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Abstract
Missing data reconstruction is a critical step in the analysis and mining of spatio-
temporal data. However, few studies comprehensively consider missing data patterns,
sample selection and spatio-temporal relationships. To take into account the uncer-
tainty in the point forecast, some prediction intervals may be of interest. In particular,
for (possibly long) missing sequences of consecutive time points, joint prediction
regions are desirable. In this paper we propose a bootstrap resampling scheme to
construct joint prediction regions that approximately contain missing paths of a time
components in a spatio-temporal framework, with global probability 1 − α. In many
applications, considering the coverage of the whole missing sample-path might appear
too restrictive. To perceive more informative inference, we also derive smaller joint
prediction regions that only contain all elements of missing paths up to a small number
k of them with probability 1 − α. A simulation experiment is performed to validate
the empirical performance of the proposed joint bootstrap prediction and to compare
it with some alternative procedures based on a simple nominal coverage correction,
loosely inspired by the Bonferroni approach, which are expected to workwell standard
scenarios.
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1 Introduction

In the last decade, data with temporal and spatial attributes are quickly accumulated
and form large numbers of spatio-temporal datasets collected in diverse domains,
including climate science, social sciences, economics, neuroscience, epidemiology,
transportation, mobile health, and Earth sciences. In these domains, the real-world
processes being studied are intrinsically spatio-temporal, and several data acquisition
methodologies have been proposed to record the spatial and temporal information
of every measurement in the data. For example, when dealing with environmental
data generated by air quality monitoring sensors, data are simultaneously collected by
monitoring stations for different sites and different time points (see Atluri et al. 2018
for a review).

In all these fields, missing data are pervasive as it often happens that, for several
reasons including equipment failure or measurement errors, (possibly) long sequences
of data are not correctly recorded. If these holes in data cannot be accurately estimated,
the subsequent steps of data analysis and modelling might lead to incorrect results
and unreasonable inference. Clearly, merely deleting the records containing missing
data cannot be considered a sensible strategy since it would lead to a significant loss
of initial information and would be a waste of data resources. Therefore, statistical
methods which are able to accurately and efficiently interpolate missing values have
been proposed in the literature. Clearly, in the context of spatio-temporal data, the
problem of missing data reconstruction becomes even more challenging, given the
additional complexity of the spatial and time-dependent structure, which is present
in the observed datasets. However, the spatial and time dependency, when correctly
modeled, can be effectively exploited to get accurate reconstruction of (possibly) long
sequences of missing values.

Studies on the missing values estimation in meteorological time series go back to
the 1950s. In the first studies, missing values are estimated by means of imputation or
simple linear regression estimates. For the same purpose, in Young (1992) three meth-
ods, normal ratiomethod,multiple discriminant analysis andmultiple linear regression
are discussed and compared. In Eischeid et al. (2000) several estimation techniques
based on spatial analysis schemes are evaluated to create a complete national daily
time series of the maximum-minimum temperatures and total precipitation over the
western United States. In Teegavarapu et al. (2005) an imputation method based on
the inverse distance weighting method, by looking at the distance between target and
reference stations, was proposed. The use of a regularized EM algorithm for the impu-
tation of incomplete climate data is recommended in Schneider (2001), especially
when the number of the observed series with missing values exceeds the sample size.
Another study that proposes multiple imputation is provided in Cano et al. (2010), in
which a MCMC-based procedure is suggested. Other appreciable works in the area
of metereological time series are carried out by Junninen et al. (2004); Lo Presti et al.
(2010); Smith et al. (2007).

Recently, some new approaches have been proposed in the literature, with clear
evidence of substantial advantages compared with existing methods (see, Pollice et al.
2009; Liu et al. 2014; Yang et al. 2018 inter alia). Mainly, the new approaches combine
two different imputation methods in separate stages (for example, k-NN and Fourier
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transform), so that the first one accounts for cross-correlation among variables and
the second one deals with serial correlation in univariate time series. Recently, in
Calculli et al. (2015) the authors proposed amultivariate hidden dynamic geostatistical
model andmaximum likelihood parameter estimates obtained by using EM algorithm.
This approach is able to deal with multiple variables sampled at different monitoring
networks and missing data. In Parrella et al. (2019) we proposed a new procedure
for estimating (even long) missing sequences in time series, which uses an approach
based on the generalized spatial-dynamic autoregressive model. This model was first
proposed in Dou et al. (2016) and belongs to the family of spatial econometric models
(see Lee et al. 2010 for an introduction and a survey of such models). These models
include, in the form of a weightedmultivariate autoregression, the distances among the
considered locations (i.e., among the monitoring stations). In this way, it is possible
to take into account spatial correlation in the data and estimate missing sequences in
one given spatial site by looking at near sites, but also by looking at the previous lags
of the same station and the neighbour sites.

However, when estimating the missing values for a given site, a point forecast
alone is usually not sufficient. A statement about the uncertainty contained in the point
forecast, as expressed by some prediction intervals, may also be desired. Moreover,
missing values are not only isolated missing points, but often there are (possibly long)
missing sequences of data points in spatio-temporal databases. Hence, we usually have
a path of missing values for H consecutive time points, for a given site. A path-missing
reconstruction refers to the sequence of corresponding missing values imputation for
the H missing time points.

On the one hand, one can construct H marginal prediction intervals by using a
given method to build a prediction interval repeatedly, one period at a time. But, by
design, probability statements then only apply marginally, one period at a time: the
prediction interval at a specific time point th , for some t1 ≤ th ≤ tH , will contain the
random variable representing the missing value with prespecified probability 1 − α.
The problem has been already addressed in the literature with effective proposals as in
Alonso et al. (2008) and Alonso et al. (2013) where a bootstrap scheme is employed
to construct accurate interpolation intervals.

On the other hand, a more general problem is the construction of a joint prediction
region (JPR) that will contain the entiremissing pathwith the desired probability 1−α.
Clearly, stringing together marginal prediction intervals for time points t1 up to tH ,
each one at level 1−α, will not result in a JPR that contains the entiremissing pathwith
probability 1−α. Instead, like the case of prediction intervals, apart from pathological
cases, the joint coverage probability of the missing sequence will be strictly less than
1−α, and decreasing in H . Despite the importance of the problem just described, the
construction of JPRs for missing paths has been somewhat neglected in the literature
so far.

