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Abstract
We consider the problem of sample degeneracy in Approximate Bayesian Compu-
tation. It arises when proposed values of the parameters, once given as input to the
generative model, rarely lead to simulations resembling the observed data and are
hence discarded. Such “poor” parameter proposals do not contribute at all to the rep-
resentation of the parameter’s posterior distribution. This leads to a very large number
of required simulations and/or a waste of computational resources, as well as to dis-
tortions in the computed posterior distribution. To mitigate this problem, we propose
an algorithm, referred to as the Large Deviations Weighted Approximate Bayesian
Computation algorithm, where, via Sanov’s Theorem, strictly positive weights are
computed for all proposed parameters, thus avoiding the rejection step altogether. In
order to derive a computable asymptotic approximation from Sanov’s result, we adopt
the information theoretic “method of types” formulation of the method of Large Devi-
ations, thus restricting our attention to models for i.i.d. discrete random variables.
Finally, we experimentally evaluate our method through a proof-of-concept imple-
mentation.

Keywords ABC · Large deviation theory · Method of types · Sample degeneracy ·
ESS · Importance sampling

1 Introduction

Approximate Bayesian Computation (ABC) is a broad class of methods allowing
Bayesian inference on parameters governing complex models. For such models, com-
puting the likelihood, either analytically or numerically, is typically unfeasible. To
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overcome this critical problem, ABC dispenses with exact likelihood computation,
and only requires the ability of simulating pseudo-data by sampling observations
from a generative model, as detailed in Sect. 2.

In the literature, a variety of ABC methods have been proposed, see Sisson et al
(2018,Ch. 4), and for recent reviewsLintusaari et al. (2017),Karabatsos et al. (2018). In
the vast majority of these methods, the approximate likelihood function takes positive
values only when the distance between the simulated and the observed data is lower
than a predefined threshold. In other words, most ABC schemes involve—implicitly
or explicitly—a rejection step, which often leads to discarding a huge number of
proposals. This results in a waste of computational resources and/or in an inadequate
sample size, that is, in sample degeneracy. Sample degeneracy may also cause serious
distortions in the form of the approximate posterior distribution, at least when the
number of iterations is not large enough. Indeed, accepting poor parameter proposals,
i.e., those producing simulated data very rarely resembling the observed data, is a rare
event. In the lack of accepted values, the posterior probability of such proposals will
be approximated just as zero, in turn resulting in a distortion in the tails. This may be
especially problematic for posterior distributions with long tails.

Our idea is to mitigate the problem of sample degeneracy by improving the approx-
imation of the likelihood function. In particular, we speculate that taking into account
the positive, however small, probability of rare events, i.e., poor proposals leading to
simulated data resembling the observed data, allows avoiding the rejection step alto-
gether and weighting all parameter proposals. To this end, we resort to the theory of
Large Deviations (LDT). Our aim is to show how LDT provides a convenient way to
define an approximate likelihood, as well as guarantees of its convergence to the true
likelihood as the size of pseudo-datasets goes to infinity. In order to make the incor-
poration of LDT into ABC as smooth as possible, we rely on one of the less general
formulations of Sanov’s theorem. Accordingly, we only consider models for discrete
i.i.d. random variables which, despite their apparent simplicity, will be shown to be of
interest in several applications of ABC. This allows adopting a straightforward infor-
mation theoretic formulation of LDT known as the method of types (Csiszár 1998;
Cover and Thomas 2006).
Related work In the literature, there have been many proposals aimed at improving the
computational efficiency of basic ABC. Prangle (2016) proposed Lazy ABC, which
saves computing timeby abandoning simulations likely to lead to a poormatchbetween
the simulated and the observed data. To this end, at each iteration, the simulation is
given up with a probability depending on the probability of its acceptance and on the
expected required time for its completion. Unlike our method, Lazy ABC does not
avoid rejection, but rather accelerates the process leading to discarding a proposal.

Another way to improve computational efficiency is to consider proposal distribu-
tions closer to the posterior on the parameter space, employing sophisticated sampling
methods, such asMCMC (Marjoram et al. 2003), Population Monte Carlo (Beaumont
et al. 2009) and Sequential Monte Carlo (DelMoral et al. 2012). In the same vein, Chi-
achio et al. (2014) proposed a sequential way of achieving computational efficiency
by overcoming the difficulties in getting samples resembling the observed data. This
latter was the first attempt to improve the acceptance rate by adopting a rare-event
approach. In particular, Chiachio et al. (2014) combine the ABC scheme with a rare-
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event sampler that draws conditional samples from a nested sequence of subdomains.
However, even this method cannot completely avoid rejections, and only partially
mitigates the sample degeneracy problem.

In order to tackle the problem more systematically, clever proposal distributions
should be combined with better approximations to the likelihood. Accordingly, Pran-
gle et al. (2018) also resorted to a sequential approach, but explicitly considering a
likelihood estimate that takes into account the probability of rare events. As a compar-
ison, our method evaluates the probabilities of rare events based on theoretical results
(LDT), rather than onMonte Carlo estimates of tail probabilities.Moreover, they focus
on continuous data by showing that extensions to discrete data can be challenging and
require application-specific solutions; in contrast, the method of types provides a nat-
ural way of dealing with discrete random variables by summarizing data via empirical
distributions, thus avoiding the common practice of summarizing data by selecting ad
hoc summary statistics.

Other methods have been proposed avoiding the selection of summary statistics and
relying on empirical distributions. In particular, Park et al. (2016) rely on themaximum
meandiscrepancybetween the embeddings of the simulated and the observed empirical
distributions. They avoid rejection byweighting each parameter proposal bymeans of a
kernel function defined on a non-compact support. Other interesting methods involve
the Wasserstein distance (Bernton et al. 2019) or the Kullback–Leibler divergence
(Jiang 2018) as measures of the discrepancy between observed and simulated data.
In particular, Jiang (2018) approximates the likelihood by means of an estimator
of the Kullback–Leibler divergence between the unknown distribution of the data
given the true parameter, and given the parameter sampled at the current iteration.
Exploiting the fact that the maximum likelihood estimator is the one minimizing that
Kullback–Leibler divergence, they prove that their approximate posterior distribution
converges to a restriction of the prior distribution on the region in which the above
mentioned divergence is smaller than a predefined threshold. Although most of the
above mentioned methods apply to continuous data, we note that ABC applications
to discrete data appear frequently in population genetics, epidemiology, ecology and
system biology (see Beaumont (2010) for an overview of the applications of ABC
in these fields). In particular, in population genetics, discrete (possibly i.i.d.) data
representing the genotyping at a few loci of different (unrelated) individuals have
often been summarized through their empirical distributions (Marjoram et al. 2003;
Buzbas and Rosenberg 2015, among others).

A very different way of bypassing the selection of summary statistics relies on
the random forest method (Raynal et al. 2019). Here, regression random forests are
trained by using a training-set composed of a large number of parameter proposals
and pseudo-datasets sampled from the prior distribution and the generative model,
respectively. Since all the summary statistics are involved as covariates, summary
selection is avoided. The output of the algorithm is the predicted expected value of
an arbitrary function of interest on the parameter space, conditional on the observed
data.

Structure of the paper The rest of this paper is structured as follows. Section 2 contains
background and preliminaries on ABC, focusing on the importance sampling scheme
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and the sample degeneracy issue. In Sect. 3 we introduce LDT by adopting the method
of types. We also show how LDT allows poor parameter proposals to contribute to the
representation of the approximate posterior distribution. Section 4 gives the LDW-
ABC algorithm and compares it with R- ABC. In Sect. 5 we present the results of a
toy example and an experiment conducted on a real world dataset. Section 6 contains
some concluding remarks and ideas for future research. The Appendices contain the
proofs, technical materials, and additional results from experiments.

2 Background onABC

Let x ∈ Xn be the observed data, whichwill be assumed to be drawn from a probability

distribution in the family F �= {P(·|θ) : θ ∈ Θ}.
In principle, given a prior distribution π(θ) on Θ , the aim of Bayesian inference

is to provide information about the uncertainty on θ by deriving the posterior distri-
bution π(θ |x) ∝ π(θ)P(x|θ) via Bayes’ Theorem. When the likelihood function is
intractable, ABC allows simulated inference providing a conversion of samples from
the prior to samples from the posterior distribution, through comparisons between the
observed data and the pseudo-datasets generated from a simulator. A simulator can
be thought of as a probabilistic computer program taking as input a parameter value
(or a vector thereof) θ ∈ Θ and returning a sample from the distribution P(·|θ). In
general, no knowledge of the analytical form of the likelihood is necessary to write
down such a program. More specifically, in the primal rejection sampling algorithm,
whose origins can be traced back to Rubin (1984), Tavaré et al. (1997), Pritchard et al.
(1999), the following actions are taken:

1. S ≥ 1 parameter values from the prior distribution π(·) are generated;
2. for each s ∈ {1, . . . , S}, given the parameter proposal θ(s) as input, the simulator

generates a realization of a random variable Y ∈ Xn distributed according to
P(·|θ(s));

3. only parameter values leading to a pseudo-dataset equal to the observed data are
accepted, thereby samples from the exact posterior are derived by conditioning on
the event {Y = x}.
Introducing a twofold approximation scheme, as illustrated in Algorithm 1, might

increase the efficiency of the algorithmoutlined above. First, one introduces a summary
statistic, s(·), which is a function from the sample space Xn ⊆ R

n to a lower-
dimensional space S ⊂ R

k , with k � n. Second, exact matching of the simulated and
the observed data is relaxed to similarity, expressed in terms of a predefined distance
function d(·, ·) and tolerance threshold ε > 0.

