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Abstract

We present a nonparametric Bayesian method for fitting unsmooth func-
tions which is based on a locally adaptive hierarchical extension of standard
dynamic or state space models. The main idea is to introduce locally varying
variances in the states equations and to add a further smoothness prior for
this variance function. Estimation is fully Bayesian and carried out by recent
MCMC techniques. The whole approach can be understood as an alternative
to other nonparametric function estimators, such as local regression with lo-
cal bandwidth or smoothing parameter selection. Performance is illustrated
with simulated data, including unsmooth examples constructed for wavelet
shrinkage, and by an application to CP6 sales data.

1 Introduction

Nonparametric methods for fitting smooth curves, such as kernel, local or spline
regression are now widely available and accepted. However these methods can have
bad performance when estimating unsmooth functions with jumps, edges or regions
where have gained considerable interest, with local bandwidth selection in kernel
or local regression (Fan and Gijbels, 1995)) or with wavelet shrinkage (Donoho and
Johnstone, 1994) as prominent approaches.

In this paper, we present a Bayesian nonparametric method for estimation of
unsmooth functions that is based on locally adaptive dynamic or state space
models. Compared to standard Gaussian state space models (e.g. Harvey, 1989;
Fahrmeir and Tutz, 1994), we allow for unknown locally varying variances of the
errors in the state equation for the unknown function and add a further smoothness
prior for the variance function (Section 2). These varying variances correspond to
locally varying bandwidths or smoothing parameters in the non—-Bayesian methods.

Estimation is fully Bayesian and uses recent Markov chain Monte Carlo techniques,
combining Gibbs sampling and a Metropolis-Hastings algorithm of Knorr-Held
(1998). Details are given in Section 3. Performance is illustrated in Section 4 with
simulated data, including the unsmooth functions constructed for wavelet shrinkage
by Donoho and Johnstone (1994), and by an application to sales data.

Although we focus here on a simple Gaussian observation model suitable for one—
dimensional curve fitting, the basic idea can be adapted to more general settings.
Some of the resulting extensions, for example to non-Gaussian observations or to
surface estimation, are mentioned in the conclusions.



2 Locally adaptive dynamic models

Consider first the classical smoothing problem for a response variable, where obser-
vations y = (y1,¥a, - - ., yr) are assumed to be the sum

yt:at—{—et, t:]_,,T (].)

of a smooth trend function or regression curve, evaluated at the observation or design
points ¢, and independent Gaussian errors €, ~ N(0, 0?). We denote the vector of the
function evaluations by @ = (ay,...,ap) and use the same symbol for the whole
curve. For simplicity, we assume equidistant design points. Extensions to non-—
equally spaced designs are shortly outlined at the end of the section. In a standard
dynamic or state modelling approach for estimation of the unknown function « ,
more exactly its evaluations oy, the observation model (1) is supplemented by a
Gaussian random walk of first order

Qr = Q1+ Uy, ug ~ N(0; q2) (2)
or of second order
ap = 2041 — 9+ u, u~ N(0; Q2)> (3)

denoted as RW(1) respectively as RW(2). The errors u; are mutually independent
and independent of observation errors ¢;. In addition we will assume diffuse priors
for initial values oy, . From a Bayesian point of view, the random walk models 2
and 3 define smoothness priors on first and second differences oy — ay_1 = u; respec-
tively oy — 2041 + a9 = u,; that help to regularise the estimation problem. For

given variances o2 and ¢* the famous linear Kalman filter and smoother computes

the posterior means &; = E(ay | y1,...,yr) as optimal smoothers, together with
posterior variances. Since the posterior is Gaussian, mean and mode coincide, and
therefore the estimates &y, ¢t = 1,...,7 can also be obtained by maximizing the

posterior. Taking logarithms, this leads to the classical optimal smoothing prob-
lem already considered by Whittaker (1923): Choose & = (&, Go,...,ar) as the
minimizer of

T o2 T
Z(yt—@t —62 Oy — Oy 1 (4)
t=1 q t=2
for model (2), and
T o2 T
Z Yt — Oét Ze Z o — 2041 + Oét72)2 (5)
=1 Vit

for model (3). From (4) and (5), the close correspondence to spline smoothing
becomes clear: The ratio A = 0./¢* is a global smoothing parameter and the penalty



terms are the discretized versions of corresponding penalty terms for quadratic
and cubic smoothing splines. Already with a moderate number of observations,
estimates &, are practically undistinguishable from spline smoothing estimates.

