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Abstract

Sparse convex clustering is to group observations and conduct variable selection simul-
taneously in the framework of convex clustering. Although a weighted L; norm
is usually employed for the regularization term in sparse convex clustering, its use
increases the dependence on the data and reduces the estimation accuracy if the sam-
ple size is not sufficient. To tackle these problems, this paper proposes a Bayesian
sparse convex clustering method based on the ideas of Bayesian lasso and global-
local shrinkage priors. We introduce Gibbs sampling algorithms for our method using
scale mixtures of normal distributions. The effectiveness of the proposed methods is
shown in simulation studies and a real data analysis.

Keywords Dirichlet-Laplace distribution - Hierarchical Bayesian model - Horseshoe
distribution - Normal-gamma distribution - Normal-exponential-gamma
distribution - Markov chain Monte Carlo

1 Introduction

Cluster analysis is an unsupervised learning method aimed at assigning observations
to several clusters so that similar individuals belong to the same group, and is widely
used in various research fields as biology and genomics, as well as many other fields
of science. Until now, many clustering methods have been proposed: hierarchical
clustering, k-means clustering (Hartigan and Wong 1979), Gaussian mixture model

B Kaito Shimamura
kaito.shimamura@ai.lab.uec.ac.jp

Shuichi Kawano

skawano @ai.lab.uec.ac.jp

NTT Advanced Technology Corporation, Muza Kawasaki Central Tower, 1310 Omiya-cho,
Saiwai-ku, Kawasaki-shi, Kanagawa 212-0014, Japan

Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1
Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-021-01101-7&domain=pdf
http://orcid.org/0000-0003-1733-419X
https://orcid.org/0000-0002-0804-0141

2672 K. Shimamura, S. Kawano

(McLachlan et al. 2019), Bayesian nonparametric clustering (Friihwirth-Schnatter and
Malsiner-Walli 2019; Wade and Ghahramani 2018), and Bayesian clustering based on
the uncertainty (Chandra et al. 2020; Rigon et al. 2020). However, in general, these
clustering methods are instable due to non-convex optimization.

Convex clustering proposed by Hocking et al. (2011) searches for the centers of all
clusters simultaneously with allocating individuals to the clusters. Convex relaxation
ensures that it achieves a unique global optimum regardless of the initial values.
Estimates can be obtained by solving a regularization problem, which is similar to
sparse regularization in regression analysis. However, convex clustering does not work
well if the data contain a large amount of irrelevant features.

Sparse regularization is used to exclude irrelevant information. Wang et al. (2018)
proposed sparse convex clustering to perform convex clustering and variable selection
simultaneously. Sparse convex clustering estimates sparse models by using the L
norm in addition to the regularization term of the convex clustering. Also, Wang et al.
(2018) used the L1 norm for the convex clustering penalties, where the penalty was
assumed to be different weights according to individual and feature. However, it was
pointed out by Griffin and Brown (2011) that the penalty used in sparse convex clus-
tering depends on the data, which may lead to model estimation accuracy degradation
when the sample size is small.

Our proposed methods overcome the problem that penalties in sparse convex clus-
tering depend heavily on weights. In particular, with these methods, even when the
sample size is small, estimation is possible without depending on the weights. To
propose a method, we first introduce a Bayesian formulation of sparse convex clus-
tering, and then propose a Bayesian sparse convex clustering based on a global-local
(GL) prior distribution. As the GL prior, we consider four types of distributions: a
normal-exponential-gamma distribution (Griffin and Brown 2005), a normal-gamma
distribution (Brown and Griffin 2010), a horseshoe distribution (Carvalho et al. 2010),
and a Dirichlet-Laplace distribution (Bhattacharya et al. 2015). The Gibbs sampling
algorithm for our proposed models is derived by using scale mixtures of normal dis-
tributions (Andrews and Mallows 1974). We note that although many other GL prior
distributions have been proposed, we use representative prior distributions among
them. Recently, many researchers have discussed their relationships: Bhadra et al.
(2019), Cadonna et al. (2020), Van Erp et al. (2019), Bhadra et al. (2017), and Piiro-
nen and Vehtari (2017).

The rest of this paper is organized as follows. Section 2 focuses on the sparse
convex clustering method. In Sect. 3, we propose a Bayesian formulation of sparse
convex clustering. A Bayesian convex clustering method with GL shrinkage prior
distributions is proposed in Sect. 4. The performances of the proposed methods are
compared with those of the existing method by conducting a Monte Carlo simulation
in Sect. 5 and a real data analysis in Sect. 6. Concluding remarks are given in Sect. 7.

2 Sparse convex clustering

In this section, we describe convex clustering. This is a convex relaxation of such
clustering methods as k-means clustering and hierarchical clustering. The convexity
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overcomes the instability of conventional clustering methods. In addition, we describe
sparse convex clustering which simultaneously clusters observations and performs
variable selection.

Let X € R"7” be a data matrix with n observations and p variables, and
x; i = 1,2,...,n) be the i-th row of X. Convex clustering for these n observa-
tions is formulated as the following minimization problem using an n x p feature
matrix A = (ay, ..., a,)"

1 g 2
min =3l —ails +y Y lai, —all,, (1

i=1 i1<ia

where a; is a p-dimensional vector corresponding to x;, | - || 4 is the L, norm of a vector,
and y (> 0) is a regularization parameter. If a;, = a;, for the estimated value @;, then
the i1-th individual and i;-th individual belong to the same cluster. The y controls the
number rows of A = (@i, ...,a,)7T that are the same, which determines the estimated
number of clusters. Both k-means clustering and hierarchical clustering are equivalent
to considering the Lo norm for the second term in the problem (1), which becomes
a non-convex optimization problem (Hocking et al. 2011). Convex clustering can be
viewed as a convex relaxation of k-means clustering and hierarchical clustering. This
convex relaxation guarantees that a unique global minimization is achieved.