In this paper we propose a bootstrap resampling scheme to construct JPRs that con-
tain missing paths of a time series of interest with nominal coverage level 1−α, along
the same approach used by Wolf et al. (2015) and based on the maximum predictive
root. Moreover, if the missing value time horizon H is large, the applied researcher
may deem the criterion that all elements of the missing path must be contained in the
JPR with probability 1 − α as too strict. We also consider the more general problem
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of constructing JPRs that will only contain all elements of missing paths up to a small
number k − 1, (k = 1, 2, . . .) of them with probability 1 − α. The choice of k must
be made by the applied researcher, with respect to the given problem at hand. But it
will be useful to the applied researcher to have a method available that can handle
any desired value of k. In particular, the choice k = 1 yields a standard JPR that must
contain all elements of a missing path with probability 1 − α.

A simulation experiment is performed to validate the empirical performances of
the proposed JPRs construction method. For the sake of comparison, we also propose
two alternative resampling techniques for the construction of JPRs, based on a simple
nominal coverage correction loosely inspired by the Bonferroni approach, which are
expected to work well in simple and standard scenarios.

The remainder of this paper is organized as follows. Section 2 contains a short review
on the spatio-temporalmodel used and themissing data reconstruction procedure. Sec-
tion 3 describes our method to construct JPRs for missing paths in spatio-temporal
datasets. Section 4 investigates the finite-sample performance viaMonte Carlo simula-
tions. An application to real data is also presented in Sect. 5. Finally, some concluding
remarks close the paper.

2 Pathmissing values reconstruction in spatio-temporal datasets

Let yt = (yt,1, yt,2, . . . , yt,p) be a multivariate stationary process of dimension p,
assumed for simplicity with zero mean value vector, generating the observations at
time t from p different locations. Following Dou et al. (2016), we assume that the
process can be modeled by the following Spatial Dynamic Panel Data (SDPD) model

yt = D(λ0)Wyt + D(λ1)yt−1 + D(λ2)Wyt−1 + εt , (1)

where D(·) are diagonal matrices with diagonal coefficients from the vectors λ0,λ1
and λ2, and the error process εt is serially uncorrelated, with diagonal heteroskedastik
variance-covariancematrixΣε .Model (1) belongs to the family of spatial econometric
models, so it is particularly oriented to model spatio-temporal data. The matrix W is
called spatialmatrix and collects theweigths used in the spatial regression of each time
series observation with simultaneous or delayed observations of neighboring data. In
particular, note that the term D(λ0)Wyt captures the pure spatial effects, since it only
considers contemporary observations, the component D(λ1)yt−1 captures the pure
dynamic effects, since it involves lagged observations, while D(λ2)Wyt−1 captures
the spatial-dynamic effects. However, if one uses a correlation based matrix W to
measure variable distances, instead of using physical distances, one can use model (1)
to analyse any kind ofmultivariate time series, not necessarily of strictly spatial nature.
Of course, spatial models rely on the spatial weight matrix W to specify the cross-
sectional correlation. Currently, there is no well-defined theory on how to find the true
spatial matrix for a given data application. Recently, there have been some proposals
to make this matrix “endogenous” within the model or to select the best spatial matrix
among a list of candidates, in order to increase the flexibility of the spatial model
(see, for example, Gao et al. 2019; Qu et al. 2021; Zhang et al. 2018). Of course,
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some additional assumptions and/or some adjustments to the model parametrization
are required for identifiability. In this paper, we assume that matrix W is known, as
usually done within this class of models, but we defer further investigations on the
selection of the “best” matrix W for the future.

In the following, we assume that y1, . . . , yT are realizations from the stationary
process defined by (1). Then, we denote with Σ j = Cov(yt , yt− j ) = E(yty′

t− j ) the
autocovariance matrix of the process at lag j , where the prime superscript denotes the
transpose operator.

The parameters of model (1) can be estimated following Dou et al. (2016). In
particular, given stationarity, from (1) we derive the Yule-Walker equation system

(I − D (λ0)W)Σ1 = (D (λ1) + D (λ2)W) Σ0,

where I is the identity matrix of order p. The i-th row of the equation system is

(
e′
i − λ0iw′

i

)
Σ1 = (

λ1ie′
i + λ2iw′

i

)
Σ0, i = 1, . . . , p, (2)

with wi the i-th row vector ofW and ei the i-th unit vector. Replacing Σ1 and Σ0 by
the sample (auto)covariance matrices

Σ̂1 = 1

T

T−1∑

t=1

yt+1y′
t and Σ̂0 = 1

T

T∑

t=1

yty′
t ,

the vector (λ0i , λ1i , λ2i )′ is estimated by the generalized Yule-Walker estimator, avail-
able in closed form,

(
λ̂0i , λ̂1i , λ̂2i

)′ = (
X̂′
i X̂i

)−1
X̂′
i ŷi , i = 1, 2, . . . , p, (3)

where X̂i =
(
Σ̂

′
1wi , Σ̂0ei , Σ̂0wi

)
and ŷi = Σ̂

′
1ei .

Model (1), once estimated, can be used to reconstruct sequences of missing
values. To this aim, let us assume that ỹ1, · · · , ỹT are realizations from a station-
ary spatio-temporal process with mean value not necessarily equal to zero. Let
δt = (δt,1, . . . , δt,p) be a vector of zeroes/ones that identifies all the missing values
in the observed vector ỹt , so that δt,i = 0 if the observation ỹt,i is missing, otherwise
it is δt,i = 1. In case of processes with no zero mean, model (1) can still be used
for parameter estimation after a pre-processing step which centers the observed time
series, i.e. yt = ỹt − ȳ. Now, because we have missing values in the observed spatio-
temporal series, centering data using the initial mean ȳ (excluding missing values) is
like centering using the wrongmean. As a result, we can have a bias in the estimation
results (unless we can assume missing observations happen at random, i.e. they occur
independently on the level of the process). To prevent this problem, we include the
computation of the mean in the iterative procedure, so that mean-centering is made
iteratively on the basis of the whole series (including the imputed values). See Parrella
et al. (2019) for more details about this issue.
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Algorithm 1 Pseudocode for missing value path imputation

Initialize the mean centered vector y(0)
t , t = 1, . . . , T as

for t = 1, . . . , T do

y(0)
t = δt ◦

(
ỹt − y(0)

)
, with y(0) =

T∑

t=1

(
δt ◦ ỹt

)
/

T∑

t=1

δt ,

(◦ denotes the Hadamard product; the ratio between the two vectors is intended component-wise.)
end for
Fix γ to a small given value (or fix max .i ter = 30) and s = 0
repeat

s = s + 1
Estimate (̂λ

(s−1)
0 , λ̂

(s−1)
1 , λ̂

(s−1)
2 ) as in Eq. (3), using the centered data {y(s−1)