Abbreviating s(x) by sx and s( y) by s y, the output of Algorithm 1 is a sample of

pairs (θ(s), s(s)y ) from the following approximate joint posterior distribution

π̃(θ, s y|sx) ∝ π(θ) P(s y|θ)1{d(s y, sx) ≤ ε} (1)

where 1{d(s y, sx) ≤ ε}, the indicator function assuming the value 1 if d(s y, sx) ≤ ε

and 0 otherwise, corresponds to the acceptance/rejection step. Marginalizing out s y in
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Algorithm 1 R- ABC
for s = 1, . . . , S do

Draw θ(s) ∼ π

Generate y ∼ P(·|θ(s)) from the simulator

Accept the pair (θ(s), s(s)y ) if d(s(s)y , sx) ≤ ε

end for

(1), that is, ignoring the simulated summary statistics, the output of the algorithm
becomes a sample from the marginal posterior distribution Pr(θ |d(sY , sx) ≤ ε).
Indeed, abbreviating s(Y) by sY ,

π̃(θ |sx) ∝
∫
S

π(θ) P(s y|θ)1{d(s y, sx) ≤ ε} ds y

= π(θ)

∫
S
P(s y|θ)1{d(s y, sx) ≤ ε} ds y

= π(θ) · Pr (d(sY , sx) ≤ ε|θ)
∝ Pr(θ |d(sY , sx) ≤ ε).

Here Pr
(
d(sY , sx) ≤ ε|θ)

is called the ABC approximate likelihood.

Remark 1 (Marginal samplers) Some ABC sampling schemes (Sisson et al. 2007;
Marjoram et al. 2003, among others) allow directly sampling from the approximate
marginal posterior distribution π̃(θ |sx). The key idea is that π̃(θ |sx) can be estimated
pointwise by

π(θ(s)) · 1

M

M∑
i=1

1{d(s(i)y , sx) ≤ ε} ∀s ∈ {1, . . . , S} (2)

by simulating M pseudo-datasets from P(·|θ(s)) and computing s(i)y for i ∈ 1, . . . , M
at each iteration s. As is apparent, the second term in (2) provides a Monte Carlo
estimate of the ABC approximate likelihood.

Note that marginalizing the output of Algorithm 1 corresponds to the implementa-
tion of amarginal samplerwithM = 1. In such a case, the indicator function represents
a crude Monte Carlo estimate of the probability Pr

(
d(sY , sx) ≤ ε|θ)

.

As pointed out by Sisson et al. (2018, Ch. 1), the use of the indicator function does
not enable one to discriminate between whether the pseudo-dataset y coincides with
the observed data and whether the pseudo-dataset just is close enough. This may lead
to a waste of information. For this reason, the indicator function in (1) is often replaced
by a kernel function:

Kε

(
d(s y, sx)

) =
{

κ
(
d(s y, sx)

)
if d(s y, sx) ≤ ε

0 if d(s y, sx) > ε
(3)
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Algorithm 2 IS- ABC
for s = 1, . . . , S do

Draw θ(s) ∼ q
Generate y ∼ P(·|θ(s)) from the simulator

Set the IS weight for θ(s) to ωs = Kε

(
d(s y, sx)

) · π(θ(s))

q(θ(s))
end for

where κ
( ·) is a kernel function (e.g., triangular, Epanechnikov, Gaussian, etc.) defined

on a compact support and decaying continuously from 1 to 0, see e.g. Beaumont et al.
(2002). Now the ABC approximate likelihood becomes the convolution of the true
model with the kernel Kε (Prangle et al. 2018):

L̃ε,d(θ; sx) =
∫
S
P(s y|θ) Kε( d(s y, sx) ) ds y. (4)

Note that this general setting encompasses also the casewhenR- ABC employs the uni-
form kernel as κ(·). The accuracy of the posterior distribution approximation depends
both on how much information about the parameters is preserved by the summary
statistics and on the magnitude of the threshold ε. In fact, as ε → 0, the approximate
likelihood L̃(θ; x) converges to the true likelihood (Prangle et al. 2018, Appendix A)
and, whenever sufficient summary statistics for θ have been chosen, the approximate
posterior distribution π̃(·|sx) converges to the true posterior π(·|x) (Sisson et al. 2018,
Ch. 1). On the other hand, as ε → ∞, the probability Pr

(
d(sY , sx) ≤ ε|θ)

approaches
1 and samples are generated from the prior distribution. This establishes a trade-off
between the statistical bias and the computational efficiency (Lintusaari et al. 2017):
as the tolerance level ε decreases, the error of the approximation of theABC posterior
vs. the true posterior decreases at the cost of higher computational effort.

2.1 Importance samplingABC and sample degeneracy

In theABC literature, a great variety of methods to sample from π̃(θ, s y|sx) have been
proposed that go beyond the rejection scheme. Hereafter, we will adopt an importance
sampling scheme (IS- ABC) which, as outlined by Karabatsos et al. (2018), encom-
passes R- ABC and most of the other ABC algorithms.

Like the standard importance sampling, see Robert and Casella (2013, Ch. 3),
IS- ABC consists of sampling pairs (θ(s), s(s)y ) from an importance distribution and
weighting each pair, avoiding the computation of the acceptance probabilities. More
formally, let h : (Θ × S) → R be a function of interest and let Ep[h(θ, sY )] denote
its expected value w.r.t. a probability distribution p over Θ × S. Suppose that we
are interested in estimating Eπ̃ [h(θ, sY )], where π̃ is our target distribution, i.e., the
joint approximate posterior. In particular, by choosing h(·) to be a kernel function,
this formulation also enables a kernel density estimation for the joint approximate
posterior, a case which will be considered in Sect. 5.
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Now it is a standard fact that

Eπ̃ [h(θ, sY )] = Eq [ω̄(θ, sY )h(θ, sY )] (5)

where q(θ, s y) is the importance distribution on Θ × S and ω̄(θ, s y) = π̃(θ, s y|sx)
q(θ, s y)

are the importance weights. In particular, in the ABC framework, the importance
distribution can be

q(θ, s y) = q(θ)P(s y|θ)

and, denoting by Z the normalizing constant for the joint posterior, the resulting
importance weights ω̄(θ(s), s(s)y ), ω̄s for short, are

ω̄s = π(θ(s)) P(s(s)y |θ(s)) Kε

(
d(s(s)y , sx)

)
Z q(θ(s)) P(s(s)y |θ(s))

= Kε

(
d(s(s)y , sx)

)
Z

· π(θ(s))

q(θ(s))
∀s ∈ {1, . . . , S}

By computing, at each iteration s, the following unnormalized weight

ωs = Kε

(
d(s(s)y , sx)

) · π(θ(s))

q(θ(s))
, (6)

an approximation for the constant Z is obtained:

Z =
∫

Θ

∫

S

π(θ) P(s y|θ) Kε

(
d(s y, sx)

)
ds ydθ

=
∫

Θ

∫

S

ω(θ, s y) q(θ, s y) ds ydθ ≈ 1

S

S∑
s=1

ωs

where the second equality is obtained by multiplying and dividing by q(θ, s y). It
follows that from the output of Algorithm 2 we can estimate (5) as

1

S Z

S∑
s=1

ωs h(θ(s), s(s)y ) ≈
S∑

s=1

ω̃s h(θ(s), s(s)y ) (7)

where each ω̃s = ωs/
∑S

r=1 ωr is a normalized weight.
Unlike the standard importance sampling scheme, IS- ABC implicitly involves a

rejection step. In fact, usually the kernel density function, Kε(·), is such that a strictly
positive weight is given to a pair (θ(s), s(s)y ) only when d(s(s)y , sx) ≤ ε. For example,
looking at Algorithm 1, it is apparent that the primal rejection scheme is a special
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case of Algorithm 2 where the marginal importance distribution, q(θ), is the prior
distribution and the resulting importance weights are

ωs = Kε

(
d(s(s)y , sx)

) = 1{d(s(s)y , sx)) ≤ ε} (8)

meaning that each pair is implicitly rejected or accepted depending on the value of
ωs ∈ {0, 1}.

In order to evaluate the efficiency of an importance sampling method, a widespread
“rule of thumb” is to evaluate the Effective Sample Size (ESS), see Liu (2008, Ch 2).
ESS represents the number of samples from the target distribution needed to get a
Monte Carlo estimate with the same variance as the IS estimate in (7) given a budget
of S iterations, and is defined by

ESS
�= S

1 + var [ω̄] . (9)

One of the major drawbacks of the importance sampling scheme is that the resulting
MonteCarlo estimate in (7) is highly variable due to the problemof sample degeneracy,
already mentioned previously, which in this context means that only a few of the
proposed pairs (θ, s y) have relatively high weights resulting in a small ESS. Generally
speaking, sample degeneracy is caused by an importance distribution far from its target.
In this case, parameter values from regions with a low target posterior density are very
likely to be drawn under the importance distribution, so that they are often proposed
and associated with very small weights.

In the ABC framework as well, an importance density q(θ) far from the marginal
target π̃(θ |sx) can lead to sample degeneracy. In this setting, an additional issue is
that the weights also depend on the distance d(sY , sx), hence on the random variable1

sY (Sisson et al. 2018). This implies that when a parameter θ∗ is proposed such that
Pr(sY = sx |θ∗) is close to zero, usually a very large number of zero-weighted pairs
(θ∗, s y)will be generated before a distance smaller than ε will be observed, especially
when ε is small.