Hocking et al. (2011) proposed using a cluster path to visualize the steps of clus-
tering. A cluster path can be regarded as a continuous regularization path (Efron et al.
2004) of the optimal solution formed by changing y. Figure 1 shows the cluster path
of two interlocking half-moons described in Sect. 5.1. A cluster path shows the rela-
tionship between values of the regularization parameter and estimates of the feature
vectors. The estimates exist near the corresponding observations when the value of the
regularization parameter is small, while the estimates concentrate on one point when
the value is large. The characteristics of the data can be considered from the grouping
order and positional relationship of the estimates.

In conventional convex clustering, when irrelevant information is included in the
data, the accuracy of estimating clusters tends to be low. Sparse convex clustering
(Wang et al. 2018), on the other hand, is an effective method for such data, as irrelevant
information can be eliminated using sparse estimation.

Sparse convex clustering considers the following optimization problem:

1 n V4
; g l12 . . . .
rrgnZZuxl ailz+n Y. wipla; a,2||q+yz_2u,||a.,||1, )
i=1 (i1,i0)e€ j=1

where y; (= 0) and y» (> 0) are regularization parameters, w;, ;, (= 0) and
uj (= 0) are weights, g € {1,2,00}, & = {(i1,i2); wj i, # 0,11 < iz}, and
a; = (aj,...,a j)T is a column vector of the feature matrix A. The third term
imposes a penalty similar to group lasso (Yuan and Lin 2006) and has the effect that
la.jlli = 0. When |la.;|l; = 0, the j-th column of X is removed from the model,
which is variable selection. y; and w;, ;, adjust the cluster size, whereas y, and u ;
adjust the number of features. The weight w;, ;, plays an important role in imposing a
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Fig. 1 A cluster path for two interlocking half-moons. The colored squares are 20 observations and the
circles are convex clustering estimates for different regularization parameter values. Among the estimates
of the same observation, the lines connect the estimates whose values of the regularization parameter are
close

penalty that is adaptive to the features. Wang et al. (2018) used the following weight
parameter:

win iy = exp = v = xu[3).

where (" i, equals 1 if the observation x;, is included among the m nearest neighbors
of the observatlon X;,, and is O otherwise. This choice of weights works well for a
wide range of ¢ when m is small. In our numerical studies, m is fixed at 5 and ¢ is
fixed at 0.5, as in Wang et al. (2018).

Similar to the adaptive lasso (Zou 2006) in a regression problem, the penalty for
sparse convex clustering can be adjusted flexibly by using weight parameters. However,
it was shown by Griffin and Brown (2011) that such penalties are strongly dependent
on the data. In particular, the accuracy of model estimation may be low due to the data,
such as because the number of samples is small.

We remark that Yau and Holmes (2011) and Malsiner-Walli et al. (2016) have pro-
posed Gaussian mixture models for clustering and variable selection simultaneously.
While sparse convex clustering is convex optimization, these methods are non-convex
optimization.
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3 Bayesian formulation of sparse convex clustering

By extending sparse convex clustering to a Bayesian formulation, we may use the
entire posterior distribution to provide a probabilistic measure of uncertainty.

3.1 Bayesian sparse convex clustering

In this section, we reformulate sparse convex clustering as a Bayesian approach. Sim-

ilar to Bayesian lasso (Park and Casella 2008), which extends lasso to a Bayesian

formulation, we regard regularized maximum likelihood estimates as MAP estimates.
We consider the following model:

X =a-+e,

where ¢ is a p-dimensional error vector distributed as N,(0,, 0%1,), a is a feature
vector, and o> (> 0) is a variance parameter. Then, the likelihood function is given
by

202

~ g2
S(XI|A, 62) = H(2ﬂ02)_p/2exp{_M} )

i=1

Next, we specify the prior distribution of feature matrix A as

_ Al
m(Alo?) oc (03 PR exp 1 == B wiy e, — ala
(i1,i)e€

%) P
xexpt——> ujlla;l . 3)
j=1

where A1 (> 0), w;, i, (> 0), A2 (> 0), u; (> 0) are hyperparameters, £ =
{(i1,i2) : 1 < i1 < ip < n}, and #& is the number of elements in £. Note that
A1 and X, correspond to y1 and y» in (2), respectively. This prior distribution is an
extension of Bayesian group lasso in linear regression models (Xu and Ghosh 2015).
The estimate of a specific sparse convex clustering corresponds to the MAP estimate
in the following joint posterior distribution:

(A, 021X) x f(X|A, 02)r(Alo®)r(6?)

_ 1
- (Uz) (np+#E+p)/2 exp {_2(;_2”xi . ai”%}

A
Xexpy—— Z Wiy i, lai, — ai 2
(i1,in)e€
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Ao P
xexp == ujllajlaf7(@?), @
j=1

where 7 (02) is the non-informative scale-invariant prior m(0?) « 1 /o2 or inverse-
gamma prior 7(0?) = IG(v9/2,70/2). An inverse-gamma probability density
function is given by

Vv

where v (> 0) is a shape parameter, n (> 0) is a scale parameter, and I"(-) is the
gamma function. Note that this prior distribution (4) has unimodality: see “Appendix
A”.

