhofer, M. K. Mangat 

1 3

Ta
bl

e 
7  

S
am

pl
e 

m
ea

n 
an

d 
sa

m
pl

e 
va

ria
nc

e 
of

 th
e 

da
ily

 e
sti

m
at

es
 o

f t
he

 m
em

or
y 

pa
ra

m
et

er
 d

 o
bt

ai
ne

d 
fo

r t
he

 s
ig

ne
d 

1-
m

in
 re

tu
rn

s 
an

d 
th

e 
tra

ns
fo

rm
ed

 a
bs

ol
ut

e 
1-

m
in

 
re

tu
rn

s 
of

 th
e 

G
E 

sto
ck

 w
ith

 th
e 

es
tim

at
or

s 
d̂
G
P
H

 (l
og

 p
er

io
do

gr
am

 re
gr

es
si

on
), 

 d̂
+ G
P
H

 (l
og

 p
er

io
do

gr
am

 re
gr

es
si

on
 a

dd
iti

on
al

ly
 w

ith
 n

on
-F

ou
rie

r f
re

qu
en

ci
es

), 
d̂
tr
 (t

rim
-

m
in

g)
, d̂

+ tr
 (t

rim
m

in
g 

ad
di

tio
na

lly
 w

ith
 n

on
-F

ou
rie

r f
re

qu
en

ci
es

), 
d̂
s
m
 (s

im
pl

e 
sm

oo
th

in
g)

, d̂
+ s
m
 (s

m
oo

th
in

g 
ad

di
tio

na
lly

 w
ith

 n
on

-F
ou

rie
r f

re
qu

en
ci

es
), 
d̂
2
 (2

 p
ar

tit
io

ns
) a

nd
 

d̂
+ 2
 (2

 p
ar

tit
io

ns
 a

dd
iti

on
al

ly
 w

ith
 n

on
-F

ou
rie

r f
re

qu
en

ci
es

)

Ti
m

es
 se

rie
s

St
at

ist
ic

d̂
G
P
H

d̂
+ G
P
H

d̂
tr

d̂
+ tr

d̂
s
m

d̂
+ s
m

d̂
2

d̂
+ 2

Re
tu

rn
s

m
e
a
n
( d̂
)

−
 0.

01
61

−
 0.

01
27

−
 0.

01
63

−
 0.

01
26

−
 0.

01
74

−
 0.

01
39

−
 0.

01
61

−
 0.

01
57

v
a
r
( d̂
)

0.
04

45
0.

03
61

0.
06

74
0.

05
47

0.
04

59
0.

03
61

0.
04

45
0.

03
55

Tr
an

sf
or

m
. a

bs
. r

et
ur

ns
m
e
a
n
( d̂
)

0.
30

28
0.

26
35

0.
18

84
0.

17
41

0.
25

00
0.

23
22

0.
30

28
0.

27
12

v
a
r
( d̂
)

0.
03

01
0.

02
75

0.
05

49
0.

04
54

0.
03

28
0.

02
85

0.
03

01
0.

02
88



1771

1 3

Fast computation and practical use of amplitudes at non‑Fourier…

Secondly, the usual orthogonality conditions are only satisfied for the regular Fou-
rier frequencies, which raises the question whether the standard definition of the 
periodogram is still meaningful in the general case. In this article, we address both 
problems. We propose to first compute the naïve sine and cosine transforms for the 
fractional Fourier frequencies with a modified version of the Fast Fourier Transform 
and then to amend these transforms by taking the violation of the standard orthogo-
nality conditions into account. The computational efficiency of the second stage is 
due to the fact that a large number of auxiliary quantities only need to be computed 
once because they do not depend on the data.

We have carried out an extensive simulation study in order to investigate the effect 
of the inclusion of the fractional Fourier frequencies on the performance of various 
estimators. The results show that the overall effect in terms of RMSE is always posi-
tive which is due to a significant reduction in the variance and only a slight increase 
in the bias. These findings are corroborated by the results of an empirical study of 
financial high-frequency data. In this study, the variances of the modified estima-
tors, which use also fractional Fourier frequencies, are always smaller than those of 
their conventional counterparts. Clearly, little can be said about the size of the bias 
because the true value of the memory parameter is unknown in practice. However, 
all competing estimators, regardless which frequencies are used, unanimously agree 
that significant long-range dependence is present only in the intraday volatility but 
not in the signed intraday returns.
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