In the next two sections we propose a method to define a kernel Kε(·) that improves
the efficiency of IS- ABC in terms of ESS.

3 ABC and the theory of large deviations

Recall that inR- ABC, at each iteration s, the indicator function represents a crude esti-
mate for the probability Pr(d(sY , sx) ≤ ε| θ(s)) (see Remark 1). A possible approach
to mitigate sample degeneracy is to provide a finer estimate for the ABC likelihood
by evaluating that probability. In order to deal with rare events, we resort to LDT,
which studies the exponential decay of the probability of rare events. We speculate
that taking into account the positive probability of a large deviation event allows one

1 As pointed out by Prangle (2016), in the ABC framework the sampling scheme is more rightly referred
to as Random Importance Sampling: an importance sampling schemes in which the likelihood is evaluated
by a random estimate.
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to avoid rejection at all. This might provide a higher ESS, thus making the algorithm
more efficient.

From now on we will confine our attention to discrete random variables, and adopt
an information theoretic point of view based on the method of types (Csiszár 1998;
Cover and Thomas 2006). In particular, we will assume that X = {r1, . . . , r|X|} is a
finite, nonempty set. Moreover, F �= {P(·|θ) : θ ∈ Θ} is a family of distributions on

X, where each P(·|θ) = Pθ has full support: supp(P(·|θ))
�= {r : P(r |θ) > 0} = X

for each θ ∈ Θ .
We will let Xn = {Xi }ni=1, Y

m = {Yi }mi=1 and so on denote sequences of i.i.d.
random variables, distributed according to an (intractable) probability distribution
Pθ ∈ F .

3.1 LDT via themethod of types

Let xn be a sequence of n symbols drawn fromX, say xn = (x1, . . . , xn). The method
of types moves the focus from the sequence xn itself to its type, defined as follows.

Definition 1 (Type) Let xn = (x1, . . . , xn) ∈ Xn . The type of xn , written Txn , is the
probability distribution on X defined by

Txn (r)
�= |{i : xi = r}|

n
∀r ∈ X. (10)

We let T n denote the set of n-types, that is, types with denominator n.

Note that the superscript n keeps track of the length of the sequence, which is
also the denominator of the type. As is apparent, type is a function summarizing the
information included in the observed sequence xn by mapping the n-dimensional
observed sequence onto a |X|-dimensional summary statistic.

The following quantities play a crucial role in the method of types. Below, we

stipulate that 0 · log 0
r

�= 0 and that r · log r
0

�= +∞ if r > 0, where log denotes the
logarithm to base 2. Given two probability distributions on X, P and Q, we consider

– the entropy of P , defined as

H(P)
�= −

∑
r∈X

P(r) log P(r) ;

– the Kullback–Leibler divergence between P and Q, defined as

D(P||Q)
�=

∑
r∈X

P(r) log
P(r)

Q(r)
.

With an abuse of notation, whenever the first argument of D(·||Q) is a set of
probability distributions, say E , D(E ||Q) stands for inf P∈E D(P||Q). When
P∗ = argminP∈E D(P||Q) exists, it is called the information projection of Q
onto E .
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Let Xn = {Xi }ni=1 be a sequence of i.i.d. random variables, distributed according to

Pθ
�= P(·|θ), for some θ ∈ Θ . In what follows, we let Pr(·|θ) be the probability

measure on sequences induced by Pθ . The joint probability of n i.i.d. extractions xn

according to Pθ , can be written as

Pr(Xn = xn|θ) = 2n
(
−D(Txn ||Pθ )−H(Txn )

)
. (11)

See Cover and Thomas (2006, Ch.11) for a proof. It follows from the Neyman–
Fisher theorem (Cox and Hinkley 1979, Ch. 2.2) that types are always sufficient
statistics for θ , whatever Pθ .

Remark 2 (Types and ABC) While the number of sequences of length n is exponen-
tial in n, it is easy to show that the cardinality of T n is polynomial in n; in fact,
|T n| ≤ (n+1)|X|, see Cover and Thomas (2006, Ch.11). From anABC perspective, it
follows that using types as summary statistics could mitigate the computational prob-
lems related to the comparison between the observed dataset and the pseudo-dataset,
especially for large n. Furthermore, summarizing data through their empirical distri-
butions is a way of overcoming the difficulties in finding sufficient statistics when
Pθ is unknown (and Pr(·|θ) as well). Indeed, even when confined to discrete random
variables, P(·| θ) is an unknown model, not necessarily a Multinomial model, see
Sect. 5 for examples. With no knowledge of the analytical form of the likelihood,
finding a sufficient summary statistic for θ , the vector of parameters given as an input
to the simulator, is a central issue. In the literature there are several examples of mod-
els for conditionally independent discrete data in which the likelihood is analytically
intractable and the required ABCmethod concerns empirical distributions. Examples
are the ABC methods proposed by Joyce et al. (2012) and Buzbas and Rosenberg
(2015) to make inference on the mutation and selection parameters governing the
Fisher–Wright model (Fisher 1930). There, despite the conditional independence and
the discretness of the observations, the likelihood function is difficult to evaluate since
the normalizing constant depends on the parameters: for small values of the selection
parameter, numerical solutions have been found by Genz and Joyce (2003), in other
cases, likelihood-free methods are required.

Noting from (11) that the probability of the observed sequence decreases exponen-
tially at a rate given by the Kullback–Leibler divergence between Txn and Pθ , we can
say (informally) that a sequence xn is typical if D(Txn ||Pθ ) < δ for some small δ > 0.

The Law of Large Numbers (LLN) states that as the length of a typical sequence
goes to infinity, its type converges in probability to Pθ , see Cover and Thomas (2006,
Ch 11.2.1) for formulation of the LLN in terms of themethod of types presented below.

Theorem 1 (Law of Large Numbers) Let Xn = {Xi }ni=1 be a sequence of i.i.d. random
variables with Xi ∼ Pθ . Then for each δ > 0

Pr
(
D(TXn ||Pθ ) ≤ δ|θ) ≥ 1 − 2−n(δ−|X| log(n+1)

n ). (12)

Moreover, under Pr(·|θ), as n → ∞, D(TXn ||Pθ ) → 0 with probability 1.
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On the other hand, observing a sequence whose type is far from Pθ , called a non-
typical sequence, is a rare event, and its probability obeys a fundamental result in
LDT, Sanov’s theorem; see Cover and Thomas (2006, Th.11.4.1).

Theorem 2 (Sanov’s Theorem) Let Xn = {Xi }ni=1 be i.i.d. random variables on X
such that each Xi ∼ Pθ . Let Δ|X|−1 be the simplex of probability distributions over
X and let E ⊆ Δ|X|−1. Then

Pr
(
TXn ∈ E | θ) ≤ (n + 1)|X|2−nD(P∗||Pθ ), (13)

where P∗ = argmin
P∈E

D(P||Pθ ) is the information projection of Pθ onto E. Further-

more, if E is the closure of its interior,

lim
n→∞

1

n
log Pr(TXn ∈ E | θ) = −D(E ||Pθ ) = −D(P∗||Pθ ).

Suppose that E is composed of types of non-typical sequences. Then Sanov’s
theorem characterizes the exponential decrease rate of the probability of E . Taking
into account this probabilitymay provide a finerABC approximation of the likelihood,
as discussed in the next section.

3.2 LDT in ABC

In this section we provide a formal explanation of what is meant by poor parameter
proposals and how they can contribute to the representation of the approximate poste-
rior distribution by means of LDT. We are interested in obtaining an approximation of
the posterior distribution, π̃(θ |xn), viaR- ABC or an equivalent IS- ABC by assuming
as given: (a) the marginal importance density q(θ) to be the prior distribution on Θ;
(b) ε > 0 as a threshold; (c) types as summary statistics; (d) the Kullback–Leibler
divergence as distance function. For the sake of simplicity, from now on we will also
assume Txn to be full support.

Given a budget of S iterations, both R- ABC and IS- ABC generate a sequence
of pairs (T (s)

ym , θ(s)) with s ∈ {1, . . . , S}. Each T (s)
ym is an m-type resulting from a

sequence of i.i.d. randomvariables,Ym = {Y j }mj=1, distributed according to P
(·| θ(s)

)
.

We stress that the length of the simulated sequence, m, need not be equal to n, the
length of the observed data sequence. Note also that, because of the independence
assumption, choosing m = M · n with M ∈ N means that the algorithm simulates M
pseudo-datasets at each iteration, like a marginal sampler (see Remark 1).

Looking at Algorithms 1 and 2, being the whole pair (θ(s), T (s)
ym ) accepted or

rejected, one can define the joint acceptance region for these algorithms on the space
Θ ×Tm . However, as the acceptance rule is based only on the simulated type, regard-
less of the proposed parameter value, the acceptance region can be projected onto the
probability simplex Δ|X|−1 ⊃ Tm .
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Definition 2 (Acceptance region) Let Δ|X|−1 be the simplex of probability distribu-
tions over X and let Txn be the type of the observed sequence xn . The acceptance
region Bε(Txn ), referred to as Bε for short, is defined for any ε ≥ 0, as

Bε
�= {

P ∈ Δ|X|−1 : D(P||Txn ) ≤ ε
}
.

Now we can define a poor parameter proposal as a parameter θ(s) such that Txn
and the other types in the acceptance region are types of non-typical sequences w.r.t.
P(· | θ(s)).