We obtain estimates of each parameter by applying the MCMC algorithm with
Gibbs sampling. Therefore, it is necessary to derive the full conditional distribution for
each parameter. Because it is difficult to derive full conditional distributions from (4),
we derive a hierarchical representation of the prior distribution. From this relationship,
we assume the following priors:

Y@ — aiyg)? }

1
2 ~2y 2
n(A|{tl-l,,-2},{rj},o ) [0 l_[ —zexp{— 3572
(1i2)e€ /02T iy
2
X ﬁ ! exp {——27:1 i }
222 ’
i /02;;; 20 T;

2.2 2,2
2 klwil,iz Alwil,iz 2
T\t (04 5 exp iy — To o,

i1ip

2.2 2.2
T (?2) e Azuj exp —Azuj 72
J 2 2 J |-

These priors enable us to carry out Bayesian estimation using Gibbs sampling. The
details of the hierarchical representation of the prior distribution (4) and the sampling
procedure are described in “Appendix B.1”.

3.2 MAP estimate by weighted posterior means

In Bayesian sparse modeling, an unweighted posterior mean is often used as a substitute
for MAP estimates, but the accuracy is not high and sometimes it is far from the MAP
estimates. As a result, we introduce the weighted posterior mean in this section.

We define a vector @ containing all the parameters as follows:

0=(01,...,02,42)
~ 2
:(alv"'7anarl5"'arnyraa)7
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where t; = (71, ..., Tip) and T = (7}, ..., T). For example, 0 = a and 0, =
71. In addition, we assume the parameter vector corresponding to the b-th MCMC

sample is 00 — (05}’), R 0;}:,)+2), where the range of b is from 1 to B.

We introduce weights corresponding to the b-th MCMC sample as follows:

~ A (b) A (b)
Wby = L(X|0, w8, ),

where L(X|0) is the likelihood function, 7 () is the prior,
~(b) ~ ~ ~ ~
0, ={91,---,01—1,0;b),91+1,---,02n+2},

and 0 p 1s an estimate of . It can be seen that this weight corresponds to the value of
the posterior probability according to Bayes’ theorem. This weight was also used in
the sparsified algorithm proposed by Shimamura et al. (2019).

Using this weight, we obtain the posterior average as follows:

B
A b
=" we,nd)”.
b=1

where w, p) = W,.b)/ ij:l W, 1y Therefore, we adopt 0, as an estimate of 6.
The performance of this estimate is examined by numerical studies in Sect. 5.1.

4 Bayesian sparse convex clustering via global-local (GL) shrinkage
priors

Polson and Scott (2010) proposed a GL shrinkage prior distribution. Generally speak-
ing, when we use the Laplace prior distribution, it is necessary to pay attention to how
to handle contraction for irrelevant parameters and robustness against relevant param-
eters. The important features of the GL shrinkage prior distribution are that it has a
peak at the origin and heavy tails. These features make it possible to handle shrinkage
of all variables, and the individual variables shrinkage estimated to be zero. There-
fore, irrelevant parameters are sparsified, and relevant ones are robustly estimated.
The penalty for sparse convex clustering has similar characteristics. Specifically, it is
weighted on individual and feature quantities. This weighted penalty is one of the key
factors for improving accuracy. However, this penalty has the problem that it is highly
dependent on the data. By using the GL prior distribution, it is possible to properly
control this the dependency by using the Bayesian approach.

Polson and Scott (2010) formulated the GL scale mixtures of normal distributions
for vector a = (ay, ..., ap) as follows:

2 .2 2.2
ajlv ,T; ~ N(@, v rj),

2 2
T; JT(‘L’j),
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P2~ n(vz).

Each sz (> 0) is called a local shrinkage parameter and v (> 0) is called a global
shrinkage parameter. This leads to efficient Gibbs sampling based on block updating
of parameters.

We need to specify the priors n(rjz) and 77 (v?). In the next subsections, we provide

some concrete formulae for n(t}) and 77 (12).

4.1 NEG prior distribution

Griffin and Brown (2005) proposed using an NEG distribution as an alternative to a
Laplace distribution for the prior distribution of regression coefficients. By using an
NEG distribution, we can perform more flexible sparse modeling than with a Laplace
distribution.

The NEG density function is given by

_ 02 101
NEG@® y) =kexp |35 i Dzt () ©)

wherek = (2*1) /(y /)T (A+1/2) is anormalization constant, D_,; 1 is a parabolic
cylinder function, and A (> 0) and y (> 0) are hyperparameters that control the
sparsity of 6. The parabolic cylinder function is a solution of a second-order linear
ordinary differential equation and its integral representation is given by

poacs () = mzmow |aga] [ oo 3 -]
-\ )= eXp 3 wexpl—=w" — —wdw.
y rex+1 4y 0 2 y

The NEG density function can be expressed as hierarchical representation

NEG (012, y)
02 ) (]/2))\

1 a—1 2 2
Z//—«mexp{_ﬁ}wexp{_w oy ¥ ew |yt artaw
_ / / N(©10. ™)Exp(r[y)Ga(y |1, y2)de2dy.

where Exp(-|u) is the exponential distribution and Ga(-|k, A) is a gamma distribution.
Therefore, the prior distribution of each parameter is as follows:

0|t ~ N0, T2),
% ~ Exp(t2[y),
¥ ~ Ga(y|x, y).
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Using the NEG distribution on the feature matrix A, we propose the following
prior:

_ 1
7(Alo?) o (o) ®EHP2 TT NEG ( =—llai, — ai,ll2 | 21,71
(1ineE 20
11,02

p
1
X l—[NEG (5”041'”2 ) A2, VZ) .

j=1

By using the hierarchical representation, we can develop a Gibbs sampling algorithm
for Bayesian sparse convex clustering with NEG prior distributions. The details of the
hierarchical representation and the algorithm are given in “Appendix B.2”.