The basic idea for estimation of non smooth functions is to replace the constant
variance ¢? in (2) and (3) by locally varying variances g7 that are considered as
evaluations of a variance function q. This corresponds to replacing the global
smoothing parameter by a local smoothing parameter \, = o./¢?. To estimate
the unknown variance function automatically together with the unknown curve o,
we reparametrize by

hy = log(qf) <= q; = exp(hy)

and add a second smoothness prior in form of first or second order differences for
h = (hy, ..., hr), implying also a smoothness prior for q = (¢2,...,¢%). Thus we
will arrive at the following locally adaptive dynamic models.

Observation model for y = (yi, ..., yr):

=0 +e, €~N0,07) (6)
Smoothness priors for a = (v, ..., ap):
Qp =y + Uy, Or =204 — g+ Uy (7)

with u; ~ N(0, exp(hy)).

Smoothness priors for h = (hy, he, ..., hr):
ht = ht,1 + U, or ht = 2ht71 — ht,Q + s nn~ N(O, Ug) (8)

We assume mutually independent errors €, u; and 7, and diffuse priors for initial
values ai, as hi, he. The model definition is completed by the common assumption
of independent inverse Gamma hyperpriors

0'62 ~ IG(CLl, bl), 0'2 ~ IG(GQ, bg) (9)
for the variances o2, 02. By appropriate choice of ay, by, as, ay, these hyperpriors
are made highly dispersed.

Although we will focus on the locally adaptive model (6)-(9), some extensions are
immediate: First, we may generalize the observation model (6) and the state equa-
tion (7) to the standard form y, = zjoy + €, oy = Fray 1 + uy of linear Gaussian
state space models. Assuming again varying variances for u; and appropriate hyper-
priors as in (8), we obtain locally adaptive state space models. Secondly, unequally
spaced observations can be dealt with by adjusting the variances ¢? = exp(h;). For
example in the case of a first order random walk, the necessary modification is
@ = Ayexp(h;), where A; is the difference between the ¢-th and the (¢ + 1)-th
design point.



3 Nonparametric Bayesian inference via MCMC

Fully Bayesian inference is based on the posterior p(e, 02, 02

2,07 | y) of the unknowns
given the data. Due to the hierarchical structure of the model its unnormalized form
is easy derived. Considering first order random walks for a; and h; in (7) and (8)

we obtain

T

ple,ol,00|y) o< [ oy | ar,0?)-ple | h)-p(h|oy) - p(a?) - plo])
t=1
T T T

X H p(yt | at,af) : Hp(at | at—l;ht) : Hp(ht | ht—lao'z)

t=2

(10)

Corresponding posteriors of other combinations of random walks are obtained ana-
logously.

To sample from the posterior we use a hybrid MCMC algorithm. The required full
conditionals can be derived from (10). For oy | a5z, h,02,y, t =1,... T, we get:

p(Oét | as#t; h570627Y) X p(yt | Oét,U?) : p(at | as;éta h)

Both factors are normal distributions, namely y;, | «;,0? ~ N(ay,0?) and oy |
o 21, h ~ N(py, 07) with parameters

; 2 _ 2 2 \7!
with o, = (1/Qt+1/Qt+1) : t=2,...,T -1
| 7, t=T
(11)
( Q41 t=1
and py = 1/02'(qt2at+1+qt2+1at71)7 t=2,...,T -1
A1, t=T

\

if a4 follows first order random walk. For a second order random walk the parameters
p and o are given by

( qt2—|—17 1 t=1
4 1
SR t=2
(%24-1 qt2+2> .
o2 = (% 4 +2L> L t=3,...,T—2
gz A1 7Qt+2
4 1
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(qt2+1 qf)
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(12)



(2041 — Quyqg, t=1
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To sample from «; | a4, h, 0%,y we use the Gibbs sampler. Successive elements of
the Markov chain for a; are drawn from

1 1
Qy | aﬁétah: Oe27y ~ N <yt + fe, (? + _2)1> :

€ Ot

In our implementation, these single move updating behaved quite well. However,
other MCMC updating schemes like the block moves of Carter and Kohn (1994)
and Fruehwirth-Schnatter (1994) or the MH-algorithm with conditional prior
proposals of Knorr—Held (1998) are surely useful alternatives.