Accordingly, sampling a poor parameter means that there is a large divergence
between Txn and P(·|θ(s)). On the other hand, withm large enough, T (s)

ym is very likely

to be close to P(·|θ(s)), due to the Law of Large Numbers. Heuristically, this implies
that the probability of simulating a sequence ym whose type is in the acceptance region
is very small. Recalling that in R- ABC and in IS- ABC outlined at the beginning of
this section a crude Monte Carlo estimate of the probability Pr(TYm ∈ Bε | θ(s)) is
given by the indicator function 1{D(T (s)

ym ||Txn ) ≤ ε}, the vast majority of the poor
parameter proposals are discarded altogether. We propose to mitigate this problem by
assigning strictly positive weights to each proposal θ(s), even if T (s)

ym is outside the
acceptance region. To this end, we want to replace the indicator function with a finer
estimate of the probability Pr(TYm ∈ Bε | θ(s)).

In principle, Sanov’s theorem implies that, form large enough, that probability can
be approximated at each iteration by

Pr
(
TYm ∈ Bε | θ(s)) ≈ 2−mD(Bε ||Pθ(s) ). (14)

By replacing the indicator function in (1) with (14), the approximate posterior
becomes

π̃(θ, Tym |Txn ) ∝ π(θ)P(Tym |θ)2−mD(Bε ||Pθ ) . (15)

Unfortunately, the computation of the probability in (14) is still not feasible when
the model F = {Pθ : θ ∈ Θ} is unknown, as we do not know how to compute
D(Bε ||Pθ(s) ). The following theorem provides an asymptotic approximation to cir-
cumvent the problem. A proof is provided in “Appendix A”.

Theorem 3 Let Ym = {Y j }mj=1 be a sequence of i.i.d. random variables taking values
on the finite set X = {r1, . . . , r|X|}, with each Y j ∼ Pθ . Then under the measure
Pr(·|θ)

lim
m→∞ D(Bε ||TYm ) = D(Bε ||Pθ ) a.s. (16)

In essence, this result says that, as m increases and the type Tym converges to the
distribution Pθ that has generated ym , the information projection of Tym onto Bε con-
verges to that of Pθ ontoBε (see Fig. 1). From (14) and Theorem 3, form large enough,
2−mD(Bε ||Tym ) provides a feasible asymptotic estimate for the acceptance probability,
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Fig. 1 Acceptance region, Bε , types, Txn and Tym , and the probability distribution Pθ that generated
ym . Asymptotically (as m → ∞) Tym converges to Pθ and the distance D(Bε ||Tym ) (red) converges to
D(Bε ||Pθ ) (green) (color figure online)

Pr(TYm ∈ Bε | θ). Replacing the indicator function in the ABC approximate poste-
rior (1) with this estimate, we obtain the following new joint approximate posterior
distribution:

π̃(θ, Tym |Txn ) ∝ π(θ)P(Tym | θ)2−mD(Bε ||Tym ). (17)

4 Weighted approximate Bayesian computation

The discussion in the previous section indicates that IS- ABC can be improved by
resorting to a better approximation for the likelihood. In particular, the (implicit)
rejection step can be avoided by evaluating the positive probability of rare events via
Sanov’s theorem. Indeed, an easy way of sampling from (17) is a large deviations ver-
sion of IS- ABC, which we will call the weighted approximate Bayesian computation
(LDW- ABC).

Starting from the definition of an acceptance region satisfying the hypothesis of
Sanov’s theorem, as in Definition 2, a sample from the approximate posterior distri-
bution π̃(θ, Tym |Txn ) can be obtained as described in Algorithm 3.
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Algorithm 3 LDW- ABC
for s = 1, . . . , S do

Draw θ(s) ∼ q
Generate Ym = {Y j }mj=1 with Y j ∼ P(·|θ(s)) from the simulator

if D(T (s)
ym ||Txn ) ≤ ε then

Set the IS weight for (θ(s), T (s)
ym ) to ωs = π(θ(s))

q(θ(s))
else

Set the IS weights for (θ(s), T (s)
ym ) to ωs = 2

−mD(Bε ||T (s)
ym ) π(θ(s))

q(θ(s))
end if

end for

Looking at Algorithm 3, it is apparent that LDW- ABC is a specialization of the
more general IS- ABC. More specifically, the sufficient summary statistics involved
are the types, the distance function is the Kullback–Leibler divergence, and the kernel
density function is defined as follows:

Kε,m
(
Tym

) =
{
1 if D(Tym ||Txn ) ≤ ε

2−mD(Bε ||Tym ) if D(Tym ||Txn ) > ε
. (18)

At each iteration a positive weight is assigned to the proposed θ(s). More precisely, the
weight equals 0 only when D(Bε ||Tym ) = ∞. Each ωs is computed by approximating
the divergence D(Bε ||Tym ) as described in “Appendix B”.

As a special case of the general IS- ABC, the output of Algorithm 3 is a weighted
sample from the following approximate joint posterior distribution:

π̃(θ, Tym |Txn ) ∝ π(θ) Kε,m
(
Tym

)
Pθ (Tym ) (19)

which, by marginalizing out simulated types, becomes

π̃(θ |Txn ) ∝ π(θ)
∑

Tym∈Tm

Kε,m
(
Tym

)
Pθ (Tym ) (20)

where Tm denotes the set of the m-types. Hence, the likelihood approximated by
LDW- ABC is

L̃ε,m(θ; Txn ) �=
∑

Tym∈Tm

Kε,m
(
Tym

)
Pθ (Tym ). (21)

Note that the quality of the approximation depends both on the threshold ε and
on the size of pseudo-dataset, m. More precisely, the adjustment w.r.t. the likelihood

approximate by R- ABC,2 here denoted by L̃R
ε,m(θ; Txn ) �= ∑

Tym∈Bε

Pθ (Tym ), depends

2 Here we refer to an R- ABC involving types as summary statistics, the Kullback–Leibler divergence as
distance function, and the same tuning parameters, m and ε, as in the corresponding LDW- ABC.
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onm and ε. In fact, from (18) and Definition 2, the approximate likelihood in (21) can
be written as

L̃ε,m(θ; Txn ) =
∑

Tym∈Bε

Pθ (Tym ) +
∑

Tym∈Bc
ε

2−mD(Bε ||Tym )Pθ (Tym )

= L̃R
ε,m(θ; Txn ) + αε,m(θ)

where the term 0 ≤ αε,m(θ) ≤ 1 is the adjustment. The following lemma gives an
upper bound for that adjustment αε,m(θ), in two cases depending on Pθ . The proof is
in “Appendix A”.

Proposition 1 (The adjustment upper bound) Let αε,m(θ) = L̃ε,m(θ; Txn ) −
L̃R

ε,m(θ;Bε) be the difference between the two likelihood functions approximated by

LDW- ABC and R- ABC. Let Bε be the ABC acceptance region and B̊ε its interior.
We have the following upper bounds, depending on θ , which hold for all m ≥ 1.

(a) Pθ ∈ B̊ε . Then D(Bc
ε ||Pθ ) > 0 and αε,m(θ) ≤ (m + 1)|X|2−mD(Bc

ε ||Pθ );

(b) Pθ ∈ Bc
ε . Let γ

�= D(Bε ||Pθ ) > 0. Then there exists 0 < δ < γ s.t. αε,m(θ) ≤
(m + 1)|X|2−mδ .

From Proposition 1 it follows that asm goes to infinity, αε,m(θ) → 0 for almost all
θ ∈ Θ . Therefore, the approximate likelihood from LDW- ABC achieves the approx-
imate likelihood from R- ABC and preserves its asymptotic properties. Moreover, we
speculate that LDW- ABC improves the efficiency by mitigating the sample degener-
acy. An evaluation of ESS might be a way of appreciating the improvement induced
by avoiding the implicit rejection.

Since the term ESS in (9) involves the evaluation of the variance of the normalized
weights, var [ω̄], its exact computation is infeasible, as it depends on the unknown
target normalizing constant. For this reason, we adopt the following estimate derived
by Kong (1992) and Elvira et al. (2018):

ÊSS
�=

(∑S
s=1 ωs

)2

∑S
s=1 ω2

s

(22)

(with the proviso that ÊSS
�= 0 if all ωs’s are zero). Let ÊSSI S and ÊSSLD be,

respectively, the value of ESS achieved by S iterations of IS- ABC and LDW- ABC
by setting the same tuning parameters, distance function and importance density q(θ).
Explicitly, let us assume that the kernel function for IS- ABC is 1within the acceptance
regionBε and 0 outside. Heuristically, adding positiveweights increases the numerator
more than the denominator in (22), suggesting that a non null weight assigned by
LDW- ABC to a parameter proposal rejected by IS- ABC is enough to have ÊSSLD >

ÊSSI S . This is confirmed by the following simple result, whose proof is given in
“Appendix A”.
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Proposition 2 (Empirical ESS) It holds that ÊSSLD ≥ ÊSSI S. Moreover this inequal-
ity is strict, provided that in at least one iteration of the algorithm there is generated
a full support Tym falling outside Bε .

A tedious but straightforward analysis shows in fact that the event mentioned in the
statement, uponwhich strict inequality holds, occurs with probability 1 as S −→ +∞.
The above result will be empirically validated in the experiments of Sect. 5, thus
providing further evidence that LDW- ABC achieves an improvement in terms of
efficiency.