4.2 NG prior distribution

Brown and Griffin (2010) proposed an NG distribution as follows:
NG (0|, y) = [N(9|0, t2)Ga(z?|r, y?)d7?,

where A (> 0) and y (> 0) are hyperparameters that control the sparsity of 6. The
NG prior is a generalization of a Laplace distribution and has been used successfully
in many applications. For example, Malsiner-Walli et al. (2016) used the NG prior in
a sparse finite mixture model.

Using the NG distribution on the feature matrix A, we propose the following prior:

_ 1
7(Alo?) « (c2)~#E+P/2 1_[ NG (gﬂail —aplh ‘ A, )/1)
(i1,ir)e&

p
1

NEG ( — |la.; ‘x, . 7

><11i[1 <2G||a,||2 27/2) @

Note that this prior distribution consists of the NG distribution and the NEG distri-
bution. The prior distribution can also be constructed using only the NG distribution.
However, as a result of the numerical experiment, it did not work well. Therefore, we
adopt the NEG distribution for the prior that induces variable selection.

By using the hierarchical representation, we can develop a Gibbs sampling algo-
rithm for Bayesian sparse convex clustering with NG prior distributions. The details
of the hierarchical representation and the algorithm are given in “Appendix B.3”.
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4.3 Horseshoe prior distribution

The horseshoe density function (Carvalho et al. 2010) is given by

Hor(0|v)oc/ /]_[ p(@ 22, 0)p(e] )}l_[drj
B »
« [ /1‘[ [p@12. vp2vpwn| TT@zdv).
i=1 =1

The prior distribution of each parameter is as follows:

0jlt}. v* ~ N(O, T;v),
7 ~ CT0, 1),

2y ~1G(1/2, 1/9;),
¥ ~1G(1/2, 1).

Here v (> 0) is a hyperparameter that controls the sparsity of the 6;’s, and CT (xo, )
is the half Cauchy distribution on the positive reals, where x( is a location parameter
and y is a scale parameter. A smaller value of hyperparameter v corresponds to a
higher, number of parameters {0} being estimated to be zero.

Using the horseshoe distribution on the feature matrix A, we propose the following
prior:

1
7(Alo?) o (02)~#E+P/2Hor (2—a ’ v1>
o

)4
1
NEG [ —|la.; ‘A, , 8
le"[1 (20||a.,||2 2V2> (8)

where a = (lla;, — a;,|l2; (i1,i2) € £). Similar with reasons as in the prior (7), this
prior distribution consists of the horseshoe distribution and the NEG distribution.

By using the hierarchical representation, we can develop a Gibbs sampling algo-
rithm for Bayesian sparse convex clustering with horseshoe prior distributions. The
details of the hierarchical representation and the algorithm are given in “Appendix
B.4”. In our proposed method, we used v; as a hyperparameter, while the approach
based on Makalic and Schmidt (2015) assumed a prior distribution for v;. We com-
pared both approaches through numerical experiments, but the approach by Makalic
and Schmidt (2015) does not work well.

4.4 Dirichlet-Laplace prior distribution

The Dirichlet—Laplace prior was proposed to provide simple sufficient conditions for
posterior consistency (Bhattacharya et al. 2015). It is known that a Bayesian regression
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model with this prior distribution has asymptotic posterior consistency with respect
to variable selection. Also, we can obtain joint posterior distributions for a Bayesian
regression model when we employ this prior. The latter is advantageous because most
prior distributions induce a marginal posterior distribution rather than a joint posterior
distribution, which has more information in general.

The Dirichlet-Laplace density function is given by

DL®I) o [ -+ [ [1ire, |rj,v)}p<r|a)p<v>1'[(dr]>dv
j=1

14
/ f]"[ p(ejh/fj,r},vz)p(w,)}p(r|a>p<v)]"[(drjw,->dv,
j=l1

j=1
where T = (14, ..., Tp)T. The prior distribution of each parameter is

Ojltj, v ~ Laplace(1/t;v),
0;17j. yj. v~ NQO, ¥, T}1?),
7 ~ Dir(e, ..., a),

v ~ Exp(1/2),
v ~ Ga(pa, 1/2),

where a (> 0) is a hyperparameter that controls the sparsity of the 6;’s and
Dir(e, . .., «) is a Dirichlet distribution. Random variables of the Dirichlet distribution
sum to one, and have mean E[7;] = 1/p and variance Var(z;) = (p— D/{p*(pa+1)}.
When « is small, most of the parameters {z;} are close to zero, whereas the remaining
parameters are close to one. If {z;} is close to zero, {6;} is also close to zero.

