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Abstract

This paper studies a game-theoretic model in which players have
preferences over their strategies. These preferences vary with the
strategic context. The paper further assumes that each player has
an ordering over an opponent’s strategies that describes the niceness
of these strategies. It introduces a condition that insures that the
weight on an opponent’s utility increases if and only if the opponent
chooses a nicer strategy.
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1 Introduction

Reciprocity is an important aspect of social interaction. People act kindly
to people who have helped them and unkindly to people who have harmed
them. Many times when people reciprocate, they are motivated solely by
their narrow self interest. This kind of instrumental reciprocity arises natu-
rally in dynamic settings. In repeated games, an equilibrium strategy may
specify that “bad” actions are punished and “good” actions are rewarded.
Familiar arguments demonstrate how this behavior can support repeated-
game equilibria that provide efficient average payoffs. There is also evidence
that some reciprocity is intrinsic. People have an intrinsic preference for
reciprocity if they are willing to sacrifice their own material payoff in order
to increase the payoff of a kind opponent or decrease the payoff of an un-
kind opponent.1 This paper adds to a small theoretical literature on intrinsic
reciprocity by identifying a property that connects the weight one player’s
preferences place on the utility of another player to the “niceness” of the
other player’s strategy.

Geanakoplos, Pearce, and Stacchetti [4], Rabin [5], and Segal and So-
bel [6] present ways to model intrinsic reciprocity in games. These papers
extend standard game theory in a way that permits preferences of one player
to depend on the intentions of other players. Each strategy profile in a game
determines an outcome. Assume that player i has (decision-theoretic) prefer-
ences over outcomes that can be represented by a von Neumann-Morgenstern
utility function u, and that preferences over strategy profiles s are represented
by the expected value of the utility u obtained from the possible outcomes of
s. These material utility functions are the payoffs of standard game theory.
A tractable way to model intrinsic reciprocity is to assume, in addition, that
players have strategic preferences over their own strategy set and that these
preferences depend on the strategic context (or expected play of the game) so
that, in particular, they need not agree with preferences over outcomes. Se-
gal and Sobel [6] investigate this model and provide conditions under which
player i’s preferences over his set of mixed strategies (with representative
element σi) conditional on a context on expected pattern of play (described
by the mixed-strategy profile σ∗) is represented by a function Vi(·) that can

1Sobel [7] reviews the literature on reciprocity.
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be written as:

Vi,σ∗(σi) = ui(σi, σ
∗
−i) +

∑
j 6=i

aji,σ∗uj(σi, σ
∗
−i) (1)

When representation (1) holds, we say that player i has preferences for reci-
procity. Equation (1) states that instead of evaluating strategies using the
utility function ui(·), player i’s utility in a game is a weighted average of the
decision theoretic utility of all of the players in the game. The weights aji,σ∗
depend on the anticipated play of the game (σ∗). One implication of the rep-
resentation is that player i can positively weight the utility of his opponents
in some contexts, and negatively weight it in others. That is, depending on
the strategic context, an individual can exhibit altruism (utility is increasing
in opponent’s material payoff) or spite (utility is decreasing in the oppo-
nent’s material payoff). Segal and Sobel [6] develop this theory, provide a
representation theorem, and discuss equilibrium in games with preferences
for reciprocity.

This paper connects the weights in equation (1) to the perceived kindness
of opponents’ strategies. Intuitively, one would expect that player i would
increase the weight he puts on j’s material payoff when i is pleased with j’s
behavior. If j behaves nicely (for example, by making a voluntary contribu-
tion to a public good or offering a fair division in a bargaining game), then
i might be willing to sacrifice material welfare to make player j better off.
That is, i may repay kindness with kindness. At the same time, i may be
willing to sacrifice material utility to harm j when j is nasty. The aim of this
paper is to identify the connection between nice behavior and reciprocity.
We offer a condition under which it follows that nicer behavior by player j
will lead player i to put a higher weight on j’s utility. In Section 2 we assume
that player i has preferences over strategy profiles, which describe his view
of their ‘niceness.’ We then provide conditions on these preferences under
which

aji,σ > aji,σ if and only if σ is ‘nicer’ than σ′. (2)

This result captures the idea that a player is more likely to be kind to an
opponent who treats him nicely. In order to prove the result, we introduce a
Reciprocal Altruism assumption that makes precise the connection between
(2) and the niceness order.