1 , . . . , y(s−1)
T };

for t = 1, . . . , T do

ŷ(s)
t = D(̂λ

(s−1)
0 )Wy(s−1)

t + D(̂λ
(s−1)
1 )y(s−1)

t−1 + D(̂λ
(s−1)
2 )Wy(s−1)

t−1 (4)

y(s) = 1

T

T∑

t=1

(
δt ◦ ỹt + (1 − δt ) ◦ (̂y(s)

t + y(s−1))
)

(5)

y(s)
t = δt ◦ (̃yt − y(s)) + (1 − δt ) ◦ ŷ(s)

t , (6)

(1 is a vector of ones)
end for

until ‖y(s)
t − y(s−1)

t ‖22 ≤ γ or s ≥ max .i ter
Reconstruct the multivariate time series as
for t=1,2,…,T do

ỹ(s)
t = y(s)

t + y(s)

(the original missing data replaced by the estimated values.)
end for

The imputation procedure is described in details in Algorithm 1.
Note that the procedure is able to reconstruct both isolated missing values and

(possibly long) sequences of missing values. In doing so, the procedure uses both
the time dependence structure in each time series and the cross-dependency among
time series making the procedure very effective, assuming that the spatio-temporal
parametric model is correctly assumed. As an additional remark, note that the model
estimation procedure is based on an estimator available in closed form making the
overall procedure very convenient from a computational point of view. Therefore, our
estimation procedure can still be used efficiently when the number of spatial locations
is very large. In fact, note that matrix X̂′

i X̂i in Eq. (3) is always of order 3 × 3,
whatever the total number of spatial locations is. So, the matrix inversion can be done
very quickly. Hence, the estimation procedure requires a loop to estimate the spatial
parameters for all spatial units (for i = 1, . . . , p, where p is the total number of units).
This loop can be easily parallelized, in case p is extremely large. This latter aspect
is of great importance as we use the bootstrap to approximate the confidence bands,
which itself requires additional computational burden.
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3 Bootstrap joint prediction regions for missing value paths

Given the observed spatio-temporal series y1, · · · , yT , we assume there can be several
missing values and/or missing sequences appearing here and there in the multivariate
series, at different locations and/or different time intervals. Unlike the previous section,
wherewe used amatrix/vector notation to refer to themultivariate series, in this section
we prefer to focus on a single univariate missing sequence (or missing value), in order
to keep notation simple as we explain how to derive the JPR for this sequence. Of
course, the same arguments must be repeated for all the missing values/sequences in
the spatio-temporal series.

So, let yt,i , yt+1,i , . . . , yt+Hi
t −1,i denote a generic sequence of H

i
t missing values,

starting at time t for a given site i . Here and in the following we refer to a missing
sequence of length Hi

t , but note that this notation includes the special case of isolated
missing values when Hi

t = 1.
Let ŷt,i , ŷt+1,i , . . . , ŷt+Hi

t −1,i be the sequence of predicted values using the pro-
cedure of the previous section, based on the multivariate data y1, y2, . . . , yT . Since
the predictor yt+h,i is a function of the data and of the model with parameters θ =
(λ0,λ1,λ2) we write it as ŷt+h,i = gh(y1, y2, . . . , yT , θ̂), with h = 0, 1, . . . , Hi

t −1.
The aim is to construct a joint prediction region (JPR) that contains the missing

path of interest with probability 1 − α, at least asymptotically. Following Wolf et al.
(2015), define the family-wise error rate as

FWE = Pr
(
at least one of yt+h,i , h = 0, . . . , Hi

t − 1, is not contained in JPR
)
.

When the length of the missing sequence Hi
t is large, control of the FWE may be

deemed too strict as it would cause very large (and therefore uninformative) JPRs. In
such a case, we suggest to use the generalized family-wise error rate (k-FWE) defined
as

k-FWE = Pr
(
at least k of yt+h,i , h = 0, . . . , Hi

t − 1, are not contained in JPR
)
,

with k < Hi
t , providing the applied researcher with an alternative tool in order to relax

the control of the FWE.
In the next sections, we describe three different methods to derive the JPR for

a missing sequence, following the k-FWE criteria: the Maximum Predictive Root
method (MPR), the normal Bootstrap method (NB) and the Percentile method (PER).
Our main proposal is the MPR method, while the other two methods are included
for the sake of comparison, and used as much simpler alternative techniques that are
expected to work reasonably well in standard scenarios. However, it is worth pointing
out that all three methods have been proposed here for the first time, and all of them
have interesting peculiarities and good empirical performance, as will be shown in the
simulation study.
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3.1 Joint prediction regions with theMaximum Predictive Root method

Let yt+h,i − ŷt+h,i , h = 0, 1, . . . , Hi
t − 1, be the sequence of prediction errors. The

Maximum Predictive Root (MPR) method is based on the statistic Mk,Hi
t
defined as

Mk,Hi
t

= k-maxh=0,1,...,Hi
t −1

(∣∣yt+h,i − ŷt+h,i
∣∣) ,

where, as in Wolf et al. (2015), we define k-maxh=0,1,...,Hi
t −1(xh) as the function that

returns the k-th largest value of the set {x0, . . . , xHi
t −1}. Then a two-sided JPR for the

missing sequence, that controls the k-FWE in finite samples, is given by:

[
ŷt,i ± qi,t,k(1−α)

]
×

[
ŷt+1,i ± qi,t,k(1−α)

]
× · · · ×

[
ŷt+Hi

t −1,i ± qi,t,k(1−α)

]
(7)

where qi,t,k(1−α) is the 1−α quantile of the distribution of Mk,Hi
t
. The implication is that

the probability that the previous region will contain at least Hi
t − k + 1 elements of

the missing sequence is equal to (at least) 1 − α asymptotically.
Clearly, the JPR defined in Eq. (7) is not useful since the quantile qi,t,k(1−α) is unknown.

However, it can be estimated by using some resampling scheme. Given a boot-
strap pseudo series y∗

1, y
∗
2 . . . , y∗

T the bootstrap counterparts of the aforementioned
quantities can be defined as y∗

t+h,i − ŷ∗
t+h,i with ŷ∗

t+h,i = gh(y∗
1, y

∗
2, . . . , y

∗
T , θ̂

∗
).