Using the Dirichlet-Laplace distribution on the feature matrix A, we propose the
following prior:

1 . I
Ao o (02 #¢+npL (La | NEG (o—lla il [ 22, 72).
7(Alo?) x (62) 58| /]j[l o CHIEARERZ

Similar with reasons as in the prior (7), this prior distribution consists of the Dirichlet-
Laplace distribution and the NEG distribution.

By using the hierarchical representation, we can develop a Gibbs sampling algo-
rithm for Bayesian sparse convex clustering with Dirichlet—Laplace prior distributions.
The details of the hierarchical representation and the algorithm are given in “Appendix
B.5”.
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Fig.2 Two interlocking half-moons with n = 50 observations

5 Artificial data analysis

In this section, we describe numerical studies to evaluate the performance of the
proposed methods using artificial data. First, clustering performance was evaluated
by an illustrative example that includes no irrelevant features. Next, we evaluated the
accuracy of the sparsity by performing simulations using data containing irrelevant
features.

5.1 lllustrative example

We demonstrated our proposed methods with artificial data. The data were generated
according to two interlocking half-moons with n = 50 observations, K = 2 clusters,
and p = 2 features. Figure 2 shows one example of two interlocking half-moons. In this
setting, we did not perform sparse estimation. The cluster formation was considered
by comparing the cluster paths of each method.

For each generated dataset, the estimates were obtained by using 50,000 iterations
of a Gibbs sampler. Candidates of the hyperparameters were set based on

Amin €Xp{(10g Amax — 10g Amin) - (i/m)}

@ Springer



Bayesian sparse convex clustering via global-local shrinkage priors 2683
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Fig.3 Results for two interlocking half-moons. a Bscve, b NEG, ¢ NG, d HS, e DL

fori = 1,..., m. For the hyperparameter A in Bayesian convex clustering with
a Laplace prior distribution (Bscvc), we set m = 50, Apin = 0.05, and Apax =
90.0. In Bayesian convex clustering with an NEG prior distribution (NEG), we had
hyperparameters A and y;. For hyperparameter A1, we set m = 30, Apin = 0.0001,
and Amax = 2.75. For hyperparameter y;, we set m = 2, Ayin = 0.4, and Apax = 0.5.
The weighted posterior means introduced in Sect. 3.2 were used for Bscve, NEG, NG,
HS, and DL estimates.

Figure 3 shows the results. The overall outline of cluster formation is the same for
the all methods. The order in which the samples form clusters is also the same. If
the distance between estimated feature values of different clusters does not decrease,
the accuracy of cluster estimation will improve in convex clustering. However, the
distances between all features are small due to the effect of sparse regularization. Scvc
used weights to bring only features belonging to the same cluster closer. NEG, NG,
HS, and DL used GL priors instead of weights. For example, in the cluster path in
Fig. 3b, the estimated feature values are merged at a position further from the origin
than other methods. This can be seen especially in the upper right and lower left of the
figure. This result shows that the close feature values were merged while the distances
between the distant feature values were maintained. This is a factor that improves the
accuracy of NEG’s clustering estimation.

5.2 Simulation studies

We demonstrated our proposed methods with artificial data including irrelevant fea-
tures. First, we considered five settings. Each data were generated according to two
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interlocking half-moons with n = 10, 20, 50, 100 observations, K = 2 clusters, and
p = 20, 40 features. The features consisted p — 2 irrelevant features and 2 relevant
features. The irrelevant features were independently generated from N(0, 0.5%). We
considered six methods: sparse convex clustering (Scvc), Bscve, NEG, NG, HS, and
DL.

As the estimation accuracy, we used the RAND index, which is a measure of
correctness of cluster estimation. The RAND index ranges between 0 and 1, with a
higher value indicating better performance. The RAND index is given by

a+b

RAND = ———,
nn—1)/2

where

roos
a:ZZ#{(x,-,xjﬂx,-,xj eC,f,x,-,xj Ea;i <j},

k=1 I=1
b= Z Z#{(x,-,xj)|xi eC,fl,xj GC;SZ,XI‘ Eal,xj €C~zz;i <J}

ki<ky 1<l

Here C* = {Cf, ..., C}}isthe true set of clusters and C = {C~1 s CNX} is the estimated
set of clusters. In addition, we used the true negative rate (TNR) and the true positive
rate (TPR) for the accuracy of sparse estimation:

#jlaj =0 Aa* =0}
TNR = — , TPR =
#{jla; =0}

#ljla; #0 nay #0)
#jla; # 0}

’

where, {a’/k.|j = 1,..., p} are the true feature vectors and {a;|j = 1,..., p} are
the estimated feature vectors. The dataset was generated 50 times. We computed the
mean and standard deviation of RAND, TNR, and TPR from the 50 repetitions. The
settings of the iteration count and the hyperparameter candidate were the same as given
in Sect. 5.1. To ensure fair comparisons, we used the results with hyperparameters that
maximize the RAND index.

The simulation results were summarized in Table 1. Scvc provided the lower
RANDs and TNRs than other methods in all settings. TPR was competitive among
the all methods. Except for Scve, NEG, NG, HS, and DL were better than Bscvc in
terms of RAND in almost all settings. From these experiments, we observed that the
Bayesian convex clustering methods were superior to the conventional convex clus-
tering method. In addition, the Bayesian methods based on the GL priors relatively
produced the higher RANDs than those based on the Laplace prior.