Charness and Rabin [1], Rabin [5], and Segal and Sobel [6] define pref-
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erences over strategies in strategic-form models of reciprocity.2 Section 3
discusses the niceness orders that are implicit in the papers of Rabin [5] and
Segal and Sobel [6].3 Dufwenberg and Kirchsteiger [2] and Falk and Fis-
chbacher [3] present models of reciprocity for extensive-form games. In their
model, the weight ai,· changes with the play of the game. A generalization of
our approach to extensive-form games would appear to require the definition
of niceness preferences conditional on all histories and is beyond the scope
of the present paper.

2 Reciprocal Altruism

Let Xi be the space of outcomes to player i, i = 1, . . . , I. Each player has
preferences �outi over ∆(Xi), the space of lotteries over Xi. A game is a
collection si = {s1

i , . . . , s
ni
i } of strategies for player i, i = 1, . . . , I, together

with the payoff function O :
∏I

j=1 sj →
∏I

j=1 Xj. Let Σi be the space of

mixed strategies of player i and extend O to be from
∏I

j=1 Σj to
∏I

j=1 ∆(Xj).

Throughout the paper, Σ =
∏I

j=1 Σj.
4

Given a game, player i has a complete and transitive preference rela-
tion over Σi. These preferences depend of course on σ−i, the strategies of
other players, and possibly also on i’s interpretation of these strategies or
the “context” in which the game is being played. We assume that the con-
text is summarized by a mixed strategy profile σ∗, which we interpret as
a description of the conventional way in which the game is played.5 It is
within this context that players rank their available strategies. Formally,
given σ∗ = (σ∗i , σ

∗
−i), player i has preferences �i,σ∗ over Σi. The statement

σi �i,σ∗ σ′i says the following. Given the context σ∗, player i would prefer to
play σi rather than σ′i.

2Rabin [5] studies a special case of the general model in Segal and Sobel [6], although
he does not explicitly describe his utility function as a representation of preferences over
strategies.

3Charness and Rabin [1] uses a preference relationship that exhibits both distributional
preferences and intrinsic reciprocity, but we are unable to represent these preferences in
the general form studied by Segal and Sobel [6].

4Strategies (si), strategy sets (Σi), outcome functions (O) and preferences over strate-
gies (see below) can vary with the game. Our analysis always concentrates on a fixed
game, however, so we suppress this dependence in our notation.

5Alternatively, for each i, σ∗−i represents player i’s beliefs about how his opponents play
the game.
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Segal and Sobel [6] give conditions under which �i,σ∗ can be represented
by (1).6 We assume that these conditions hold and, when they do, say
that the players have reciprocity preferences. In this section we relate the
relative size of the weight aji,σ∗ and the niceness of player j’s strategy. When
there are more than two players, it becomes harder to interpret preferences
over opponents’ strategies. For example, it is not clear how player i should
evaluate player j’s utility when player j is nice to k but mean to `. We avoid
these issues by concentrating on two-player games. Remark 1 describes one
way to extend our results to games with more than two players.

We assume that i, j ∈ {1, 2} and i 6= j. When there are only two players
the weight player i gives to the utility of player j determines the represen-
tation of i’s utility function over strategies. For simplicity, we drop the j
superscript and denote this weight by ai,σ∗ .

7

To describe player i’s attitudes towards player j’s behavior we assume that
player i has preferences over player j’s strategies. Intuitively, i will prefer one
strategy profile to another if in the first player j is behaving in a way that i
views as “nicer.” Different possible attitudes are possible, and we discuss in
detail some possibilities below. Leaving room for the most general approach,
we assume that this ranking compares pairs of joint strategies. Formally, �oppi

is defined over Σi × Σj. (The superscript opp stands for “opponent.”) The
interpretation of the statement “σ1 �oppi σ2” is that player i considers j to be
nicer to him when she is using σ1

j in response to σ1
i than when she is using σ2

j

in response to σ2
i . (Of course, this definition does not preclude the possibility

that the ranking by i of j’s behavior is independent of i’s choice of strategy.)
In this section we analyze the connection between these preferences and the
weight ai,σ∗ player i gives to j’s utility. We provide conditions that enable
us to say when the weight player i puts on player j’s utility is an increasing
function of the niceness of player j’s behavior. That is, we are interested in

6Naturally, since the representation theorem in Segal and Sobel [6] is weaker than the
standard case, the conditions are weaker that the ones used in standard game theory.
Loosely, standard game theory requires that preferences over outcomes determine prefer-
ences over strategies for all contexts. Segal and Sobel assume instead that preferences over
outcomes determine preferences over strategies only when in contexts where one’s strategy
choice does not change the material payoffs of all other players.

