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Abstract

We present a nonparametric Bayesian method for �tting unsmooth func�

tions which is based on a locally adaptive hierarchical extension of standard

dynamic or state space models� The main idea is to introduce locally varying

variances in the states equations and to add a further smoothness prior for

this variance function� Estimation is fully Bayesian and carried out by recent

MCMC techniques� The whole approach can be understood as an alternative

to other nonparametric function estimators� such as local regression with lo�

cal bandwidth or smoothing parameter selection� Performance is illustrated
with simulated data� including unsmooth examples constructed for wavelet

shrinkage� and by an application to CP� sales data�

� Introduction

Nonparametric methods for �tting smooth curves� such as kernel� local or spline
regression are now widely available and accepted� However these methods can have
bad performance when estimating unsmooth functions with jumps� edges or regions
where have gained considerable interest� with local bandwidth selection in kernel
or local regression �Fan and Gijbels� �		
�� or with wavelet shrinkage �Donoho and
Johnstone� �		�� as prominent approaches�

In this paper� we present a Bayesian nonparametric method for estimation of
unsmooth functions that is based on locally adaptive dynamic or state space
models� Compared to standard Gaussian state space models �e�g� Harvey� �		�
Fahrmeir and Tutz� �		��� we allow for unknown locally varying variances of the
errors in the state equation for the unknown function and add a further smoothness
prior for the variance function �Section ��� These varying variances correspond to
locally varying bandwidths or smoothing parameters in the non�Bayesian methods�

Estimation is fully Bayesian and uses recent Markov chain Monte Carlo techniques�
combining Gibbs sampling and a Metropolis�Hastings algorithm of Knorr�Held
��		�� Details are given in Section �� Performance is illustrated in Section � with
simulated data� including the unsmooth functions constructed for wavelet shrinkage
by Donoho and Johnstone ��		��� and by an application to sales data�
Although we focus here on a simple Gaussian observation model suitable for one�
dimensional curve �tting� the basic idea can be adapted to more general settings�
Some of the resulting extensions� for example to non�Gaussian observations or to
surface estimation� are mentioned in the conclusions�
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� Locally adaptive dynamic models

Consider �rst the classical smoothing problem for a response variable� where obser�
vations y � �y�� y�� � � � � yT � are assumed to be the sum

yt � �t � �t� t � �� � � � � T ���

of a smooth trend function or regression curve� evaluated at the observation or design
points t� and independent Gaussian errors �t � N��� ��� �� We denote the vector of the
function evaluations by � � ���� � � � � �T � and use the same symbol for the whole
curve� For simplicity� we assume equidistant design points� Extensions to non�
equally spaced designs are shortly outlined at the end of the section� In a standard
dynamic or state modelling approach for estimation of the unknown function � �
more exactly its evaluations �t� the observation model ��� is supplemented by a
Gaussian random walk of �rst order

�t � �t�� � ut� ut � N��� q�� ���

or of second order

�t � ��t�� � �t�� � ut� ut � N��� q��� ���

denoted as RW��� respectively as RW���� The errors ut are mutually independent
and independent of observation errors �t� In addition we will assume di�use priors
for initial values ��� ��� From a Bayesian point of view� the random walk models �
and � de�ne smoothness priors on �rst and second di�erences �t��t�� � ut respec�
tively �t � ��t�� � �t�� � ut that help to regularise the estimation problem� For
given variances ��� and q� the famous linear Kalman �lter and smoother computes
the posterior means ��t � E��t j y�� � � � � yT � as optimal smoothers� together with
posterior variances� Since the posterior is Gaussian� mean and mode coincide� and
therefore the estimates ��t� t � �� � � � � T can also be obtained by maximizing the
posterior� Taking logarithms� this leads to the classical optimal smoothing prob�
lem already considered by Whittaker ��	���� Choose �� � ����� ���� � � � � ��T � as the
minimizer of

TX
t��

�yt � �t�
� �

���
q�

TX
t��

��t � �t���
� ���

for model ���� and

TX
t��

�yt � �t�
� �

���
q�

TX
t��

��t � ��t�� � �t���
� �
�

for model ���� From ��� and �
�� the close correspondence to spline smoothing
becomes clear� The ratio � � ���q

� is a global smoothing parameter and the penalty
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terms are the discretized versions of corresponding penalty terms for quadratic
and cubic smoothing splines� Already with a moderate number of observations�
estimates ��t are practically undistinguishable from spline smoothing estimates�

The basic idea for estimation of non smooth functions is to replace the constant
variance q� in ��� and ��� by locally varying variances q�t that are considered as
evaluations of a variance function q� This corresponds to replacing the global
smoothing parameter by a local smoothing parameter �t � ���q