6 Application

We applied our proposed methods to a real dataset: the LIBRAS movement data
from the Machine Learning Repository (Lichman 2013). The LIBRAS movement
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Table 1 Results for simulation study

RAND (sd) TNR (sd) TPR (sd)
n=10, p=20
Scve 0.58 (0.22) 0.67 (0.37) 0.98 (0.10)
Bscve 0.70 (0.23) 0.98 (0.05) 1.00 (0.00)
NEG 0.72 (0.23) 091 (0.11) 0.99 (0.07)
NG 0.88 (0.18) 1.00 (0.01) 0.94 (0.16)
HS 0.78 (0.20) 0.98 (0.04) 1.00 (0.00)
DL 0.88 0.17) 0.99 (0.02) 0.99 (0.07)
n=20, p=20
Scve 0.68 (0.20) 0.72 (0.26) 0.97 (0.12)
Bscve 0.78 (0.18) 0.96 (0.19) 1.00 (0.00)
NEG 0.82 (0.16) 0.92 (0.16) 1.00 (0.00)
NG 0.82 (0.15) 0.95 (0.07) 1.00 (0.00)
HS 0.91 (0.13) 0.97 (0.03) 1.00 (0.00)
DL 0.92 (0.13) 0.97 (0.04) 1.00 (0.00)
n=20, p=40
Scve 0.62 (0.22) 0.78 (0.23) 0.97 (0.16)
Bscve 0.68 0.21) 0.95 0.17) 1.00 (0.00)
NEG 0.76 (0.18) 0.93 (0.13) 1.00 (0.00)
NG 0.82 (0.19) 0.98 (0.03) 1.00 (0.00)
HS 0.85 (0.18) 0.99 (0.02) 0.99 (0.07)
DL 0.84 (0.19) 0.99 (0.02) 1.00 (0.00)
n =250, p=40
Scve 0.73 (0.18) 0.44 (0.40) 1.00 (0.00)
Bscve 0.90 (0.15) 1.00 (0.01) 1.00 (0.00)
NEG 0.99 (0.11) 0.99 (0.04) 1.00 (0.00)
NG 0.94 (0.08) 0.97 (0.04) 1.00 (0.00)
HS 0.93 (0.09) 0.94 (0.05) 1.00 (0.00)
DL 0.94 (0.08) 0.93 (0.05) 1.00 (0.00)
n =100, p =40
Scve 0.79 (0.18) 0.74 (0.32) 1.00 (0.00)
Bscve 0.99 (0.02) 0.90 (0.07) 1.00 (0.00)
NEG 0.93 (0.10) 0.99 (0.03) 1.00 (0.00)
NG 0.98 (0.06) 0.93 (0.09) 1.00 (0.00)
HS 0.97 (0.03) 0.83 (0.09) 1.00 (0.00)
DL 0.96 (0.04) 0.84 (0.08) 1.00 (0.00)

dataset has 15 classes. Each class was divided by type of hand movement. There
are 24 observations in each class, and each observation has 90 features consisting of
hand movement coordinates. In this numerical experiment, 5 classes were selected
from among the 15 classes that were the same classes as those selected by Wang
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Table2 Application to LIBRAS

RAND Clusters Selected features
movement dataset
Scve 0.767 5 90
Bscve 0.767 5 90
NEG 0.767 5 89
NG 0.767 5 90
HS 0.767 5 73
DL 0.767 5 60
(a) (b)
5 14
§5
g 6 1 ¢ 6
, gé A 10 , g 4
5 5 556 1 6
66534% ﬁ14611 3 66 <1 4 % 3
6 ‘? 4 2 6 ,4497 4 2
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Fig.4 Results for LIBRAS movement dataset. a True groups, b estimated groups

et al. (2018). Accuracies of each method were evaluated using the RAND index, the
estimated number of clusters, and the number of selected features. This is the same
procedure as reported in Wang et al. (2018). As in Sect. 5.2, we used the results with
hyperparameters that maximize the RAND index for comparisons.

The results are summarized in Table 2. All the methods provided the same RAND.
Although the true number of clusters is six, the inherent number of clusters might be
five because the corresponding RAND is highest among all methods. Scve, Bscve,
and NG selected all features, while NEG, HS, and DL selected some of features. In
other words, NEG, HS, and DL could be sparsified without degrading the accuracy of
cluster estimation. In addition, we performed principal component analysis to this real
dataset. Figure 4 displays the plot of the first principal component against the second
principal component. The numbers in Fig. 4a stand for the true groups. The numbers
and the colors in Fig. 4b stand for the true groups and estimated groups, respectively.
From Fig. 4, we observe that the groups 4 and 6 have the same color, which means
that our proposed method could not capture the characteristic between the numbers 4
and 6.
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7 Conclusion

We proposed a Bayesian formulation of the sparse convex clustering. Using the GL
shrinkage prior distribution, we constructed a Bayesian model for various data with
more flexible constraints than ordinary L;-type convex clustering. We overcame the
problem that sparse convex clustering depends on weights in the regularization term.
Furthermore, we proposed a weighted posterior mean based on a posteriori probability
to provide more accurate MAP estimation.