Below, we sum up the technical development so far with a discussion of the role of
the parameters m and ε.

Remark 3 (On the role of the tuning parameters) Concerning the role of m, the size of
pseudo-dataset, and ε, the tolerance, we can sum up the content of Propositions 1 and
2 as follows:

1. large m and small ε point to low ÊSS and low αε,m ;
2. small m and large ε point to high ÊSS and high αε,m .

If one regards ÊSS as a measure of efficiency, and αε,m as a measure of (lack of)
accuracy w.r.t. the R-ABC likelihood, (but see also below), 1 and 2 above indicate
how to trade off one for the other.

In particular, as Theorem 3 requires a relatively large m in order to get a good
approximation for the posterior probability, 1 above says we can increase the tol-
erance ε to mitigate the resulting inefficiency. On the other hand, in cases where a
small tolerance parameter ε is required, 2 above offers room to mitigate the resulting
inefficiency by decreasing m.

Note, however, that when considering accuracy w.r.t. the target posterior density
π(θ |Txn ), the adjustment αε,m cannot simply be regarded as a measure of impreci-
sion: rather, it represents a compensation for those θ ’s that would be assigned a too
low probability by pure R-ABC. In this case, a sounder measure of precision can be
obtained by directly comparing a kernel-estimated density (obtained with LDW-ABC
weights) and the target posterior density, e.g., in terms of the mean integrated squared
error (MISE). This measure is, however, impossible to evaluate analytically, since its
calculation presupposes the knowledge of the target posterior density. From a more
empirical point of view, further discussion of the consequences of different choices
of ε and m on the performances of the posterior estimators is presented in Sect. 5,
illustrated by a number of examples.

5 Experiments

In order to evaluate the performance of the proposed method, we have put a proof-
of-concept implementation of LDW- ABC at work on two examples. We compare
the results obtained from LDW- ABC with those obtained from R- ABC. For both
examples, there is aMCMCmethod for sampling from the exact posterior distribution,
and the resulting posterior inference is taken as a reference for comparison.
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5.1 Example 1: mixture of binomial distributions

Let Xn = {Xi }ni=1 be a sequence of i.i.d. discrete random variables distributed accord-
ing to the following parametric finite mixture model:

λBin(θ1, N = 4) + (1 − λ)Bin(θ2, N = 4). (23)

Here we assume a uniform prior distribution on the mixture weight λ and that
(θ1, θ2) are uniformly distributed on the set {(θ1, θ2) : 0 ≤ θ2 ≤ θ1 ≤ 1} by imposing
the following identifiability constraint:

θ1 ≥ θ2.

An analytical computation of the posterior distribution requires the evaluation of
the likelihood

P(xn|λ, θ1, θ2)

=
n∏

i=1

(
N

xi

)[
λθ

xi
1 (1 − θ1)

N−xi + (1 − λ)θ
xi
2 (1 − θ2)

N−xi

]
. (24)

The direct computation of (24) is infeasible, as even with a few hundred observations,
it involves the expansion of the likelihood into 2n terms. In the literature, there are
several methods to deal with this problem, which allow sampling from the parameters’
posterior distributions, see Marin et al. (2005). A widespread method is a Gibbs Sam-
pling handling the finite mixtures issue as a missing data problem, see Diebolt and
Robert (1994). Samples from the joint posterior distribution are obtained by means
of a hierarchical model involving a vector of latent random variables, Zn = {Zi }ni=1,
where each Zi ∼ Bernoulli(1−λ) indicates to which component the i-th observation
belongs:

{
Xi ∼ Bin(θ1, N ) if zi = 0
Xi ∼ Bin(θ2, N ) if zi = 1.

(25)

Here the generative model consists of simulating each of the n values from one
of the two binomials according to the result of a Bernoulli(1-λ) experiment. The
same generative model has been run by a plug-in of the true values of the parameters
displayed in Table 1 (LHS) to obtain the observed data.We ran Algorithm 4 as detailed
in Table 1 (RHS), and after burn-in and thinningwe got 5000 values for each parameter
regarded as drawn independently from the true posterior distributions. The posterior
means and variances are displayed in Table 2.

In order to compare performance of LDW- ABCwith that ofR- ABC, the marginal
importance distributions are set equal to the prior distributions.

We ran Algorithms 1 and 3 with S = 100,000 and with four different pairs (m, ε).
Since our speculation is that introducing the evaluation of the probability of rare events
provides a better approximation in the tails of the distributions, we are interested in
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Algorithm 4 Gibbs sampling
Require: xn

Initialize p(0) = p(0)
1 , . . . , p(0)

n
for s = 1, . . . , S do

Draw Z (s)
i ∼ Ber(p(s−1)

i ) ∀i ∈ {1, . . . , n}
Draw θ

(s)
1 ∼ TruncatedBeta

(
1 + ∑n

i=1 xi1{zi = 0}, 1 + ∑n
i=1(N − xi )1{zi = 0}, θ

(s−1)
2 , 1

)
Draw θ

(s)
2 ∼ TruncatedBeta

(
1 + ∑n

i=1 xi1{zi = 1}, (1 + ∑n
i=1 N − xi )1{zi = 1}, 0, θ

(s)
1

)
Draw λ(s) ∼ Beta

(
1 + n −

n∑
i=1

z(s)i , 1 +
n∑

i=1
z(s)i

)

Compute p(s)
i = (1 − λ(s))(θ

(s)
2 )xi (1 − θ

(s)
2 )N−xi

(1 − λ(s))(θ
(s)
2 )xi (1 − θ

(s)
1 )N−xi + λ(s)(θ

(s)
1 )xi (1 − θ

(s)
2 )N−xi

end for

Table 1 Details for the
simulation of the dataset and for
the Gibbs implementation

θ true1 θ true2 λtrue N n S Burn-in Thinning

0.9 0.2 0.8 4 100 100,000 50,000 10

Table 2 Posterior estimates
derived via Gibbs sampling

MCMC posterior estimates

θ1 θ2 λ

Mean 0.8998 0.1556 0.8281

Variance 0.0004 0.0036 0.0018

comparing the shape of the posterior distributions obtained by LDW- ABC and by
R- ABC taking the Gibbs posterior distributions as reference. Accordingly, besides
the posterior estimates of the means and variances, we also reconstruct the posterior
densities by means of a Gaussian kernel density estimation.

The point estimates are compared via theMSE, and the kernel density estimates via
the MISE. In particular, the corresponding estimates, M̂SE and M̂ISE, are computed
by averaging over 100 runs the squared errors and the integrated squared errors w.r.t.
the output of the Gibbs sampler. The results are summarized in Table 3.

First, we note that both the M̂SE and the M̂ISE achieved by LDW- ABC are always
lower for LDW- ABC than for R- ABC. Hence, in our example, taking into account
the probability of large deviation events has improved both the point estimates and
the approximation of the posterior distributions. Moreover, as already pointed out in
Sect. 4, LDW- ABCmitigates the sample degeneracy by achieving an ÊSS up to more
than five times that achieved by R- ABC (see Table 4).

In order to evaluate the sample degeneracy, Table 4 (RHS) also displays the nor-
malized perplexity, which equals 2H(ω̃)/S, where H(ω̃) denotes the entropy of the
normalized weights. Cappé et al. (2008) show that the normalized perplexity repre-

sents an estimate of 2−D
(
π̃(θ,Tym |Txn )||q(θ,Tym )

)
, meaning that when the perplexity is

larger, the sample degeneracy is smaller.
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Fig. 2 Posterior distributions corresponding to four different pairs of tuning parameters (m, ε). Each panel
refers to one of the three model parameters. Red lines represent the posterior density estimates provided via
R- ABC. The blue lines represent the estimates provided via LDW- ABC. The dashed black lines are the
output of the Gibbs sampler. The gray dashed lines are the ratios L̃ε,m (θ; Txn )/L̃R

ε,m (θ; Txn ) providing a
representation of the adjustment αε,m (color figure online)

Table 4 ESS and normalized perplexity averaged over 100 runs for each pair of tuning parameters

Effective sample size Normalized perplexity

ε = 0.005 ε = 0.01 ε = 0.005 ε = 0.01

m = 500

LD 261 445 LD 0.0034 0.0055

R 25 81 R 0.0002 0.0008

m = 5000

LD 71 168 LD 0.0008 0.0018

R 31 94 R 0.0003 0.0009

The following comments are consistent with Remark 3. Concerning the role of the
tuning parameters,m and ε, we note that by fixing a largem (e.g., 5000), as ε increases
both ÊSS and the perplexity increase. Moreover, both M̂SE and M̂ISE decrease. The
same happens by reducing m with ε fixed to a small value (e.g., 0.005). This provides
guidance on how to set the tuning parameters. In Fig. 2 three matrices of plots, one
for each parameter, show the posterior densities: the size of the pseudo-dataset, m,
equals 500 in the plots on the LHS of each panel, and 5, 000 on the RHS. The topmost
plots show the approximate distributions with ε = 0.01, the others the distributions
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Fig. 3 Posterior cumulative density functions for θ2. Each plot shows in blue the output of LDW- ABC, in
red the output of R- ABC and in black the true cumulative density function for a pair (m, ε). For θ2 > 0.5
both the cumulative density functions equal 1. 90% intervals over 100 runs of each algorithm are also shown
(color figure online)

corresponding to ε = 0.005. According to Remark 3, we note that as m increases the
blue lines (LDW- ABC) overlap the red ones (R- ABC). In principle, we would expect
that both the algorithms achieve a better approximation of the posterior shapes with
ε = 0.005 than ε = 0.01. However, in the case of R- ABC, we see a deviation from
the true posterior distributions (dotted lines), when moving from the first to the second
row of each matrix. The same deviation occurs for LDW- ABC, but only in the second
column,when m = 5,000. This suggests that the quality of theR- ABC approximation
is affected by a low value of the ESSwhich is in turn determined by a too exacting value
of ε and m. In fact, when m = 500, LDW- ABC manages to mitigate the effect of a
small ε, but it fails when a large value ofm causes a too small ESS for the LDW- ABC
as well. In the figures we also superimposed the ratio L̃ε,m(θ; Txn )/L̃R

ε,m(θ; Txn ) =
1 + αε,m(θ; Txn )/L̃R

ε,m(θ; Txn ) evaluated pointwise and shown by the gray dashed
lines. This quantity depends on the contribution of the adjustment w.r.t. the R- ABC
likelihood and shows how the adjustment acts in modifying this latter when the R-
ABC posterior density is underestimated (gray areas). Figure 3 shows the posterior
cumulative density functions for θ2. The posterior cumulative density functions for
the other two parameters are given in “Appendix C”, Fig. 4. We also show the 90%
credible intervals for the estimated cumulative density functions. The red areas are
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Table 5 Cleartext and anonymized tables

ID Nat. ZIP Dis. GID Nat. ZIP Dis.