We use the conditional prior proposal approach for drawing from the full conditionals
for hy,t = 2,...,T. They are factorized by p(h; | hs#,a,(f%) x ploy | @<y hy) -
p(he | gy, 02). MH-steps consists in drawing a proposal h} from the conditional

prior p(hy | hyy, 02) and accepting it with probability

min {1, ploy | oty hf) } )

p(ay | ag<i, hy)

The distribution p(c | oz, he) is N1, exp(hy)) if o follows an first order random
walk, respectively N(2cy 1 — ay_o,exp(hy)) for a second order random walk. For
p(hy | hyzy, 07) we have

N(h'H—la 0727)7 t=1
ht | hS#,JZ X N(%ht_1+%ht+1,03/2), t:2,,T—1
N(h't—la 02)7 t="1T

if h; follows a first order random walk. For a second order random walk it is (Knorr-
Held, 1997):

N(2ht+1 - ht+2, 2), t=1

N(%ht 1+ ht+1 ht+2, g /5) t=2
ht|h5¢t,02 X N( t-2 1T 3 Oét 1+ Oét+1 Oét 2, O 2/6) t=3,....,T -2

N(— lht 2+4ht1+ ht+270/5) =T-1

N(— ht 2+2ht+1, ), t="T.

For the prior distributions of the two variances o2 and 0% we use highly dispersed

inverse Gamma distributions 1G(a;, b;), ¢ = 1,2 with the parameters a; = ay = 1
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and by = by = 0.005. With p(o? | y, ) o< [T, p(y: | cu, 02) - p(0?) the distribution
of 0? | y, a is also an inverse Gamma:

T
2|y,a~IG<a1+ b1+ Zyt—at )

If h; follows a first order random walk the full conditional of 0% is derived from

p(o2 | h) o< [T{_, p(he | hy—1,02) - p(02). 1t is an inverse Gamma distribution, too:

T
2|h~IG<a2—|— b2+ th h'tl )

In the case of a second order random walk the full conditional is obtained analo-
gously:

T
03 | h ~ IG (CLQ + = b2 + = Z —2h4_1 — ht2)2> .

4 Examples

To gain experience with practical performance our locally adaptive approach was
applied to a number of simulated and real data. Subsection 4.1 deals with jumps
in simple step functions, Subsection 4.2 reports on the results for the unsmooth
functions constructed for wavelet shrinkage by Donoho and Johnstone (1994), and
Section 4.3 contains an application to a time series of sales data from West and
Harrison (1989).

4.1 Jumps

We first study empirically the approach for noisy observations of a simple step
function a with a jump to a higher level and a further jump back to the original
level. Data were generated at 150 design points according to (1), with jumps
at t = 51 and ¢t = 101. The first row of Figure 4.1 shows three step functions
together with the generated data. The height of the jumps and the variance
of the observations is different, with the jump to noise ratio increasing from
the left to the right. The aim of this and simular studies was to investigate
the impact of the jump to noise ratio and the different smoothness priors for a
and h on the quality of fitting step functions and recognizing jumps or change points.

The estimates of a and q in the second and the third row of Figure 4.1 are obtained
by choosing a RW(1) for @ and h. The estimated variance function increases
exactly at the jumps if the jump to noise ratio is high enough as in the right
column. For the other two situations, local adaption is not satisfactory. However,
such a low jump to noise ratio will also pose problems for other nonparametric
function estimators.
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Figure 4.1: Jump functions are becoming more distinct from the left to the right. The
first row shows the true function and its noisy version, the second one the estimated
function compared to the real one and the third one the estimated variances q. Both a
and h are modelled by a RW(1).

Next we considered fitting behaviour for different combinations of first and second
order random walks as smoothness prior for & and h. As to be expected, Figures 4.2
and 4.3 clearly indicate that RW(1) smoothness priors for the variance function are
most suitable for fitting step functions. In particular in combination with a RW(1)
for a, jumps are well detected by corresponding peaks in the estimated variance
function q. Second order random walks for h are far less suitable here, since they
lead to a rather oscillating estimate & in the constant parts of the step function.

4.2 Blocks, Bumps, Doppler and Heavy Sine

We now demonstrate performance for the four datasets Blocks, Bumps, Doppler
and Heavy Sine constructed for wavelet shrinkage by Donoho and Johnstone (1994).
Each of the datasets, shown in Figure 4.4, consists of 2048 observations and has a
signal to noise ratio of 7.