For the application described in Sect. 6, the computational time with our proposed
methods was about 20 minutes for each hyperparameter. Until now, it is difficult to
compute our MCMC methods when the dimension is high. Recently, the variational
Bayesian method has been received attention [e.g., Ray and Szabé (2020) and Wang
and Blei (2019)] as an alternative to MCMC. In addition, Johndrow et al. (2020) pro-
poses to speed up MCMC by improving the conventional sampling method. We would
like to work on reducing the computational cost to expand the field of applicability
with the techniques of these studies. In our numerical experiment, the hyperparame-
ters with the best accuracy were selected using the same method as reported in Wang
et al. (2018). It would also be interesting to develop information criteria for selecting
the hyperparameters. We leave these topics as future work.
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Appendix A: Unimodality of joint posterior distribution

In Bayesian modeling, theoretical and computational problems arise when there exist
multiple posterior modes. Theoretically, it is doubtful whether a single posterior mean,
median, or mode will appropriately summarize the bimodal posterior distribution.
The convergence speed of Gibbs sampling presents a computational problem, in that,
although it is possible to perform Gibbs sampling, the convergence is too slow in
practice.

Park and Casella (2008) showed that the joint posterior distribution has a single
peak in Lasso-type Bayes sparse modeling. We demonstrate that the joint posterior
distribution of (4) is unimodal. Specifically, similar to Park and Casella (2008), we
use a continuous transformation with a continuous inverse to show the unimodality of
the logarithmic concave density.
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The logarithm of the posterior (4) is

pn+#E+p
2

Al
- E Wiy i @i, — aiy |2
o

(i1,i2)e€

1 n
log w(A, 02|X) = logm(c?) — log(a?) — FZl:nx,» —ai|3
1=

Ao P
—— uila.; const. 9
. ; jllajlz+ ©)

Consider the transformation defined by

D < A/No?, p e 1/vo2,

which is continuous when 0 < o2 < o0o0. We define @ = (dq, ...,¢,,)T =
(@.1, ..., .,). Thelog posterior (9) is transformed by performing variable conversion
in the form

1 n
log(1/p%) + (pn +#€ + p)log(p) = 5 D lloxi — ¢,13

i=1

P
MY winkliey, — il — A2 > ujlie;ll2 + const. (10)

(i1,i)€€ j=1
The second and fifth terms are clearly concave in (@, p), and the third and fourth terms
are a concave surface in (@, p). Therefore, if log 7 (-), which is the logarithm of the
prior for o2, is concave, then (10) is concave. Assuming a prior distribution, such as
the inverse gamma distribution (5) for o2, log (+) is a concave function. Therefore,
the entire log posterior distribution is concave.

Appendix B: Formulation of Gibbs sampling

This appendix introduces a specific Gibbs sampling method for a Bayesian sparse
convex clustering.

B.1 Bayesian sparse convex clustering

The prior distribution 7 (A |02) is rewritten as follows:

p
i — ai))? }

T 1
(Alﬁz)a/.../ || —exp{
2.2
(i1,i2)e€ 27162‘6i21i2 20 T
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Mw? Aw
11 in 1,02 2
X H —2 exp{——2 7:1112}

(il in)e€

2
l_[ exp | — i 4ajj
- 270272 20277
= T

J
P % 2 )\‘2 2
1—[ Jexp{ } l_[ d‘[l]lzl_[d"z

(i1,i2)e€ j=1

This representation is based on the following hierarchical representation of the Laplace

distribution:
a 00 2] a2 a2 .,
> exp{—alz|} = /0 exp 53 exp 5 s¢ds.

For details, we refer the reader to Andrews and Mallows (1974).
The prior distribution is transformed as follows:

1
N2ms

T(A ) W) (T2, (93), 021X)

x 2ma?)P"? exp {_F ;(x,- —a)" (x; — ai)}

20272,
i1in

1 Zp (a. C_a: _)2

(i1,i2)e€ Tiliz

2.2 2 2
1—[ )‘lwil,iz ex _)” i1,ip ‘L’2
x 2 P 2 iz

(i1,i)e€
2
« b 1 ex Z?=1alj
~ P 20272
j=1 rj J
p 2.2 2.2
y l_[ )Lzuj exp _)»214] .
1 2 2
j=1
x7(0?).

The full conditional distribution is obtained as follows:
ajlxj (w2} (B 02 ~ Nu(S w0870,
S =S+ @7+ Dy,

2
——lai,, ai,, 0° ~ [Gauss(u', 1),

i1ia
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’ wi2| ’2A%U2 I 2 2
n = =W i, AT
”all aiz”2 112
—la.;, 0% ~ IGauss(it', 1)
=2 jo o, ,
J

272 .2

[us A 50
~ j2 ~
M/:— )\/zu;kz,

lajlla
o?|X, A {t} ). (T3 ~ 1GO, ),

/

Vi =np+#E+ p + v,
n

n Z(xi —a)" (xi —a;)

i=1

p
+Y (S + 7 ha + o,
Jj=1

where IGauss(x|u, A) denotes the inverse-Gaussian distribution with density function

[ A _3p )L(x—,u)2
Ex /exp{—zﬂ—% , (x>0

and
-2 -2
D i< flz _Tl T, In,
_712 i 24 qu Tzl o _Tzn
S; = )
) ) -2
“Tn —Top e Zi<n Tin

B.2 Bayesian NEG sparse convex clustering

By using the hierarchical representation of the NEG distribution, the prior distribution
T[(A|02) is decomposed into

1
ﬂ(A|02)O(// 1_[ (U 1”2) l/zexp{ ZT”ai' —a,-2||%}

(i1,ir)e€ Titiy

HOM -
[T vinexpl—vinti,t [] =i expl—yivii)