Let q̂i,t,k(1−α) be the 1 − α quantile of the distribution of the statistic M∗
k,Hi

t
=

k-maxh=0,1,...,Hi
t −1(|y∗

t+h,i − ŷ∗
t+h,i |). A two-sided JPR for yt,i , yt+1,i , . . . , yt+Hi

t −1,i
that controls the k-FWE in finite samples is given by:

[
ŷt,i ± q̂i,t,k(1−α)

]
×

[
ŷt+1,i ± q̂i,t,k(1−α)

]
× · · · ×

[
ŷt+Hi

t −1,i ± q̂i,t,k(1−α)

]
. (8)

Details are given in Algorithm 2.
The JPRs derived by theMPRmethod have two important advantages: first, they are

proven to be asymptotically consistent under a realistic, mild high-level assumption.
Second, they enjoy superior finite-sample properties, as demonstrated via extensive
Monte Carlo simulations in Wolf et al. (2015). Algorithm 2 assumes a generic boot-
strap method to generate the bootstrap sample. In the following we use a resampling
procedure based on the residual bootstrap approach. The procedure can be imple-
mented as detailed in Algorithm 3. The theoretical properties of the residual bootstrap
scheme for time series can be derived following Choi et al. (2000).

3.2 Joint prediction regions by combining bootstrap resampling with a
generalised Bonferroni technique

In order to present some alternative approaches to derive the JPRs for the missing
sequences, in this section we also suggest to build them by stringing together marginal
confidence intervals derived by combining a bootstrap resampling technique with a
generalised version of the Bonferroni correction. Unlike the MPR method used in the

123



Bootstrap joint prediction regions in spatio-temporal data 2925

Algorithm 2 Pseudocode for joint predictive bands
Define k- maxh=0,1,...,Hi

t −1(xh) as the function that returns the k-th largest value of the set

{x0, . . . , xHi
t −1}.

Define α̃
(i,t)
k = max

{
a ∈ (0, 1) : Pr(AHi

t
a ≤ k) ≥ 1 − α

}
, with A

Hi
t

a ∼ Binom(Hi
t , a).

For a given site i , let ŷt,i , ŷt+1,i , . . . , ŷt+Hi
t −1,i be the sequence of predictions for the missing values,

where ŷt+h,i = gh(y1, y2, . . . , yT , θ̂) and θ̂ = (̂λ0, λ̂1, λ̂2) (see Algorithm 1).

Fix B ≥ 999, the number of bootstrap replicates, and k < Hi
t .

for b = 1, . . . , B do
Generate a bootstrap sample y∗,b

1 , y∗,b
2 , . . . , y∗,b

T using Algorithm 3.

Compute ŷ∗
t+h,i = gh(y∗,b

1 , y∗,b
2 , . . . , y∗,b

T , θ̂
∗,b

) for h = 0, 1, . . . , Hi
t − 1.

Compute S∗,b
h = y∗,b

t+h,i − ŷ∗,b
t+h,i for h = 0, 1, . . . , Hi

t − 1.

Let M∗,b
k,Hi

t
= k -maxh=0,1,...,Hi

t −1

(∣∣S∗,b
h

∣∣
)
.

end for
1) For the MPR joint prediction region (see Sect. 3.1):

- Compute the (1-α)-quantile of the empirical distribution of M∗,b
k,Hi

t
, b = 1, 2, . . . , B, as q̂i,t,k

(1−α)
.

- Construct the the Hi
t intervals, for h = 1, 2 . . . , Hi

t ,

[
ŷt+h,i − q̂i,t,k

(1−α)
, ŷt+h,i + q̂i,t,k

(1−α)

]
. (9)

2) For the NB joint prediction region (see Sect. 3.2):

- Compute the standard deviation sdBh of the empirical distribution of S∗,b
h , b = 1, 2, . . . , B, for

h = 1, . . . , Hi
t .

- Using the quantiles of the standard normal density, zγ , construct the Hi
t intervals, for h =

1, 2 . . . , Hi
t ,

[
ŷt+h,i + z

α̃
(i,t)
k /2

sdBh , ŷt+h,i + z
1−α̃

(i,t)
k /2

sdBh

]
. (10)

3) For the PER joint prediction region (see Sect. 3.2):

- Define the (γ )-quantile of the empirical distribution of S∗,b
h , b = 1, 2, . . . , B, for h = 1, . . . , Hi

t ,
as q̃h(γ )

- Construct the Hi
t intervals, for h = 1, 2 . . . , Hi

t ,

[
ŷt+h,i + q̃h (̃α

(i,t)
k /2), ŷt+h,i + q̃h(1 − α̃

(i,t)
k /2)

]
. (11)

Output: the JPRs in (9), (10) and (11).

previous section, the Bonferroni method is accused to be a rough method to derive
joint confidence regions, since it does not take into account the dependence among
the marginal confidence intervals and therefore may lead to more conservative joint
confidence regions. However, to take advantage of the simplicity of this approach, in
this paper we generalise the idea of the Bonferroni correction by adapting it to the
k-FWE criteria, so that we can derive more flexible joint confidence regions that are
substantially comparable with those based on the MPR method.
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Algorithm 3 Pseudocode for spatio-temporal residual bootstrap

By Algorithm 1, compute the residuals ê(s)t = y(s)
t − ŷ(s)

t , where y(s)
t is computed by Eq. (6) and ŷ(s)

t is
computed by Eq. (4). The value for the index s is taken from the last iteration of the imputation procedure
described in Algorithm 1.

Compute the centered residuals as ε̂
(s)
t = ê(s)t − ê(s)T .

Fix an integer value c ≥ 100.
Obtain the bootstrap error series ε∗

t , with t = −c + 1, . . . ,−1, 0, 1, . . . , T by drawing T + c samples

independently and uniformly, with replacement, from the centered residuals ε̂
(s)
t .

Set the starting value y∗−c = 0.
for t = −c + 1, . . . , 0, 1, 2, . . . , T do

Generate the bootstrap value y∗
t as

y∗
t =

(
Ip − D

(
λ̂
(s)
0

)
W

)−1 [(
D

(
λ̂
(s)
1

)
+ D

(
λ̂
(s)
2

)
W

)
y∗
t−1 + ε∗

t

]
.

end for
Output: the bootstrap sample y∗

1, . . . , y
∗
T .