7Even though we conduct our analysis from the perspective of player i, we do not drop
the subscript i in order to emphasis that different players will put different weights on the
other player’s utility from outcomes.
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conditions on preferences that guarantee:

ai,σ̄ > ai,σ iff σ̄ �oppi σ. (3)

Our main definition captures the intuition behind the idea that players are
willing to reward nice behavior and to punish mean behavior. In what follows,
we simplify notation by writing σ′ = (σ′i, σj); σ

′′ = (σ′′i , σj); σ̄
′ = (σ̄′i, σ̄j); and

σ̄′′ = (σ̄′′i , σ̄j).

Definition 1 The preferences �i,σ represent reciprocal altruism if whenever

1. σ′′i �i,σ σ′i;

2. uj(σ̄
′′)− uj(σ̄′) = uj(σ

′′)− uj(σ′);

3. ui(σ̄
′′)− ui(σ̄′) > ui(σ

′′)− ui(σ′); and

4. σ̄ �oppi σ [resp. σ̄ ∼oppi σ];

It follows that uj(σ̄
′′) > uj(σ̄

′) implies σ̄′′i �i,σ̄ σ̄′i [resp. It follows that σ̄′′i �i,σ̄
σ̄′i].

Furthermore, if either the preference in Condition 1 or the inequality in
Condition 3 is strict, then it follows that uj(σ̄

′′) > uj(σ̄
′) implies σ̄′′i �i,σ̄ σ̄′i

[resp. It follows that σ̄′′i �i,σ̄ σ̄′i]. �

The definition says that if “things are essentially equal,” then when player
j plays a nicer strategy, reciprocally altruistic player i will prefer strategies
that lead to larger selfish payoffs to player j. In this way, the definition
formalizes the notion that player i repays kindness with kindness. Observe
however that so far we did not put any restrictions on the relation �oppi , that
is, we did not define the meaning of “player j plays a nicer strategy.”

The definition appears complicated, so it deserves more discussion. Re-
ciprocal altruism uses information about how player i ranks his own strategies
in one context (σ) to draw a conclusion about his ranking in another context
(σ̄). In the first context (σ), player i prefers σ′′i to σ′i. There is no reason
for player i’s preferences over strategies to be preserved in the second con-
text. When Conditions 2 and 3 hold, however, there is a sense in which
the relationship between σ′i to σ′′i when σ is expected is comparable to the
relationship between σ̄′i and σ̄′′i when σ̄ is expected: Compared to going from
σ′ to σ′′, going from σ̄′ to σ̄′′ leads to the same change in utility from payoffs
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for player j and an increase in the change in utility from payoffs for player
i. Condition 4 states that player i thinks that player j is nicer is the second
context (σ̄) than in the first (σ). Under these conditions the definition states
that player i is reciprocally altruistic if he responds to j’s nicer behavior by
strengthening his preferences (preferring σ̄′′i to σ̄′i) when σ̄′′ leads to higher
utility (over outcomes) for j than σ̄′. When σ and σ̄ are equally nice, then
the reciprocally altruistic preferences of player i are not reversed when going
from the original comparison (σ′′ to σ′) to the comparable comparison (σ̄′′

to σ̄′).
One can check that in standard game theory when player i’s preferences

over strategies satisfy σ′′i �i,σ σ′i iff ui(σ
′′) > ui(σ

′), they represent recip-
rocal altruism provided that player i views all of j’s strategies as equally
nice (σ ∼oppi σ̄ for all σ̄). To see this, note that the first condition implies
ui(σ

′′) > ui(σ
′). The third condition then implies ui(σ̄

′′) > ui(σ̄
′), hence, the

conclusion of the definition must hold.
We argue that the condition must hold whenever equation (3) holds. That

is, preferences must satisfies the Reciprocal Altruism assumption whenever
weights ai,σ are increasing in the niceness of σ. Later in the section we
provide conditions under which Reciprocal Altruism is in fact necessary and
sufficient for equation (3).