(a) Original table (b) Anatomized table

1 Malaysia 45501 Heart 1 Japan 45502 Heart

2 Japan 45502 Flu 1 Malaysia 45501 Flu

3 Japan 55503 Flu 2 Japan 55504 Flu

4 Japan 55504 Stomach 2 Japan 55503 Stomach

5 China 66601 HIV 3 Japan 66601 HIV

6 Japan 66601 Diabetes 3 China 66601 Diabetes

7 India 77701 Flu 4 Malaysia 77701 Flu

8 Malaysia 77701 Heart 4 India 77701 Heart

always larger than the blue areas, meaning that the estimates provided by R- ABC
exhibit greater variability. This is more significant when ε = 0.005, due to the small
acceptance probability.

To wrap up, as suggested by the M̂ISE’s, the posterior distributions approximated
by LDW- ABC appear more faithful to the true shapes. Moreover, the ESS and the
variability of the estimates are less sensitive to small values of ε.

5.2 Example 2: learning from anonymized data

The second example is aimed at comparing LDW- ABC and R- ABC at work on a
real-world dataset. We consider a scenario in which the dataset contains microdata
that have been anonymized in order to protect the privacy of the individuals involved.
More specifically, our data are a subset of 5692 rows from the Adult dataset extracted
by Barry Becker from the 1994 US Census database and available from the UCI
machine learning repository (Kohavi and Becker 1996). The anonymizaton method
we have adopted, Anatomy (Xiao and Tao 2006), is a group based anonymization
scheme. Given a dataset consisting of a collection of rows, each one corresponding to
an individual and containing his/her sensitive (e.g., disease, income) and nonsensitive
attributes (e.g., gender, nationality,ZIP code), a group-based anonymization algorithm
produces an obfuscated version of itself by partitioning the rows into groups. The idea
is to process the set of rows in each group so that even knowing the nonsensitive
attribute of an individual, one cannot identify his/her sensitive values. To reach this
goal, Anatomy vertically and randomly permutes the nonsensitive features within each
group, thus breaking the link between the sensitive and nonsensitive attributes.

An example of group based anonymization is in Table 5, adapted fromWong et al.
(2011). The LHS table is the original table collecting medical data from eight individ-
uals; here, Disease is considered as the only sensitive attribute. The RHS table is an
example of an application of theAnatomy scheme: within each group, the nonsensitive
part of the rows is vertically and randomly permuted, thus breaking the link between
the sensitive and nonsensitive values. Generally speaking, the obfuscated table can
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be seen as the output of a generative mechanism: given the population parameters as
input, the mechanism first generates a cleartext table by drawing a number of rows
i.i.d., then applies the anonymization algorithm to this table and outputs the result.
One is interested in the posterior distribution of the population parameters, given an
observation of the obfuscated table. Clearly, the likelihood function involved in this
mechanism is highly nontrivial, and also depends on the details of the anonymization
algorithm. Below we make this precise by adopting the model proposed by Boreale
et al. (2020).

Let a row of the original (cleartext) dataset be a pair (s, r) ∈ S × R, for finite,
nonempty setsS andR. Here, s and r represent the sensitive and nonsensitive attributes
(or vectors of attributes). Given a multiset of n rows, d = {|(s1, r1), . . . , (sn, rn)|},
Anatomy will first arrange d into a sequence of groups, x = g1, . . . , gk , the cleartext
table. Each group in turn is a sequence of ni rows, gi = (si,1, ri,1), . . . , (si,ni , ri,ni ).
The obfuscated table is then obtained as the sequence x∗ = g∗

1 , . . . , g
∗
k , where the

obfuscation of each group gi is a pair g∗
i = (σi , ρi ). Here, each σi = si,1, . . . , si,ni

is the sequence of sensitive values occurring in gi ; each ρi , called the generalized
nonsensitive value, is the multiset of gi ’s nonsensitive values: ρi = {|ri,1, . . . , ri,ni |}—
i.e., ρi includes all those and only those values, with multiplicities, found in gi .

The model consists of the following random variables:

– θ = (θS, θ R|S), where θ R|S = {θR|s : s ∈ S}. Here, θ takes values on the set of full
support probability distributionsD over S×R and represents the joint probability
distribution of the sensitive and nonsensitive attributes in the population.

– X = G1, . . . ,Gk , which takes values in the set of cleartext tables X. Each
group Gi is in turn a sequence of ni ≥ 1 consecutive rows in X , Gi =
(Si,1, Ri,1), . . . , (Si,ni , Ri,ni ) with Si, j ∼ θS and Ri, j ∼ θR|si, j . The number
of groups k is not fixed, but depends on the anonymization scheme and on the
specific tuples in d.

– X∗ = G∗
1, . . . ,G

∗
k , which takes values in the set of obfuscated tables X∗.

We assume that X∗ solely depends on the table X and the underlying obfuscation
algorithm, thus the above three random variables form a Markov chain:

θ −→ X −→ X∗. (26)

Here, our aim is to derive the posterior distribution for the population parameters θ

by observing an instance of the anonymized table, x∗. There is no tractable analytical
expression for the likelihood L(θ; x∗). In Kifer (2009) and Boreale et al. (2020) this
problem is circumvented by defining an MCMC scheme for sampling from the joint
posterior π(θ, x|x∗) and then discarding the cleartext tables (further details on the
MCMC scheme are in Boreale et al. (2020, Section 5). Here we pursue an alternative
solution based onABC. Specifically, we simulate the anonymized tables y∗ according
to the following generative model:

1. Generate a table of n i.i.d. rows (s, r) ∈ S×R distributed according to the θ given
as input;

2. Partition the table into k groups of dimensions {ni }ki=1;
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Table 6 The leftmost table shows the squared errors integrated over the 3-simplex and averaged over 100
runs of ABC

MISE ÊSS

Government Self-employed Private Without pay

R 0.6372 0.9185 16.3660 0.1477 R 16,704

LD 0.4147 0.5814 7.3125 0.106 LD 35,231

Each column corresponds to an element of
{
θ R|s : s ∈

{Government, Self-employed, Private, Without pay}}. The rightmost table shows the ESS achieved
by R- ABC and LDW- ABC averaged over 100 runs

3. Randomly permute the values of the nonsensitive attributes, r1, . . . , rni , within
each group gi .

Here, n is the number of rows and k is the number of groups in the observed
anonymized table x∗, while ni is the number of rows in g∗

i . In our example, the
observed data x∗ consists of an obfuscated table composed of k = 1423 groups,
with ni = 4 for each group gi . We take race (four possible values) as a nonsensitive
attribute and workclass (four possible values) as the sensitive attribute. As in Boreale
et al. (2020), we assume that θS and the θR|s’s are independently distributed according
to non-informativeDirichlet prior distributions. The output of theABC algorithmswill
be a sample from the approximate joint posterior distribution π̃(θ R|S, Ty∗ |Tx∗) since
the sensitive part is not changed by the anonymization algorithm and the posterior
distribution for θS exists in closed form.3 Note that in order to satisfy the assumptions
of Sanov’s theorem, the m simulated rows must be independent and identically dis-
tributed. Recalling that the m pairs (s, r)’s are generated independently and that the
permutation is completely at random, we conjecture that the i.i.d. assumption is satis-
fied. We have positively verified this assumption empirically via the permutation test
based on the periodicity test statistic described in the National Institute of Standards
and Technology Special Publication 800-90B (Turan et al. 2018).

As in the previous experiment, we consider the output of 100,000 MCMC runs
as a reference, in order to compute the M̂SE’s and M̂ISE’s, and thus comparing the
accuracy of LDW- ABC and R- ABC. The posterior means derived via MCMC are
displayed in “Appendix C” (Table 8).

By setting m = 100 and ε = 1, as far as point estimations are concerned,
both LDW- ABC and R- ABC perform quite similarly. The results are displayed in
“Appendix C” (Table 9). Nevertheless, the M̂SE’s achieved by LDW- ABC are almost
always smaller than the ones achieved by R- ABC. Concerning the approximations of
the multivariate posterior distributions, looking at M̂ISE we can conclude that LDW-
ABC outperforms R- ABC (see Table 6). Moreover, by focusing on the improvement
in efficiency, we note that the value of ÊSS for LDW- ABC is more than twice that
for R- ABC.