So, if the problem is to guarantee that the JPR will contain at least Hi
t − k + 1

elements of themissing sequence (1 ≤ k < Hi
t ) with global probability equal to 1−α,

asymptotically, then suitable individual marginal sizes α̃
(i,t)
k must be set. Generalizing

the idea of the Bonferroni multiple scheme, we set this value equal to

α̃
(i,t)
k = max

{
a ∈ (0, 1) : Pr(AHi

t
a ≤ k) ≥ 1 − α

}
with A

Hi
t

a ∼ Binom(Hi
t , a).

Then, the individual confidence intervals with nominal confidence level (1− α̃
(i,t)
k )

are derived using some bootstrap method, for each h-th value of the missing sequence.
In particular, we use the normal bootstrap method (i.e. the normal approximation
with bootstrap estimated standard errors) and the percentile boostrap method. The
final JPR derived with these two bootstrap procedures are denoted with NB and PER,
respectively.

In particular, the percentile (PER) joint bootstrap prediction intervals are given
similarly as in (8) in which q̂i,t,k(α) is replaced by q̃h (̃α

(i,t)
k ) for h = 1, . . . , Hi

t , that is

the α̃
(i,t)
k -quantile of the bootstrap distribution of the statistic

S∗
h = y∗

t+h,i − ŷ∗
t+h,i .

Therefore, the JPR derived by the PER method is given by

[
ŷt+h,i + q̃h (̃α

(i,t)
k /2), ŷt+h,i + q̃h(1 − α̃

(i,t)
k /2)

]
.

Finally, the normal bootstrap (NB) joint prediction intervals are derived assuming
normality for the error process. For h = 1, . . . , Hi

t , we have

[
ŷt+h,i − z

1−α̃
(i,t)
k /2

sdB(S∗
h ), ŷt+h,i + z

1−α̃
(i,t)
k /2

sdB(S∗
h )

]
,
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where zγ is the γ -th percentile of the standard normal distribution and sdB(S∗
h ) is the

bootstrap estimated standard deviation for S∗
h .

The procedure for the NB and PER joint prediction regions can be implemented as
detailed in Algorithm 2.

4 AMonte Carlo study

To validate the empirical performance of the proposed JPR in Eq. (8), we have
implemented a Monte Carlo simulation study. The aim is to compare empirically
the coverages and the mean lengths of the regions obtained using the normal-based
method, the percentile and the Maximum Predictive Root method.

We have considered multivariate time series of dimension p = 30 and lengths T =
100, 500 and 1000. The weight matrixW has been randomly generated as a full rank
symmetric matrix and has been row-normalized. The parameters of model (1) have
been randomly generated in the interval [−0.9, 0.9]. The error component εt has been
generated from two different multivariate distributions. The first one is a multivariate
normal distribution, with mean vector zero and diagonal variance-covariance matrix,
with heteroscedastic variances (σ 2

1 , . . . , σ 2
p). In particular, the standard deviations

(σ1, . . . , σp) have been generated randomly from a Uniform distributionU (0.5; 1.5).
The second one is the multivariate distribution in which the marginal distributions are
pairwise independent student-t distribution with 6 degrees of freedom. Note that, in
the case of normal distributed error term, the consistency of the normal based bootstrap
confidence intervals is guaranteed.

In the simulation experiment both isolated missing values and missing sequences
have been considered. One missing sequences with length H has been placed at loca-
tion 2 and for it three different time horizons (missing sequence length) have been
considered H = 5, 10 and 20. The number of the isolated missing values has been
fixed at 10 and they have been randomly generated at other locations.

In the experiment, for all the three methods, we have considered the k−JPR that is
the estimated confidence region which contains at least H − k + 1 elements. We have
fixed k = 1, 2 and 3.

All bootstrap estimates have been computed by using B = 999 replicates and
N = 1000 Monte Carlo runs.

In Table 1 the mean lengths of the joint k−JPRs (k = 1, 2, 3) by means of the
normal-based (NB) method, the percentile (PER) and the Maximum Predictive Root
(MPR) methods are listed for all the considered values of T and H and for both the
confidence levels 1−α = 0.95 and 0.90. In this case the distribution of the error term
is the standard Gaussian.

The three methods present similar performance in terms of mean length. As
expected, the amplitude of the regions increases as H increases. The results of Table 1
are confirmed from Table 2, in which the empirical coverages are shown for the same
choices of Table 1. In order to evaluate if the coverages are significantly different with
respect to the nominal level, we have calculated the asymptotic acceptance confidence

interval at 99% . It is defined as p0 ± 2.33
√

p0(1−p0)
N where p0 is fixed to the nomi-
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Table 1 Mean lengths of the k−JPRs (k = 1, 2, 3) with the normal-based (NB) method, the percentile
(PER) and the Maximum Predictive Root (MPR) method in the case of normal distributed error term

1 − α = 0.95 1 − α = 0.90

H=5 H=10 H=20 H=5 H=10 H=20

T = 100

k = 1 NB 3.80 4.00 4.08 3.45 3.70 3.77

PER 3.77 3.90 3.95 3.47 3.73 3.82

MPR 3.88 4.15 4.25 3.50 3.84 4.08

k = 2 NB 2.65 3.04 3.22 2.37 2.79 3.04

PER 2.68 3.11 3.42 2.39 2.86 3.22

MPR 2.69 3.14 3.48 2.40 2.88 3.25

k = 3 NB 1.96 2.48 2.78 1.73 2.29 2.61

PER 1.97 2.54 2.94 1.73 2.33 2.75

MPR 1.98 2.55 2.97 1.73 2.34 2.77

T = 500

k = 1 NB 3.90 4.19 4.48 3.54 3.88 4.15

PER 3.86 4.13 4.36 3.52 3.85 4.11

MPR 3.95 4.30 4.58 3.55 3.93 4.28

k = 2 NB 2.71 3.18 3.54 2.42 2.93 3.34

PER 2.71 3.19 3.56 2.43 2.93 3.36

MPR 2.72 3.20 3.61 2.44 2.95 3.38

k = 3 NB 2.01 2.60 3.05 1.77 2.40 2.87

PER 2.01 2.61 3.08 1.77 2.40 2.89

MPR 2.01 2.62 3.10 1.78 2.41 2.91

T = 1000

k = 1 NB 3.91 4.21 4.52 3.55 3.89 4.19

PER 3.87 4.13 4.39 3.53 3.86 4.12

MPR 3.96 4.29 4.61 3.56 3.93 4.27

k = 2 NB 2.72 3.19 3.57 2.44 2.94 3.37

PER 2.71 3.18 3.56 2.43 2.93 3.37

MPR 2.72 3.20 3.62 2.44 2.95 3.39

k = 3 NB 2.02 2.61 3.08 1.78 2.41 2.90

PER 2.01 2.61 3.08 1.78 2.40 2.90

MPR 2.02 2.62 3.11 1.78 2.41 2.92

H denotes the length of the missing sequence and T the time series length. The confidence levels are fixed
to 0.95 and 0.90

nal level and N is the number of Monte Carlo runs. Observed coverages inside such
interval can be considered not different from the fixed nominal level. In Table 2 these
values are reported in bold.