Assume that Conditions 1, 2, and 3 of the axiom hold and one can repre-
sent player i’s preferences over strategies in the form ui(σ) + ai,σuj(σ). The
first condition implies that

ui(σ
′′) + ai,σuj(σ

′′) > ui(σ
′) + ai,σuj(σ

′),

which, when combined with the second and third conditions, yields

ui(σ̄
′′) + ai,σuj(σ̄

′′) > ui(σ̄
′) + ai,σuj(σ̄

′)

hence

ui(σ̄
′′)− ui(σ̄′) > ai,σ(uj(σ̄

′)− uj(σ̄′′)). (4)

It follows that

σ̄′i �i,σ̄ σ̄′′i ⇐⇒
ui(σ̄

′′) + ai,σ̄uj(σ̄
′′) < ui(σ̄

′) + ai,σ̄uj(σ̄
′)⇐⇒

ui(σ̄
′′)− ui(σ̄′) < ai,σ̄(uj(σ̄

′)− uj(σ̄′′)) =⇒
(ai,σ̄ − ai,σ)(uj(σ̄

′′)− uj(σ̄′)) < 0 (5)
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where the last inequality follows by inequality (4). If either Condition 1 holds
with strict preference or Condition 3 holds with a strict inequality, then the
inequality in (4) is strict and (5) becomes

σ̄′i �i,σ̄ σ̄′′i =⇒ (ai,σ̄ − ai,σ)(uj(σ̄
′′)− uj(σ̄′)) < 0 (6)

The next result is a straightforward consequence of inequalities (5) and (6).

Theorem 1 If players have reciprocity preferences and ai,σ̄ > ai,σ iff σ̄ �oppi

σ, then preferences represent reciprocal altruism.

Theorem 1 states that if the weight that player i places on player j’s utility
is an increasing function of the niceness of player j’s behavior, then reciprocal
altruism must hold. The main result of this section is a converse to this result,
that is, it states conditions under which reciprocal altruism implies that the
weight ai,σ∗ is increasing in the niceness of player j’s strategy. Because of the
structure of our model, this statement cannot be globally true, as there are
situations where the weights ai,σ∗ are not uniquely defined (see Example 1)
below.

There are two situations in which ai,σ∗ is uniquely determined by player
i’s preferences over strategies and choices of the utility functions ui and uj.
When either of these situations hold, then we show in Theorem 2(1) below
that ai,σ∗ is necessarily increasing in the niceness of player j’s strategy. They
are

1. The set of possible utility allocations generated by player i’s activity
given σ∗j , Ai(σ

∗
j ) = {u(σi, σ

∗
j ) : σi ∈ Σi}, has a nonempty interior.

2. The set Ai(σ
∗
j ) has an empty interior, but is a non-trivial indifference

set of the preferences �i,σ∗ .

There are two cases in which the first of these conditions is not satisfied.
Either for all σj ∈ Σj, Ai(σj) has an empty interior, in which case we say
that the game is poor for player i, or some, but not all of sets Ai(σj) have
an empty interior, in which case we say that σj is poor. Strategies that are
not poor are rich.

All games where ni = 2 are poor for player i, and as we show in Appendix
A, this is, to a certain extent, the only case in which games are poor. We
also show there that if a game is not poor, then the set of its poor strategies
is closed and of measure zero. Theorem 2(2) states that even if in this case
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ai,σ or ai,σ̄ are not uniquely determined, it is still possible to choose such
weights consistent with reciprocity utility functions and such that ai,σ̄ > ai,σ
iff σ̄ �oppi σ.

Theorem 2 Assume that the preferences represent reciprocal altruism.

1. If ai,σ and ai,σ̄ are uniquely determined, then ai,σ̄ > ai,σ iff σ̄ �oppi σ.

2. Otherwise, there exist specifications of ai,σ and ai,σ̄ consistent with reci-
procity utility functions such that ai,σ̄ > ai,σ iff σ̄ �oppi σ.

In the second case, the actual choice of ai,σ may depend on σ̄ and not
only on σ, and it may differ when the poor strategy σ is compared to σ̄ or
to σ̃. The following example shows that this problem is unavoidable.