3 The posterior distribution of θs is simply a Dirichlet distribution where the parameters are updated by the
frequency counts of each s ∈ S.
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6 Conclusions and future research

We have put forward an approach to address sample degeneracy in methods of
approximate Bayesian computation (ABC). Our proposal consists in the definition
of a convenient kernel function which, via the theory of large deviations, takes into
account the probability of rare events—a poor parameter proposal generating pseudo-
data close to those observed. By adopting the information theoretic method of types,
which involves summarizing data via their empirical distributions, we also by-pass the
issue of selecting summary statistics. The proposed kernel function, being defined on
a non-compact support, avoids any implicit or explicit rejection step, thus effectively
increasing the effective sample size, as empirically verified in Sect. 5. Moreover, the
resulting approximate ABC likelihood leads to a better approximation of the tails of
the posterior distributions, that is, poor parameter proposals are assigned small but
nonzero probability. We also provide formal guarantees of the convergence of our
ABC approximate likelihood to the true likelihood.

The proposed method deals with the inefficiency in ABC algorithms by focusing
on the kernel function. Although a variety of ABC sampling schemes addressing
the same problem have been proposed, most of them (e.g., MCMC- ABC, SMC-
ABC, PMC- ABC, SIS- ABC, etc.) handle the problem of finding a good marginal
importance distribution, q(θ), completely ignoring the choice of the kernel Kε(·). We
speculate that these two approaches can be combined by adopting those sampling
schemes rather than the involved IS- ABC. Finally, further research is called for in
order to apply the proposed method to sequences of dependent random variables, such
as Markov chains, and to continuous data. This will in turn require considering more
sophisticated versions of the theory of large deviations, where the i.i.d. assumption
is relaxed. Such extensions are required to make the algorithm applicable to more
complex situations in which no other ways of sampling from the posterior distribution
are available. However we want to emphasize that at the current stage, the method is
already applicable in contexts in which the other available sampling methods (e.g.,
MCMC) can be computationally demanding. For example, an efficientABC algorithm
may be usefully applied to models involving high-dimensional latent variables even
when an MCMC algorithm exists. In fact, ABC algorithms can be run in parallel,
leading to a computational gain when many of the existingMCMC algorithms suffer
from a slow mixing of the chain.
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A Proofs

In what follows, we will make use of a few basic notions and facts about the method
of types and information projections, for which we refer the reader to (Csiszár et al.
2004, Chap. 1). The simplex of the distributions overX, given a subsetΔ|X|−1 ⊆ R

|X|,
inherits the standard topology from R

|X|. W.r.t. this topology, the function D(P||Q)

is lower semi-continuous in the pair of arguments (P, Q), and continuous at (P, Q)

whenever Q has full support, that is, whenever supp(Q)
�= {r ∈ X : Q(r) > 0} = X.

Convergence to Q in KL divergence, D(Qn||Q) → 0, implies convergence in the
standard topology, Qn → Q. As a function of P , D(P||Q) is strictly convex, and
continuous whenever Q is full support. Hence for any convex and closed set E ⊆
Δ|X|−1 the information projection of Q onto E , P∗ = argminP∈E D(P||Q), exists
and is unique. The following is a fundamental result about information projections.

The support of E is defined as supp(E)
�= ⋃

P∈E supp(P).

Theorem A.1 (Pythagorean inequality, Csiszár et al. (2004) Th.3.1) Let E be a
closed and convex set and Q be full support. Let P∗ = argminP∈E D(P||Q).
Then supp(P∗) = supp(E). Moreover, for each P ∈ E, D(P||Q) ≥ D(P||P∗) +
D(P∗||Q).

Proof of Theorem 3 Fix an infinite sequence τ ∈ X∞, τ = (y1, y2, y3, . . .). For each
m ≥ 1, let Tym (τ ), Tym for short, denote the type of the first m symbols of τ , the
sequence (y1, . . . , ym). Assume τ is such that Tym → Pθ as m → +∞. Note that,
since Pθ is full support, this implies that for all sufficiently largem, Tym is full support
as well. Define P∗ and, for any such sufficiently large m, P∗

m as follows:

P∗ �= argmin
P∈Bε

D(P||Pθ ) and P∗
m

�= argmin
P∈Bε

D(P||Tym ).

Note that as Tym is full support and Bε = {P : D(P||Txn ) ≤ ε} is convex and
closed, the projection P∗

m exists and is unique. Moreover, as Txn is by assumption full
support, it is easily seen that supp(Bε) = X: hence, by the first part of Theorem A.1,
the projection P∗

m is full support as well.
As Bε is closed and D(·||Pθ ) is continuous, P∗ ∈ Bε . We can now apply the

Pythagorean Inequality, considering P∗
m as a projection and P∗ ∈ E = Bε , and

obtain

D(P∗||Tym ) ≥ D(P∗||P∗
m) + D(P∗

m ||Tym ). (27)

As Pθ is assumed to be full support, D(·||·) as a function of its second argument is
continuous at Pθ , hence

lim
m→∞ D(P∗||Tym ) = D(P∗||Pθ ). (28)

Assuming {P∗
m} converges, let P∗∗ �= limm→∞ P∗

m , where clearly P∗∗ ∈ Bε ; if {P∗
m}

does not converge, we can equivalently take any convergent subsequence of it. Taking
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lim inf on both sides of (27), and exploiting (28) on the left-hand side, and lower
semi-continuity on the right-hand side, we can write

D(P∗||Pθ ) = lim
m→∞ D(P∗||Tym )

≥ lim inf
m→∞

(
D(P∗||P∗

m) + D(P∗
m ||Tym )

)
≥ lim inf

m→∞ D(P∗||P∗
m) + lim inf

m→∞ D(P∗
m ||Tym )

≥ D(P∗||P∗∗) + D(P∗∗||Pθ ).

Summing up

D(P∗||Pθ ) ≥ D(P∗||P∗∗) + D(P∗∗||Pθ ). (29)

Recalling that P∗ is the information projection of Pθ onto Bε , that P∗∗ ∈ Bε and that
D(·||·) is nonnegative, the only possibility for (29) to hold is that D(P∗||P∗∗) = 0,
which implies P∗ = P∗∗. In other words

lim
m→∞ P∗

m = P∗. (30)

This way, we have shown that (P∗
m, Tym ) → (P∗, Pθ ). Under D(·||·) this limit

becomes, by continuity at (P∗, Pθ ):

lim
m→∞ D(P∗

m ||Tym ) = D(P∗||Pθ ). (31)

We have shown that (31) holds for any sequence τ ∈ X∞ such that Tym = Tym (τ ) →
Pθ . Now let Pr(·|θ) be the probability measure on X∞ induced by Pθ . The LLN
(Theorem 1) says that, under Pr(·|θ), the set of such τ ’s has probability 1.

Hence (31) under Pr(·|θ) holds with probability 1, that is, almost surely. ��
Recall that, for each Q and δ ≥ 0, Bδ(Q) ⊆ Δ|X|−1 denotes the ball of radius δ

centered at Q:

Bδ(Q)
�= {P : D(P||Q) ≤ δ}.

Lemma A.1 Let E ⊆ Δ|X|−1 be a convex and closed set. Let Q ∈ Δ|X|−1 be such that

γ
�= D(E ||Q) > 0. Then for each 0 < γ ′ < γ there is δ > 0 such that for each

Q′ ∈ Bδ(Q) one has D(E || Q′) ≥ γ ′.

Proof The fact that E is closed and convex ensures that the projection D(E ||Q) exists
and is finite. Consider the strictly descending chain of balls of radius δn = 1/n centered
at Q: Bδ1(Q) ⊇ Bδ2(Q) ⊇ · · · ⊇ Bδn (Q) ⊇ · · · .

By contradiction, assume that there exists 0 < γ ′ < γ such that for each δ > 0,
there is Q′ ∈ Bδ(Q) such that D(E || Q′

n) < γ ′. In particular, we then have that

for each n ≥ 1 there is Q′
n ∈ Bδn (Q) s.t. D(E || Q′

n) < γ ′. (32)
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We can therefore assume without loss of generality that

lim
n→∞ D(E ||Q′

n) < γ ′. (33)

(if not, we can anyway extract from {D(E || Q′
n)} a subsequence with the desired

property). On the other hand, being limn→∞ D(Q′
n||Q) = 0, we have limn→∞ Q′

n =
Q. Being D(·||·) lower semi-continuous, we obtain

lim inf
n→∞ D(E ||Q′

n) ≥ D(E ||Q) = γ > γ ′. (34)

But this contradicts (32). ��
Proof of Proposition 1 Let us consider the two cases separately, Pθ ∈ B̊ε = {P ∈
Δ|X|−1 : D(P||Txn ) < ε} and Pθ ∈ Bc

ε = {P ∈ Δ|X|−1 : D(P||Txn ) > ε}.
– Pθ ∈ B̊ε .

αε,m ≤
∑

Tym∈Bc
ε

Pθ (Tym ) ≤ (m + 1)|X|2−mD(Bc
ε ||Pθ )

where the last inequality follows from a direct application of Sanov’s Theorem.