The threemethods present similar empirical coverages, byvarying H andbyvarying
α. When H = 10, the NB and MPR method have similar performance and generally
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Table 2 Empirical coverages of the k−JPR (k = 1, 2, 3) with the normal-based (NB)method, the percentile
(PER) and the Maximum Predictive Root (MPR) method in the case of normal distributed error term

1 − α = 0.95 1 − α = 0.90

H=5 H=10 H=20 H=5 H=10 H=20

T = 100

k = 1 NB 0.910 0.871 0.77 0.849 0.799 0.667

PER 0.875 0.816 0.674 0.833 0.764 0.625

MPR 0.911 0.871 0.798 0.851 0.817 0.746

k = 2 NB 0.905 0.889 0.760 0.837 0.803 0.658

PER 0.909 0.892 0.810 0.837 0.817 0.741

MPR 0.916 0.910 0.846 0.848 0.841 0.764

k = 3 NP 0.912 0.873 0.745 0.862 0.788 0.637

PER 0.910 0.883 0.804 0.855 0.796 0.711

MPR 0.915 0.884 0.830 0.856 0.814 0.739

T = 500

k = 1 NB 0.942 0.907 0.894 0.874 0.852 0.816

PER 0.924 0.883 0.844 0.873 0.814 0.771

MPR 0.940 0.915 0.894 0.883 0.852 0.825

k = 2 NB 0.930 0.922 0.881 0.875 0.842 0.82

PER 0.926 0.914 0.886 0.873 0.842 0.818

MPR 0.930 0.927 0.907 0.871 0.848 0.842

k = 3 NB 0.927 0.928 0.893 0.869 0.855 0.827

PER 0.928 0.927 0.902 0.859 0.859 0.829

MPR 0.924 0.936 0.912 0.865 0.857 0.847

T = 1000

k = 1 NB 0.943 0.930 0.914 0.905 0.868 0.855

PER 0.933 0.898 0.868 0.893 0.847 0.813

MPR 0.947 0.934 0.920 0.905 0.874 0.875

k = 2 NB 0.945 0.927 0.920 0.889 0.862 0.858

PER 0.942 0.918 0.916 0.892 0.856 0.861

MPR 0.947 0.926 0.928 0.889 0.865 0.859

k = 3 NB 0.950 0.925 0.928 0.890 0.861 0.859

PER 0.947 0.924 0.916 0.896 0.867 0.856

MPR 0.951 0.930 0.929 0.895 0.870 0.868

In parenthesis the MAD; H denotes the length of the missing sequence and T the time series length. The
confidence levels are fixed to 0.95 and 0.90. In bold the observed coverages inside the asymptotic acceptance
interval at 99%

better than the PER method, for all the values of k and for both the considered confi-
dence levels.

By increasing H , the coverages are worse and many of them are outside the accep-
tance region, with levels that are far from the nominal coverage. However, the MPR
method presents better performances with respect to the other two methods. When k
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Fig. 1 Empirical coverages of the joint k−JPRs (k = 1, 2, 3) with the NB (blue dashed line), PER (black
dashed line) and MPR (green dashed line) methods in the case of normal distributed error term and in
the presence of 15 missing values. The first 5 values, on the left of the vertical line, represent the missing
sequence, while the remaining values are isolated missings. The nominal level is fixed to 0.95 (red line).
The empirical coverages for the univariate NB intervals are blue “+”; the univariate PER are black “o” and
the univariate MPR are green “Δ” (colour figure online)

is fixed, the lengths of the regions obtained by the three methods seem to be basically
comparable.

Figure 1 refers to the case H = 5 (the total number of missing values is 15). The
three time series lengths T = 100, 500 and T = 1000 are considered (left, center and
right respectively) and k = 1, 2 and 3 (from the top to the bottom). All the considered
methods are consistent, since by increasing T and fixing k, the coverage level becomes
closer and closer to the nominal one 0.95. The NB and theMPRmethods seem to have
similar performance. For k = 1 the PERmethod has worse performances with respect
to the others since the coverage is lower for all values of T . For k = 2 and k = 3 also
the PERmethod seems equivalent to the others. By looking at the univariate confidence
intervals, the observed coverage for all the three methods is more or less similar. They
reach the nominal level for the isolated missing values, already for T = 100 and
k = 1.

Figure 2 refers to the case H = 10 (the total number of missing values is 20). The
results seem to be quite similar to Fig. 1, showing a better performance of the MPR
method with respect to the others, expecially for k = 2 and T = 100. Also here, the
PER method presents worse performances, which however improve for k = 2 and
k = 3 and become comparable with the other methods. For the univariate coverages,
the estimated intervals for the isolated missing values present a coverage close to the
nominal one. For the sequence of missing values, empirical coverages of the univariate
intervals must not be compared with the nominal coverage 1−α = 0.95, which refers
to the nominal global coverage of the whole JPR. Therefore, univariate coverages of
the marginal intervals for the missing sequence must necessarily be greater than 1−α,
but can be significantly reduced when k > 1.

Figure 3 refers to the case H = 20 (the total number of missing values is 30). In
this last case the MPR method outperforms the other ones.
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Fig. 2 Empirical coverages of the joint k−JPRs (k = 1, 2, 3) with the NB (blue dashed line), PER (black
dashed line) and MPR (green dashed line) methods in the case of normal distributed error term and in the
presence of 20 missing values. The first 10 values, on the left of the vertical line, represent the missing
sequence, while the remaining values are isolated missing values. The nominal level is fixed to 0.95 (red
line). The empirical coverages for the univariate NB intervals are blue “+”; the univariate PER are black
“o” and the univariate MPR are green “Δ” (colour figure online)
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Fig. 3 Empirical coverages of the joint k−JPRs (k = 1, 2, 3) with the NB (blue dashed line), PER (black
dashed line) and MPR (green dashed line) methods in the case of normal distributed error term and in the
presence of 30 missing values. The first 20 values, on the left of the vertical line, represent the missing
sequence, while the remaining values are isolated missing values. The nominal level is fixed to 0.95 (red
line). The empirical coverages for the univariate NB intervals are blue “+”; the univariate PER are black
“o” and the univariate MPR are green “Δ” (colour figure online)

In Table 3 the mean lengths of the joint k−JPRs (k = 1, 2, 3) when the error term
is t(6)-distributed are shown for all the considered values of T and H . Also in this
case, the three methods present similar behaviours.