Example 1 Consider the game

s1
j s2

j s3
j s4

j

s1
i 2, 0 2, 2 1, 1 1, 1
s2
i 0, 2 0, 0 1, 1 5, 1

When j plays

σj(ε) =
(

ε
2−ε , ε

1−ε
2−ε , 1− ε− ε

2, ε2
)

the set Ai(σj(ε)) is the line segment connecting(
1 + ε, 1− ε2

2−ε

)
with

(
1− ε+ 4ε2, 1 + ε2

2−ε

)
.

Suppose further that for every ε > 0, player i prefers playing s2
i to s1

i ,
8 and

that he considers σj(ε) �oppi σj(ε
′) iff ε < ε′. 9 Now

s2
i �i,σj(ε) s

1
i ⇐⇒

1− ε+ 4ε2 + ai,σj(ε)

(
1 + ε2

2−ε

)
> 1 + ε+ ai,σj(ε)

(
1− ε2

2−ε

)
⇐⇒

ai,σj(ε) >
(1−2ε)(2−ε)

ε

8Observe that for every ε > 0, the lotteries person i obtains from these two pure
strategies cannot be compared by first order stochastic dominance, while the lottery player
j receives from s2i dominates the lottery she receives from s1i . Moreover, when ε → 0, all
lotteries converge to a sure gain of 1.

9For example, i considers j’s behavior to be protective, and the lower the value of ε,
the higher is the lowest outcome which player i may receive.
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Obviously, it is impossible to assign ai,σj(0) a unique value such that for every
ε > 0, ai,σj(0) > ai,σj(ε). Note that when ε = 0, Ai(σj(0)) is the point (1, 1),
and any value of ai,σj(0) will be consistent with reciprocity utility functions.
(See Fig. 1 where the upper end points of each of the sets Ai(σj(ε)) represent
the utility allocations that follow from i’s optimal behavior given j plays ε =
0.8, 0.5, 0.35, 0). �

ui

uj

Ai(σj(0.8))

Ai(σj(0.5))

Ai(σj(0.35))

Ai(σj(0))

Figure 1: Example 2

Remark 1 We mentioned before that interpretation of preferences over op-
ponents’ strategies becomes harder when there are more than two players.
The following is a possible extension of the definition of reciprocal altruism
to the case of more than two players. In all strategy profiles, σk are fixed for
all k 6= i, j.

Definition 3∗ The preferences �i,σ represent I-person reciprocal altruism
if whenever

1. σ′′i �i,σ σ′i;
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2. uj(σ̄
′′)− uj(σ̄′) = uj(σ

′′)− uj(σ′);

3. ui(σ̄
′′)− ui(σ̄′) > ui(σ

′′)− ui(σ′);

4. For all k 6= i, j, uk(σ
′) = uk(σ

′′) and uk(σ̄
′) = uk(σ̄

′′); and

5. σ̄ �oppi σ [resp. σ̄ ∼oppi σ];

It follows that uj(σ̄
′′) > uj(σ̄

′) implies σ̄′′i �i,σ̄ σ̄′i [resp. It follows that σ̄′′i �i,σ̄
σ̄′i].

Furthermore, if either the preference in Condition 1 or the inequality in
Condition 3 is strict then

It follows that uj(σ̄
′′) > uj(σ̄

′) implies σ̄′′i �i,σ̄ σ̄′i [resp. It follows that
σ̄′′i �i,σ̄ σ̄′i].

In words, the reciprocal altruism definition is applied to any two players
provided the acts of player i do not affect the utility of all other players
(except for his own utility and that of player j). While Theorem 1 and
Theorem 2(1) extend to I-player games with this definition, we cannot prove
Theorem 2(2). �

3 Examples

In this section we discuss the niceness preferences that is implicit in two
treatments of reciprocal preferences. Our results enable us to look at a
specific functional form for preferences over strategies and determine the
implicit niceness preference relationship.

The functional form Rabin uses in the body of his manuscript is equiva-
lent to the conditional preference relationship over strategies given by equa-
tion (1).

In order to define the weight, ai,σ∗ , Rabin lets uhi (σ
∗
i ) be the highest

(material) payoff available to player i if player i chooses σ∗i . That is,

uhi (σ
∗
i ) = max

σj∈Σj

ui(σ
∗
i , σj).