(i1,in)e€ (i1,i)e€ F(kl)
1
x]"[(azr% ‘”exp{ T ||a,||2}
j=1
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P
) 7 25
xU j exp{—V/,T }HF(A) exp{-ys v}
- p
[T avie [1 dfﬁizl_[d%l_[d?f
(i1,i2)e€ (i1,2)e€ j=1 Jj=1

This result allows us to develop a Gibbs sampling algorithm for Bayesian sparse convex
clustering with the NEG prior distribution.
The prior distribution is transformed as follows:

(A T} Wi (51 (), 021X)
x (27102)_% exp {—# ;(xi - ai)T(xi - ai)}

i1ip 2 2.2
o“T
(i1,i2) €€ i1i2

x (2mo?) /2 [T @ 1/2exp[—2f l(ailf_ai2f)2}

2 HM >
1_[ wilizexp{_wiliztiljz} l_[ I/fjljz exp{—yl 1/[1-11-2}

(i1,i2)e€ (rinee T 4D
Z{'_laz.

x(2ma?) P2 T2 exp ] ==Y

@2ra?)” j]"[1< D2 exp 2077

N

x]‘[w,exp{ I/f]r,}l"[m) *exp{—yiv;}

j=1

xn(o ).

The full conditional distribution is obtained as follows:

2 ~2 2 -1 201
a.j|x.j,{rili2},{rj},o ~Nu(§™x.j,0°87),

S =8+ @2+ Dy,

——lai,, ai,, Yiyir, 0~ ~ 1Gauss(u o2 A2 ),
i1i2 112 12
V2020,
2 = —]’ 72 —21/fz.z2,
112 lai, —aill2 '1'2

2
¢i1i2|"5i1i2 ~ Ga(kllfilizv)‘lﬁiliz)’
2 2
k‘//iliz =A+1, )”//iliz =T TV

1 S)
qua.j, Y, 07 ~ IGauss(ugfz, )»?/,2),
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V2027
" T el
Ji% ~ Gty 15,
k;/;, =\ +1, )»% =?12+)/22,
o2[X, A, (t2,), (F2) ~ 1G(V, ),
Vi =np+#E+ p -+,

2 =29,

n = Z(xi —a;) (x; —a;)

i=1

p
+Y ali(S + 7l + no,

j=1
where
) -2
Zl<l le _Tl T Tlnz
_flz 22T 24 Zz<z Tzz - _Tzn
S = .
-2 ) -2
“Tin Do D ien Tin

B.3 Bayesian NG sparse convex clustering

By using the hierarchical representation of the NG distribution, the prior distribution
7t(A|02) is decomposed into

_ 1
n(Alo?) o<// ]‘[ (@%1};) l/zexp{—mﬂail —a,-2||§}
(i1,i2)e€ i1i2

(V12) -1 2.2
1_[ F()\, )( 1112) ! exp{_yl ‘Ciliz}
(i1,ix)e€

p
~e 1
X H(szjg) 12 exp {—mﬂa-/ﬂ%}

j=I1

<

< [ [ ¥ expl—v,7 }H(I)“/i)\) v expl—y2v;)

p

< [] v [] dr,m]_[dw [ a7

(i1,i2) €€ (i1,i2)e€ j=1 j=1

This result allows us to develop a Gibbs sampling algorithm for Bayesian sparse convex
clustering with the NG prior distribution.
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The prior distribution is transformed as follows:

(A, T Wi ) (51 (), 021X)
o« ro?)~ T exp[ IQZ(x,-—a»T(xi—ai)}
i=1

14 2
?_(ai i — aiy i)
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The full conditional distribution is obtained as follows:
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Tiyis |4y @iy o ~ giG (X"'liz’ Piyiy » )"iliz) ’

1
— . 12 — 242 — A —
Xtiji, = O__2”al1 - 012”27 :01','1,'2 = 2V1 ’ )\'tiliZ =11 =05,

1 7 2
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J
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N =) (xi—a) (xi —a;)

i=1

14
+Y ali (S + 7 Lal; + no,
=1

where giG (x|x, p, A) is generalized inverse Gaussian

z ~ giG(x, p, *0),
7(z) o 20 exp{—(pz + x/2)/2},

and
2 2
Zl<l i ;‘512 5 T _‘1:1112
—flz Y2l t ol Ty o _Tzn
S = . .
-2 -2 -2
“Tin ~Ton D ien Tin

B.4 Bayesian horseshoe sparse convex clustering

By using the hierarchical representation of the horseshoe distribution, the prior distri-
bution n(A|02) is obtained as follows:

_ 1
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The prior distribution is transformed as follows:

(At} Wi (50 (), 021X)
x (27102)_% exp {—% ;(xi —a)’ (x; — ai)}

1
21 2

lll2

><(27102v2) 1_[ (tlll2 l/zexp:

—lai - aizné}
(i1,i2) €€

172, 2 \—1/2-1 1
ool |

(i1,i2)e€ i T iy
1/2-1, 1
[T v o]~
(11 12)68 e
2L . ~2\—1/2 1 2
x(2mwo“)”2 H(Tj) exp —mHau‘”z
j=1 o7t

xl_[w,eXp{ VT }]_[(1%) 2 exp(—yiv)
j=1

xn(az).

The full conditional distribution is obtained as follows:
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B.5 Bayesian Dirichlet-Laplace sparse convex clustering

By using a hierarchical representation of the Dirichlet-Laplace distribution, the prior
distribution 77 (A|o2) is obtained as follows:
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The prior distribution is transformed as follows:
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