In Table 4 the empirical coverages are reported for the same values of Table 2
when the error term is t-distributed. In general, the NB and PER methods present
worse performances, especially for longer missing sequences. Moreover, the PER
method seems to suffermore instability for the nominal coverage correction, especially

123



2932 M. L. Parrella et al.

Table 3 Mean lengths of the k−JPRs (k = 1, 2, 3) with the normal-based (NB) method, the percentile
(PER) and the Maximum Predictive Root (MPR) method in the case of t(6)-distributed error term

1 − α = 0.95 1 − α = 0.90

H=5 H=10 H=20 H=5 H=10 H=20

T = 100

k = 1 NB 5.97 6.28 6.39 5.42 5.82 5.92

PER 6.88 7.15 7.12 6.04 6.80 6.91

MPR 7.10 8.06 8.05 5.99 6.91 7.79

k = 2 NB 4.15 4.77 5.05 3.72 4.39 4.76

PER 4.155 5.07 5.92 3.63 4.53 5.33

MPR 4.17 5.09 5.93 3.64 4.55 5.33

k = 3 NB 3.08 3.90 4.36 2.72 3.59 4.10

PER 2.91 3.90 4.69 2.52 3.52 4.31

MPR 2.92 3.92 4.72 2.54 3.53 4.33

T = 500

k = 1 NB 6.16 6.63 7.09 5.59 6.13 6.57

PER 7.07 8.01 8.95 6.10 7.07 7.99

MPR 7.27 8.46 9.59 6.15 7.23 8.41

k = 2 NB 4.28 5.03 5.60 3.84 4.63 5.28

PER 4.22 5.26 6.21 3.68 4.69 5.69

MPR 4.24 5.29 6.34 3.69 4.72 5.73

k = 3 NB 3.17 4.11 4.84 2.80 3.79 4.55

PER 2.94 4.02 5.02 2.55 3.63 4.61

MPR 2.95 4.04 5.06 2.56 3.64 4.64

T = 1000

k = 1 NB 6.18 6.66 7.16 5.61 6.17 6.63

PER 7.07 7.99 9.08 6.09 7.06 7.97

MPR 7.28 8.48 9.78 6.16 7.24 8.42

k = 2 NB 4.30 5.06 5.66 3.85 4.65 5.34

PER 4.23 5.27 6.22 3.69 4.70 5.71

MPR 4.25 5.30 6.35 3.70 4.72 5.75

k = 3 NB 3.19 4.14 4.88 2.81 3.81 4.59

PER 2.94 4.03 5.03 2.55 3.64 4.64

MPR 2.95 4.05 5.09 2.56 3.65 4.67

H denotes the length of the missing sequence and T the time series length. The confidence levels are fixed
to 0.95 and 0.90

when moving deep into the tails. Apparently, a much greater number of Monte Carlo
replicates are needed for an accurate estimate of the bootstrap percentiles used for the
construction of the JPRs.

Figure 4 refers to the case H = 5 (the total number of missing values is 15). As
in the case of normal errors, all the considered methods are consistent and again the
MPR method outperforms all the others. However, for k = 1 and for all values of T ,
the NB method has worse performance, while for k = 2 and k = 3 the three methods

123



Bootstrap joint prediction regions in spatio-temporal data 2933

Table 4 Empirical coverages of the k−JPRs (k = 1, 2, 3)with the normal-based (NB)method, the percentile
(PER) and the Maximum Predictive Root (MPR) method in the case of t(6)-distributed error term

1 − α = 0.95 1 − α = 0.90

H=5 H=10 H=20 H=5 H=10 H=20

T = 100

k = 1 NB 0.853 0.773 0.618 0.803 0.718 0.513

PER 0.871 0.792 0.633 0.822 0.763 0.588

MPR 0.908 0.873 0.776 0.836 0.81 0.744

k = 2 NB 0.929 0.858 0.688 0.884 0.785 0.606

PER 0.926 0.873 0.783 0.867 0.792 0.695

MPR 0.933 0.885 0.833 0.869 0.822 0.732

k = 3 NB 0.938 0.897 0.740 0.900 0.840 0.636

PER 0.924 0.898 0.793 0.861 0.812 0.7

MPR 0.928 0.894 0.825 0.865 0.822 0.727

T = 500

k = 1 NB 0.894 0.846 0.780 0.848 0.793 0.711

PER 0.923 0.906 0.871 0.874 0.848 0.819

MPR 0.944 0.927 0.927 0.892 0.884 0.880

k = 2 NB 0.942 0.924 0.872 0.902 0.876 0.819

PER 0.943 0.935 0.920 0.883 0.870 0.864

MPR 0.938 0.946 0.931 0.892 0.888 0.882

k = 3 NB 0.956 0.944 0.909 0.920 0.904 0.867

PER 0.931 0.929 0.922 0.867 0.877 0.867

MPR 0.930 0.932 0.933 0.878 0.878 0.884

T = 1000

k = 1 NB 0.898 0.865 0.798 0.850 0.815 0.718

PER 0.939 0.915 0.882 0.891 0.879 0.824

MPR 0.954 0.953 0.946 0.889 0.904 0.893

k = 2 NB 0.959 0.927 0.862 0.920 0.884 0.822

PER 0.956 0.940 0.919 0.900 0.883 0.871

MPR 0.955 0.941 0.951 0.907 0.889 0.887

k = 3 NB 0.965 0.949 0.912 0.940 0.920 0.867

PER 0.944 0.933 0.930 0.895 0.882 0.866

MPR 0.950 0.942 0.942 0.900 0.889 0.873

H denotes the length of the missing sequence and T the time series length. The confidence levels are fixed
to 0.95 and 0.90. In bold the observed coverages inside the asymptotic acceptance interval at 99%

seem to be equivalent. By looking at the univariate confidence intervals, the observed
coverages for all the three methods are quite similar, both for isolated and sequence
of missing values. In particular, in all the cases the coverages for the isolated missing
values are close to 0.95 for all T and for all k.