Let us first take a closer look at the dataset Blocks in Figure 4.5. The best and
also very satisfying estimate for a is again obtained with a first order random walk
for a and h. Choosing a second order random walk for h but keeping a first order
random walk for a still yields a good fit. In both cases the estimated variances q
in Figure 4.6 have distinctly high values exactly at the design points with jumps.
Choice of a second order random walk for h however leads to the same oscillating
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Figure 4.2: Estimates & for different combinations of the random walks for a and h
with a) both RW(1), b) a RW(2), h RW(1), ¢) a RW(1), h RW(2) and d) both RW(2).
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Figure 4.3: Estimated variance function q for different combinations of the random walks
for a and h with a) both RW(1), b) o RW(2), h RW(1), ¢) o RW(1), h RW(2) and d)
both RW(2).



behaviour as in Subsection 4.1 (Figure 4.2, right column). Choice of a second order
random walk for both a and h leads to a variance estimate that is nearly constant
about 1.

For better resolution, Figure 4.7 displays only parts of the data and their fitted
values for each of the four datasets considered. Corresponding estimates of the
variances q are given in Figure 4.8. As already seen for the dataset Blocks, bumps
are well reproduced while more constant parts have been smoothed. The ability
of our locally adaptive model to react appropriately to situations where a higher
variance is needed is absolutely convincing for the dataset Doppler. Here the sine
curve is oscillating more and more when it is coming closer to zero. Obviously an
increasing variance is required to deal with this situation, and exactly this behaviour
is observed for the estimated variance q. For the dataset Heavy Sine the results are
not so convincing. The sudden jump near ¢ = 600 is well detected, but in the other
parts with only a moderate curvature the fit is too rough.

Bumps Blocks
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10 20 30 40 50
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0 500 1000 1500 2000 0 500 1000 1500 2000

Heavy Sine Doppler
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Figure 4.4: Datasets Bumps, Blocks, Heavy Sine and Doppler.

4.3 CP6 sales data

The monthly CP6 sales data (West and Harrison, 1989) shown on the left in Figure
4.9 indicate an additive outlier and a change of the slope in December 1955 as well
as further change points in January 1957 and 1958. The best fit for the trend o
displayed on the right in Figure 4.9 was obtained here by a first order random walk
for o and a second order random walk for h. Adaption to the change points and
to smooth trends between them seems to be quite adequate. Also the changepoints
are clearly detected by the distinct peaks in the fit of the variance function.



15 20

10 15 20

10

o o
0 wn
; :
0 500 1000 1500 2000 0 500 1000 1500 2000
c) d)

8 S
9 0
= =
wn wn
o o
o o

0 500 1000 1500 2000 0 500 1000 1500 2000
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Figure 4.7: Parts of fitted functions for the datasets in Figure 4.4 with the following
random walk combinations: b) both RW(1) and a), ¢) and d) a RW(2), h RW(1).

a) Bump b) Block

200

0 50 100 150
L L L L
0 50 100 150

100 200 300 400 500

o 4

0 100 200 300 400 500
c) Heavy Sine d) Doppler
©
= 1 )
o ~
4 <
N
3 2
o
o |
] S
wn
S s
<]
o
500 600 700 800 900 1000 0 50 100 150 200 250
Time

Figure 4.8: Estimated variance function q of the parts in Figure 4.4 with the following
random walk combinations: b) both RW(1) and a), ¢) and d) o RW(2), h RW(1).
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Figure 4.9: On the left CP6 sales data and the best estimate of a which was achieved
by a RW(1) for o and a RW(2) for h. The corresponding estimated variances q are given
on the right.

5 Conclusions

The results in Section 4 provide empirical evidence that locally adaptive dynamic
models are a promising and conceptually simple approach for nonparametric
estimation of unsmooth curves. In particular, the results for blocks, bumps and the
Doppler curve are very encouraging.

Obviously, some data driven method for model choice, in particular giving support
for deciding about the types of random walks, would be rather helpful. The
recently proposed DIC criterion (Spiegelhalter et al., 1998) is a rather general tool
in connection with MCMC techniques and we intend to adapt it to our specific
situation.

Apart from the extensions already mentioned at the end of Section 2, the following
generalizations could offer a field for future research: First, the Gaussian observation
model (6) can be replaced by non Gaussian observation models. In particular, choice
of distribution from the exponential family defines a large class of locally adaptive
modifications of standard dynamic generalized linear models (e.g. Fahrmeir and
Tutz,1994, ch.8). A further possibility is the introduction of varying variances in
the observation model, as in stochastic volatility models (Taylor, 1986). Another
generalization concerns Markov random fields for spacial data analysis. Here local
adaption for unsmooth surfaces could be achieved by introducing unknown weights
or scale factors in pairwise difference priors (see e.g. Besag, Green, Higdon and
Mengersen, 1995, Section 3), together with spatial smoothness priors for them, and
estimate these weights simultaneously with the surfaces.
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