Similarly, let umin
i (σ∗i ) be player i’s lowest payoff among available payoffs;

uli(σ
∗
i ) be player i’s lowest payoff among available Pareto-efficient payoffs;

10



and let uei (σ
∗
i ) be the average of uhi (σ

∗
i ) and uli(σ

∗
i ). In our notation, Rabin

sets ai,σ∗ = 0 if uhk(σ
∗
k)− umin

k (σ∗k) = 0 for k = i or j and otherwise

ai,σ∗ =
ui(σ

∗)− uei (σ∗j )
(uhi (σ

∗
i )− umin

i (σ∗i ))(u
h
j (σ

∗
j )− umin

j (σ∗j ))
. (7)

We refer the reader to Rabin’s article for a motivation for these prefer-
ences.10

The results of Section 2 link the niceness of a strategy profile σ∗ to the
magnitude of ai,σ∗ . Note that in this example, player i’s niceness ranking
depends on σ∗i , the strategy that he is expected to play.

Segal and Sobel [6] argue that Rabin’s representation cannot explain ob-
served behavior in ultimatum bargaining games and propose If uhj (σ

∗
i ) =

maxsj∈Sj
uj(sj, σ

∗
i ), ūj = maxs∈Si×Sj

uj(s), and uj = mins∈Si×Sj
uj(s), then

ai,σ∗ =

{
λ
uh

i (σ∗j )−FG

ūi−ui
if ūi − ui > 0,

0 if ūi − ui = 0,
(8)

where FG is a fair outcome of the game G and λ is a normalization factor.
If equation (8) defines the weights, then player i views a strategy profile as
nicer if it enables i to obtain a higher material payoff. In this case, a player’s
“niceness” preferences depend only on the strategy choice of the opponent.

Appendix A: Rich and Poor Strategies

If Player i has reciprocity preferences, then ai,σ∗ is uniquely determined by
ui and uj provided that there exist σ′, σ′′ ∈ Σ such that

σ′i ∼i,σ σ′′i and uj(σ
′) 6= uj(σ

′′). (9)

Under these conditions, one has

ui(σ
′) + ai,σuj(σ

′) = ui(σ
′′) + ai,σuj(σ

′′)

and so

ai,σ =
ui(σ

′′)− ui(σ′)
uj(σ′)− uj(σ′′)

.

We now provide conditions under which (9) must hold.

10The appendix of Rabin’s paper suggests alternative functional forms.
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Definition 4 A game is called poor (for player i) if all the ni points

{(u(ski , s
1
j), . . . , u(ski , s

nj

j ))}ni
k=1

are on the same line in <2nj . A game that is not poor is rich.

In particular, all games where player i has at most two pure strategies are
poor for player i. Moreover, if the game is poor for player i, then there are
two pure strategies si1 and si2 such that for all k, the vector (u(sik, s

j
`))

nj

`=1 is
a linear combination of the vectors (u(si1, s

j
`))

nj

`=1 and (u(si2, s
j
`))

nj

`=1, and the
game is essentially a 2× nj game.

A strategy σj is rich (for player i) if all the ni points (u(ski , σj))
ni
k=1 are

not on the same line in <2. By Segal and Sobel [6, Theorem 1], if σj is rich,
then ai,σ is uniquely determined. Strategies that are not rich are poor. The
game G is poor for player i iff σj is poor for player i for all σj ∈ Σj.

11 A rich
game will generally have poor strategies, but the next result shows that they
are rare.

Lemma 1 If the game is rich, then the set of poor strategies is a closed set
of measure zero in the nj − 1 dimensional simplex.

Proof If ni > 2 and the game is rich, then the strategy σj is poor if either
1. all the ni points u(s1

i , σj), . . . , u(sni
i , σj) are the same point, or 2. these

ni points are not the same, but are on the same line. For m = i, j, denote
σj · um(ski ) =

∑nj

`=1 σ
`
j um(ski , s

`
j). If all the ni points are the same (case 1

above), then for k = 2, . . . , ni the following linear (in σ1
j , . . . , σ

nj

j ) equations
are satisfied:

σj · [um(ski )− um(s1
i )] = 0, m = i, j

If case 2 holds, then for k = 3, . . . , ni, the following ni − 2 quadratic (in
σ1
j , . . . , σ

nj

j ) equations are satisfied:

σj · [uj(ski )− uj(s1
i )]

σj · [ui(ski )− ui(s1
i )]

=
σj · [uj(s2

i )− uj(s1
i )]

σj · [ui(s2
i )− ui(s1

i )]
.