Figure 5 refers to the case H = 10 (the total number of missing values is 20) with
t(6)−student errors. The results seem to be quite similar to Fig. 4, showing even more
clearly a better performance of the MPR method with respect to the others, expecially
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Fig. 4 Empirical coverages of the k−JPRs (k = 1, 2, 3) with the NB (blue dashed line), PER (black dashed
line) and MPR (green dashed line) methods in the case of t(6)−distributed error term and in the presence of
15 missing values. The first 5 values, on the left of the vertical line, represent the missing sequence, while
the remaining values are isolated missing values. The nominal level is fixed to 0.95 (red line). The empirical
coverages for the univariate NB intervals are blue “+”; the univariate PER are black “o” and the univariate
MPR are green “Δ” (colour figure online)
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Fig. 5 Empirical coverages of the k−JPRs (k = 1, 2, 3) with the NB (blue dashed line), PER (black dashed
line) and MPR (green dashed line) methods in the case of t(6)−distributed error term and in the presence
of 20 missing values. The first 10 values, on the left of the vertical line, represent the missing sequence,
while the remaining values are isolated missing. The nominal level is fixed to 0.95 (red line). The empirical
coverages for the univariate NB intervals are blue “+”; the univariate PER are black “o” and the univariate
MPR are green “Δ” (colour figure online)

for k = 1 and T = 100, 500. Also here, the NB method presents worse performances
for k = 1, which however improve for k = 2 and k = 3. Again, for the univariate
case, the estimated intervals for the isolated missing values present a coverage close
to the nominal one.

Figure 6 refers to H = 20 (the total number of missing values is 30). In this last case
the MPR method sharply outperforms the other ones mainly for the time series length
T = 100 and 500. For the univariate case, as in the previous analysis, the estimated
intervals for the isolated missing values present a coverage close to the nominal one.
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Fig. 6 Empirical coverages of the k−JPRs (k = 1, 2, 3) with the NB (blue dashed line), PER (black dashed
line) and MPR (green dashed line) methods in the case of t(6)−distributed error term and in the presence
of 30 missing values. The first 20 values, on the left of the vertical line, represent the missing sequence,
while the remaining values are isolated missing values. The nominal level is fixed to 0.95 (red line). The
empirical coverages for the univariate NB intervals are blue “+”; the univariate PER are black “o” and the
univariate MPR are green “Δ” (colour figure online)

5 An application to real data

In order to evaluate how the proposed procedure works on real data, we consider daily
PM10 data (in μg/m3) from 1 January 2015 to 19 October 2016 (658 days) at 24
sites in Piemonte (see http://www.arpa.piemonte.gov.it). The particulate matter PM10
emissions are regulated by the EU which has set two limit values for the protection
of human health: the daily mean value may not exceed 50µg/m3 more than 35 times
in a year and the annual mean value may not exceed 40μg/m3. In the considered
dataset, isolated missing values as well as missing sequences are present due to the
defaults in the monitoring stations. Their point reconstruction has been addressed in
Parrella et al. (2019) by using model (1). The spatial matrix W has been set as the
normalized geographical distances matrix of yt , i.e. its entries are wi j/

∑p
k=1 wk j ,

where wi j = 1/(1 + di j ), di j is the geographical distance between the i-th and j-th
stations for i 
= j , and wi i = 0 for i = 1, . . . , p.

Here, for sake of illustration, we analyse the data from Novara-Verdi station which
presents the 14.74%ofmissing data. In particular there is one isolatedmissing value on
12 January 2015 and then a sequence of missing values 42 observations long, starting
from 11 March 2015. Figures 7 and 8 report the observed time series, along with the
imputed values and the k−JPRs (k = 1, 2, 3) for the missing values obtained with
the MPR and the NB methods respectively, in the time interval up to 30/04/2015. The
confidence level is fixed at 90% and the red horizontal line is the EU limit 50µg/m3 .

It is evident that, in both the cases, the reconstruction procedure for the missing
values provides values that are quite often under theEU threshold.However, by looking
at k−JPRs obtained with the MPRmethod in 7, their upper bounds is above 50 almost
everywhere expecially for k = 1. Also for the isolated missing value, the univariate
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Fig. 7 PM10 data from Novara-Verdi station in the interval 01/01/2015–30/04/2015 (black line). The gray
circles represent the imputed values for the missing values. The coloured lines are the k−JPRs, for k = 1
(green), 2 (blue) and 3 (magenta), calculated by using MPR method. Red horizontal line is the EU limit,
i.e. 50µg/m3 (colour figure online)
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Fig. 8 PM10 data from Novara-Verdi station in the interval 01/01/2015–30/04/2015 (black line). The gray
circles represent the imputed values for the missing values. The coloured lines are the k−JPRs, for k = 1
(green), 2 (blue) and 3 (magenta), calculated by using NB method. Red horizontal line is the EU limit, i.e.
50µg/m3 (colour figure online)

confidence interval includes the EU limit. Moreover, as expected, by increasing k, the
lengths of the k−JPRs decrease.

When using the NB method (Fig. 8), by varying k, lengths are closer to each other,
with respect to MPR case.

6 Concluding remarks

In this paper we deal with the construction of joint prediction intervals for missing
data patterns in the context of spatio-temporal data. We have proposed a bootstrap
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resampling scheme able to provide joint prediction regions that approximately contain
missing paths of a time series of interest, with probability 1−α. The approach is based
on maximum predictive roots proposed in Pan (2016) and Wolf et al. (2015). We have
also considered JPRs that only contain all elements of missing paths up to a small
number k − 1 of them with probability 1−α, where the choice of k can be made with
respect to the problem at hand.

A simulation experiment has been performed to validate the empirical performance
of the proposed method based on the maximum of the predictive root statistic and to
compare it with two simpler alternatives. In particular we have consideredmultivariate
time series generated by a SDPDmodel (seeDou et al. 2016)with p = 30 and different
sample sizes T = 100, 500 and 1000 and two distributions for the error terms, normal
and student-t. In the experiment we have analysed the mean lengths of the obtained
JPRs along with their empirical coverages both in the cases of isolated missing values
and for missing sequences of different lengths. The simulation experiment has shown
that generally the procedure based on the maximum predictive root delivers better and
more stable performances for non-gaussian error terms and longer missing sequences,
with similar mean lengths for the interpolation regions.

The application on real data shows that the reconstruction procedure for themissing
values provides values that are in most of the cases under the EU threshold. However,
the k−JPRsobtainedwith theMPRmethodproduce intervalswhichquite often contain
the EU limit of 50µg/m3, showing the importance of the additional information
delivered by prediction intervals with respect to single predictions.
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