�
t � To estimate

the unknown variance function automatically together with the unknown curve ��
we reparametrize by

ht � log�q�t ��� q�t � exp�ht�

and add a second smoothness prior in form of �rst or second order di�erences for
h � �h�� � � � � hT �� implying also a smoothness prior for q � �q��� � � � � q

�
T �� Thus we

will arrive at the following locally adaptive dynamic models�

Observation model for y � �y�� � � � � yT ��

yt � �t � �t� � � N��� ��� � ���

Smoothness priors for � � ���� � � � � �T ��

�t � �t�� � ut� or �t � ��t�� � �t�� � ut ���

with ut � N��� exp�ht���

Smoothness priors for h � �h�� h�� � � � � hT ��

ht � ht�� � ut� or ht � �ht�� � ht�� � 	t� 	 � N��� ����� ��

We assume mutually independent errors �t� ut and 	t and di�use priors for initial
values ��� �� h�� h�� The model de�nition is completed by the common assumption
of independent inverse Gamma hyperpriors

��� � IG�a�� b��� ��� � IG�a�� b�� �	�

for the variances ��� � �
�
� � By appropriate choice of a�� b�� a�� a�� these hyperpriors

are made highly dispersed�

Although we will focus on the locally adaptive model �����	�� some extensions are
immediate� First� we may generalize the observation model ��� and the state equa�
tion ��� to the standard form yt � z�t�t � �t� �t � Ft�t�� � ut of linear Gaussian
state space models� Assuming again varying variances for ut and appropriate hyper�
priors as in ��� we obtain locally adaptive state space models� Secondly� unequally
spaced observations can be dealt with by adjusting the variances q�t � exp�ht�� For
example in the case of a �rst order random walk� the necessary modi�cation is
q�t � �t exp�ht�� where �t is the di�erence between the t�th and the �t � ���th
design point�
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� Nonparametric Bayesian inference via MCMC

Fully Bayesian inference is based on the posterior p��� ��� � �
�
� j y� of the unknowns

given the data� Due to the hierarchical structure of the model its unnormalized form
is easy derived� Considering �rst order random walks for �t and ht in ��� and ��
we obtain

p��� ��� � �
�

� j y� �
TY

t��

p�yt j �t� �
�

� � � p�� j h� � p�h j �
�

�� � p��
�

� � � p��
�

��

�
TY

t��

p�yt j �t� �
�

� � �
TY

t��

p��t j �t��� ht� �
TY

t��

p�ht j ht��� �
�

��

�p���� � � p��
�

��� ����

Corresponding posteriors of other combinations of random walks are obtained ana�
logously�

To sample from the posterior we use a hybrid MCMC algorithm� The required full
conditionals can be derived from ����� For �t j �s ��t�h� �

�
� �y� t � �� � � � T � we get�

p��t j �s��t� hs� �
�

� �y� � p�yt j �t� �
�

� � � p��t j �s��t�h�

Both factors are normal distributions� namely yt j �t� �
�
� � N��t� �

�
� � and �t j

�s ��t�h � N�
t� �
�
t � with parameters

with ��t �

����
���

q�t��� t � ��
��q�t � ��q�t��

���
� t � �� � � � � T � �

q�t � t � T

����

and 
t �

����
���

�t��� t � �

����t �
�
q�t�t�� � q�t���t��

�
� t � �� � � � � T � �

�t��� t � T

if �t follows �rst order random walk� For a second order random walk the parameters

t and ��t are given by

��t �

����������������
���������������

q�t��� t � ��
�

q�t��
� �

q�t��

	��
� t � ��

�
q�t

� �
q�t��

� �
q�t��

	��
� t � �� � � � � T � ��

�
q�t��

� �
q�t

	��
� t � T � �

q�t � t � T

����

�



and 
t �

���������������
��������������

��t�� � �t��� t � �

�
��t
�

�
��t�� � �t��

q�t��
� �

�t�� � �t��

q�t��

	
� t � �

�
��t
�

�
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q�t��
� �
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� t � �� � � � � T � �

�
��t
�

�
�
�t�� � �t��

q�t��
�
��t�� � �t��

q�t

	
� t � T � �

��t�� � �t��� t � T�

To sample from �t j �s��t�h� �
�
� �y we use the Gibbs sampler� Successive elements of

the Markov chain for �t are drawn from

�t j �s��t�h� �
�
� �y � N

�
yt � 
t� �

�

���
�

�

��t
���
	
�

In our implementation� these single move updating behaved quite well� However�
other MCMC updating schemes like the block moves of Carter and Kohn ��		��
and Fruehwirth�Schnatter ��		�� or the MH�algorithm with conditional prior
proposals of Knorr�Held ��		� are surely useful alternatives�

We use the conditional prior proposal approach for drawing from the full conditionals
for ht� t � �� � � � � T � They are factorized by p�ht j hs��t��� �

�
�� � p��t j �s�t� ht� �

p�ht j hs��t� �
�
��� MH�steps consists in drawing a proposal h�

t from the conditional
prior p�ht j hs��t� �

�
�� and accepting it with probability

min



��
p��t j �s�t� h

�
t �

p��t j �s�t� ht�

�
�

The distribution p��t j �s��t� ht� is N��t��� exp�ht�� if � follows an �rst order random
walk� respectively N���t�� � �t��� exp�ht�� for a second order random walk� For
p�ht j hs��t� �

�
�� we have

ht j hs��t� �
�

� �

���
��

N�ht��� �
�
��� t � �

N��
�
ht�� �

�

�
ht��� �
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if ht follows a �rst order random walk� For a second order random walk it is �Knorr�
Held� �		���
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For the prior distributions of the two variances ��� and ��� we use highly dispersed
inverse Gamma distributions IG�ai� bi�� i � �� � with the parameters a� � a� � �






and b� � b� � ����
� With p���� j y��� �
QT

t�� p�yt j �t� �
�
� � � p��

�
� � the distribution

of ��� j y�� is also an inverse Gamma�

��� j y�� � IG

�
a� �

T

�
� b� �

�

�

TX
t��

�yt � �t�
�

	
�

If ht follows a �rst order random walk the full conditional of ��� is derived from

p���� j h� �
QT

t�� p�ht j ht��� �
�
�� � p��

�
��� It is an inverse Gamma distribution� too�

��� j h � IG

�
a� �

T

�
� b� �

�

�

TX
t��

�ht � ht���
�

	
�

In the case of a second order random walk the full conditional is obtained analo�
gously�

��� j h � IG

�
a� �

T

�
� b� �

�

�

TX
t��

�ht � �ht�� � ht���
�

	
�

� Examples

To gain experience with practical performance our locally adaptive approach was
applied to a number of simulated and real data� Subsection ��� deals with jumps
in simple step functions� Subsection ��� reports on the results for the unsmooth
functions constructed for wavelet shrinkage by Donoho and Johnstone ��		��� and
Section ��� contains an application to a time series of sales data from West and
Harrison ��		��

��� Jumps

We �rst study empirically the approach for noisy observations of a simple step
function � with a jump to a higher level and a further jump back to the original
level� Data were generated at �
� design points according to ���� with jumps
at t � 
� and t � ���� The �rst row of Figure ��� shows three step functions
together with the generated data� The height of the jumps and the variance
of the observations is di�erent� with the jump to noise ratio increasing from
the left to the right� The aim of this and simular studies was to investigate
the impact of the jump to noise ratio and the di�erent smoothness priors for �
and h on the quality of �tting step functions and recognizing jumps or change points�

The estimates of � and q in the second and the third row of Figure ��� are obtained
by choosing a RW��� for � and h� The estimated variance function increases
exactly at the jumps if the jump to noise ratio is high enough as in the right
column� For the other two situations� local adaption is not satisfactory� However�
such a low jump to noise ratio will also pose problems for other nonparametric
function estimators�

�



function and data

0 50 100 150

-2
-1

0
1

2

function and data

0 50 100 150

-2
-1

0
1

2

function and data

0 50 100 150

-2
-1

0
1

2

estimated and true function

0 50 100 150

-2
-1

0
1

2

estimated and true function

0 50 100 150
-2

-1
0

1
2

estimated and true function

0 50 100 150

-2
-1

0
1

2

estimated variance

0 50 100 150

0.
08

0.
12

estimated variance

0 50 100 150

0.
07

5
0.

08
5

estimated variance

0 50 100 150

0.
08

0.
12

Figure ���� Jump functions are becoming more distinct from the left to the right� The

�rst row shows the true function and its noisy version� the second one the estimated

function compared to the real one and the third one the estimated variances q� Both �

and h are modelled by a RW��	�

Next we considered �tting behaviour for di�erent combinations of �rst and second
order random walks as smoothness prior for � and h� As to be expected� Figures ���
and ��� clearly indicate that RW��� smoothness priors for the variance function are
most suitable for �tting step functions� In particular in combination with a RW���
for �� jumps are well detected by corresponding peaks in the estimated variance
function q� Second order random walks for h are far less suitable here� since they
lead to a rather oscillating estimate �� in the constant parts of the step function�

��� Blocks� Bumps� Doppler and Heavy Sine

We now demonstrate performance for the four datasets Blocks� Bumps� Doppler
and Heavy Sine constructed for wavelet shrinkage by Donoho and Johnstone ��		���
Each of the datasets� shown in Figure ���� consists of ��� observations and has a
signal to noise ratio of ��

Let us �rst take a closer look at the dataset Blocks in Figure ��
� The best and
also very satisfying estimate for � is again obtained with a �rst order random walk
for � and h� Choosing a second order random walk for h but keeping a �rst order
random walk for � still yields a good �t� In both cases the estimated variances �q
in Figure ��� have distinctly high values exactly at the design points with jumps�
Choice of a second order random walk for h however leads to the same oscillating
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Figure ���� Estimates �� for di
erent combinations of the random walks for � and h

with a� both RW��	� b� � RW��	� h RW��	� c� � RW��	� h RW��	 and d� both RW��	�
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Figure ��	� Estimated variance function �q for di
erent combinations of the random walks

for � and h with a� both RW��	� b� � RW��	� h RW��	� c� � RW��	� h RW��	 and d�

both RW��	�





behaviour as in Subsection ��� �Figure ���� right column�� Choice of a second order
random walk for both � and h leads to a variance estimate that is nearly constant
about ��

For better resolution� Figure ��� displays only parts of the data and their �tted
values for each of the four datasets considered� Corresponding estimates of the
variances q are given in Figure ��� As already seen for the dataset Blocks� bumps
are well reproduced while more constant parts have been smoothed� The ability
of our locally adaptive model to react appropriately to situations where a higher
variance is needed is absolutely convincing for the dataset Doppler� Here the sine
curve is oscillating more and more when it is coming closer to zero� Obviously an
increasing variance is required to deal with this situation� and exactly this behaviour
is observed for the estimated variance q� For the dataset Heavy Sine the results are
not so convincing� The sudden jump near t � ��� is well detected� but in the other
parts with only a moderate curvature the �t is too rough�
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Figure ���� Datasets Bumps� Blocks� Heavy Sine and Doppler�

��� CP� sales data

The monthly CP� sales data �West and Harrison� �		� shown on the left in Figure
��	 indicate an additive outlier and a change of the slope in December �	

 as well
as further change points in January �	
� and �	
� The best �t for the trend �
displayed on the right in Figure ��	 was obtained here by a �rst order random walk
for � and a second order random walk for h� Adaption to the change points and
to smooth trends between them seems to be quite adequate� Also the changepoints
are clearly detected by the distinct peaks in the �t of the variance function�
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� Estimates �� of Blocks for di
erent combinations of the random walks for �
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Figure ���� Estimated variance function �q of Blocks for di
erent combinations of the

random walks for � and h with a� both RW��	� b� � RW��	� h RW��	� c� � RW��	� h
RW��	 and d� both RW��	�
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Figure ���� Parts of �tted functions for the datasets in Figure ��� with the following

random walk combinations b� both RW��	 and a�� c� and d� � RW��	� h RW��	�
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Figure ��� Estimated variance function �q of the parts in Figure ��� with the following
random walk combinations b� both RW��	 and a�� c� and d� � RW��	� h RW��	�
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Figure ���� On the left CP� sales data and the best estimate of � which was achieved

by a RW��	 for � and a RW��	 for h� The corresponding estimated variances q are given

on the right�

� Conclusions

The results in Section � provide empirical evidence that locally adaptive dynamic
models are a promising and conceptually simple approach for nonparametric
estimation of unsmooth curves� In particular� the results for blocks� bumps and the
Doppler curve are very encouraging�

Obviously� some data driven method for model choice� in particular giving support
for deciding about the types of random walks� would be rather helpful� The
recently proposed DIC criterion �Spiegelhalter et al�� �		� is a rather general tool
in connection with MCMC techniques and we intend to adapt it to our speci�c
situation�

Apart from the extensions already mentioned at the end of Section �� the following
generalizations could o�er a �eld for future research� First� the Gaussian observation
model ��� can be replaced by non Gaussian observation models� In particular� choice
of distribution from the exponential family de�nes a large class of locally adaptive
modi�cations of standard dynamic generalized linear models �e�g� Fahrmeir and
Tutz��		�� ch��� A further possibility is the introduction of varying variances in
the observation model� as in stochastic volatility models �Taylor� �	��� Another
generalization concerns Markov random �elds for spacial data analysis� Here local
adaption for unsmooth surfaces could be achieved by introducing unknown weights
or scale factors in pairwise di�erence priors �see e�g� Besag� Green� Higdon and
Mengersen� �		
� Section ��� together with spatial smoothness priors for them� and
estimate these weights simultaneously with the surfaces�
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