– Pθ ∈ Bc
ε . Choose any 0 < γ ′ < γ

�= D(Bc
ε ||Txn ) (note that γ > 0) and apply

Lemma A.1 with E = Bε and Q = Pθ to obtain δ > 0 such that D(Bε ||Q′) ≥ γ ′
for each Q′ ∈ Bδ(Pθ ). We can assume without loss of generality that δ ≤ γ ′. It
follows that

αε,m =
∑

Tym∈Bc
ε

2−mD(Bε ||Tym )Pθ (Tym ) (35)

=
∑

Tym∈Bc
ε∩Bc

δ

2−mD(Bε ||Tym )Pθ (Tym )+
∑

Tym∈Bδ

2−mD(Bε ||Tym )Pθ (Tym ) (36)

≤
∑

Tym∈Bc
ε∩Bc

δ

Pθ (Tym ) +
∑

Tym∈Bδ

2−mD(Bε ||Tym ) (37)

≤
∑

Tym∈Bc
ε∩Bc

δ

2−mD(Tym ||Pθ ) +
∑

Tym∈Bδ

2−mD(Bε ||Tym ) (38)

≤
∑

Tym∈Bc
ε∩Bc

δ

2−mδ +
∑

Tym∈Bδ

2−mγ ′
(39)

≤
∑

Tym∈Bc
ε

2−mδ (40)

≤ (m + 1)|X|2−mδ (41)

where (38) follows from (11) and the last step follows from an upper bound for
the size of Tm (see (Cover and Thomas 2006, Ch. 11, Th. 11.1.1)).
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Proof of Proposition 2 Let us consider ÊSS : R
S → R as a function of S variables,

ÊSS(x1, . . . , xS), defined for nonnegative reals xi ’s, not all zero, representing the
weights. The partial derivative of ÊSS w.r.t. xi has the form

∂

∂xi
ÊSS(x1, . . . , xS) = C · ∑

j �=i (x
2
j − xi x j )

for a function C that is > 0 in the domain of definition of ÊSS. Therefore, ∂
∂xi

ÊSS is

nonnegative when evaluated at any point (x1, . . . , xS) in the domain of ÊSS with the
following property: for each j �= i s.t. x j > 0, one has 0 ≤ xi ≤ x j . If additionally at

least one j �= i exists s.t. x j > xi , then ∂
∂xi

ÊSS is strictly positive.
An execution of the IS algorithm consists of S ≥ 1 independent iterations of the

main loop: let us denote byωs and ρs the unnormalizedweights (6) generated using the
LDW- ABC and IS- ABC kernel functions, respectively, at iteration s = 1, . . . , S, and
by ω = (ω1, . . . , ωS) and ρ = (ρ1, . . . , ρS) the resulting sequences. By definition,
the set of indices s = 1, . . . , S can be partitioned into three subsets: the subset A
where ρs = ωs > 0, the subset B where ρs = 0 and ωs > 0, and the subset C
where ρs = ωs = 0. Moreover, for each s ∈ A and s′ ∈ B, ωs > ωs′ . For notational
simplicity, assume A = {1, . . . , h}, B = {h + 1, . . . , S′} and C = {S′ + 1, . . . , S},
for some 0 ≤ h ≤ S′ ≤ S. Also assume, again only for notational simplicity, that
ωh+1 ≥ ωh+2 ≥ · · · .

If S′ = 0, then h = 0 and by definition ÊSSLD = ÊSSI S = 0, hence assume
S′ > 0. If h = S, then S′ = S and ω = ρ, hence the inequality in the statement again
holds trivially as equality. Consider now a case where 0 < h < S, that is ω �= ρ. For

each i = h + 1, . . . , S′, consider a point ρi (x)
�= (ω1, . . . , ωi−1, x, 0, . . . 0), with

0 ≤ x ≤ ωi . The fact that 0 ≤ x ≤ ω j for each j < i , and moreover that ω1 > xi ,

by the above considerations entails the strict positivity of ∂
∂xi

ÊSS when evaluated at
ρi (x), for 0 ≤ x ≤ ωi . Therefore, considering i = h + 1, . . . , S′ in turn, we have

ÊSSI S = ÊSS(ω1, . . . , ωh, 0, . . . , 0)

< ÊSS(ω1, . . . , ωh, ωh+1, 0, . . . , 0)

< · · ·
< ÊSS(ω1, . . . , ωh, ωh+1, . . . , ωS′ , 0, . . . , 0)

= ÊSSLD .

��

BMinimization of the KL divergence

In the proposed LDW- ABC, the minimization of the KL divergence between the
acceptance region and the simulated type poses a computational difficulty. This is a
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Table 7 Summaries of the empirical distributions of the relative errors of the approximate distances

Min Mean Max s.d.

0.0052 × 10−14 1.0719 × 10−6 0.0052 5.3075 × 10−7

constrained minimization problem on a space of dimension |X|. As |X| grows, this
problem can rapidly become intractable.

A practical work-around to this problem can be found by considering a suitable path
from Tym to Txn , passing through P∗. In InformationGeometry, this path is represented
by a linear interpolation on the logarithmic scale, the exponential geodesic (Nielsen
2018).

Definition 3 (Exponential geodesic) Let P1 and P2 be two probability distributions
over X and let Pξ be the probability distribution such that for each r ∈ X

log Pξ (r) = ξ log P1(r) + (1 − ξ) log P2(r) + log c

where ξ ∈ [0, 1] and c is a proper normalizing constant. The exponential geodesic
between P1 and P2 is the following set of distributions

γe
(
P1, P2

) �= {Pξ : ξ ∈ [0, 1]}. (42)

Our approach when minimizing the KL divergence between Bε(Txn ) and Tym is to
focus on a path between the observed and the simulated type, that is the exponential
geodesic γe(Txn , Tym ). We search in this path the information projection P∗, or an
approximation of it. This reduces the dimension of the minimization problem from
|X| to 1, that of the parameter ξ . Specifically, let Pξ∗ ∈ Bε(Txn ) be the element of
γe(Txn , Ty) defined as

Pξ∗(r)
�= Txn (r)

ξ∗ · Tym (r)1−ξ∗
c∗ (r ∈ X)

where ξ∗ �= argmin
ξ∈[0,1] : Tξ ∈Bε

D(Pξ ||Tym ).

We have empirically verified that D(Pξ∗ ||Tym ) approximates with very good accuracy
D(Bε ||Tym ).

Hence, whatever |X|, D(Bε ||Tym ) is approximate by means of a minimization with
respect to a single parameter, ξ . Table 7 summarizes the distribution of the distances
approximation relative errorsw.r.t. the true distance, over the S = 100,000 simulations
in the experiment in Sect. 5.1, with m = 500 and ε = 0.005.
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Fig. 4 Posterior cumulative density functions for θ1. Each plot shows in blue the output of LDW- ABC, in
red the output of R- ABC and in black the true cumulative density function for a pair (m, ε). For θ1 < 0.5
both the cumulative density functions are equal to 0. The 90% intervals over 100 runs of each algorithm
are also shown (color figure online)

C Additional results from the experiments

C.1 Example 1
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Fig. 5 Posterior cumulative density functions for λ. Each plot shows in blue the output of LDW- ABC, in
red the output of R- ABC and in black the true cumulative density function for a pair (m, ε). For λ > 0.5
both the cumulative density functions equal 1. The 90% intervals over 100 runs of each algorithm are also
shown (color figure online)
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Table 8 Posterior means via MCMC. Each column corresponds to the vector of posterior means for an
element of

{
θ R|s : s ∈ {Government, Self-employed, Private, Without pay}}

Posterior Means

Gov. Self-emp Private Without pay

White

R 0.3991 0.3854 0.3859 0.2507

MCMC 0.249 0.2494 0.2505 0.2501

LD 0.3909 0.3774 0.3805 0.2389

Asian-Pac-Islander

R 0.1968 0.2015 0.1918 0.2507

MCMC 0.2512 0.2495 0.2501 0.2501

LD 0.1999 0.2041 0.1938 0.2530

Black

R 0.2428 0.2375 0.2527 0.2486

MCMC 0.2502 0.2519 0.2492 0.2496

LD 0.2438 0.2389 0.2505 0.2492

Other

R 0.1613 0.1756 0.1696 0.2500

MCMC 0.2496 0.2492 0.2501 0.2502

LD 0.1654 0.1796 0.1727 0.2438

C.2. Example 2

Table 8 shows the posterior means for each θR|s estimated viaMCMC. Such estimates

are used as a benchmark in the computation of the M̂SE’s shown in Table 9.
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Table 9 Squared errors averaged over 100 runs ofABC. Each column corresponds to an element of
{
θ R|s :

s ∈ {Government, Self-employed, Private, Without pay}}

MSE

Government Self-emp Private Without pay

White

LD 1.997 × 10−3 3.121 × 10−3 3.958 × 10−2 1.088 × 10−6

R 3.141 × 10−3 5.056 × 10−3 7.893 × 10−2 2.343 × 10−6

Asian-Pac-Islander

LD 2.976 × 10−4 3.908 × 10−4 6.109 × 10−3 8.338 × 10−7

R 4.576 × 10−4 6.416 × 10−4 1.147 × 10−2 1.902 × 10−6

Black

LD 3.489 × 10−6 1.194 × 10−5 3.555 × 10−4 1.212 × 10−6

R 2.410 × 10−6 2.628 × 10−6 1.782 × 10−3 2.651 × 10−6

Other

LD 6.701 × 10−4 1.078 × 10−3 1.039 × 10−2 1.02 × 10−6

R 1.241 × 10−3 2.038 × 10−3 1.733 × 10−2 2.353 × 10−6
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