11It is clear that if the game is poor then all σj are poor. Conversely, if σj is poor then
there are k1 and k2 such that for all k = 1, . . . , ni, the utility allocation u(sk

i , σj) is on the
chord connecting u(sk1

i , σj) with u(sk2
i , σj). Since all strategies σj are poor, one can show

that k1 and k2 cannot depend on σj , hence the game G is poor.
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Since G is rich for player i, the above equations do not have all of Σj as a solu-
tion, hence the set of solutions is of measure zero (in the (ni−1)-dimensional
simplex). The set of solutions to either set of equations is obviously closed. �

Appendix B: Proofs

Proof of Theorem 1 Assume that the first three conditions in RA hold.
If σ̄ ∼oppi σ, then ai,σ̄ = ai,σ. It follows from (5) that σ̄′′i �i,σ̄ σ̄′i. On the
other hand, if σ̄ �oppi σ, then ai,σ̄ > ai,σ. Inequality (5) implies that if
uj(σ̄

′′)− uj(σ̄′) > 0 then σ̄′′i �i,σ̄ σ̄′i.
Now assume that the first three conditions in the definitions of reciprocal

altruism hold with either σ′′i �i,σ σ′i in Condition 1 or ui(σ̄
′′) − ui(σ̄

′) >
ui(σ

′′) − ui(σ
′). If σ̄ ∼oppi σ, then ai,σ̄ = ai,σ. It follows from (6) that

σ̄′′i �i,σ̄ σ̄′i. On the other hand, if σ̄ �oppi σ, then ai,σ̄ > ai,σ. Consequently,
inequality (6) implies that if uj(σ̄

′′)− uj(σ̄′) > 0 then σ̄′′i �i,σ̄ σ̄′i. �

Proof of Theorem 2 Choose σ = (σi, σj) and σ̄ = (σ̄i, σ̄j) ∈ Σi × Σj. If
z, z′ ∈ Ai(σ̂j) implies that zj = z′j, then σ̂ is poor, ai,σ̂ can be any number,
and the conclusion follows. We therefore assume that when σ̂j = σj or σ̄j
there exist z, z′ ∈ Ai(σ̂j) such that zj 6= z′j.

Observe that ai,σ is uniquely defined either when Ai(σj) has a non-empty
interior or when Ai(σj) is a non-trivial line segment and �i,σ is trivial. Since
we ruled out the case where Ai(σj) is a single point, ai,σ is not uniquely
defined only when Ai(σj) is a non-trivial line segment and �i,σ is non-trivial.
Let L = ai,σ if Ai,σ is well defined. Otherwise, let L be the unique value for
which

zi + Lzj = z′i + Lz′j for all (z1, z2), (z′1, z
′
2) ∈ Ai(σj). (10)

As in Section 2, we write σ′ = (σ′i, σj); σ
′′ = (σ′′i , σj); σ̄

′ = (σ̄′i, σ̄j); and
σ̄′′ = (σ̄′′i , σ̄j). Notice that when L is defined by eq. (10), and σ′, σ′′ ∈ Ai(σj),

ui(σ
′) + auj(σ

′) > ui(σ
′′) + auj(σ

′′)⇐⇒ (a− L)(uj(σ
′)− uj(σ′′)) > 0. (11)

It is convenient to break the proof into several cases.

Case I: Ai(σ̄j) has a nonempty interior. For x ∈ <n and a > 0, let B(x, a)
be the ball with radius a around x. Pick σ′i ∈ Σi and ε > 0 such that
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B(u(σ̄′), ε) ∈ Int Ai(σ̄j) and there is a strategy σ′′i ∈ Σi such that

uj(σ
′′)− uj(σ′) > 0; (12)

ui(σ
′) + Luj(σ

′) = ui(σ
′′) + Luj(σ

′′); (13)

and u(σ′′) ∈ B(u(σ′), ε) (see Fig. 2). In words, when ai,σ is well defined and
hence L = ai,σ, given that player j is responding with σj to player i playing
σi (hence the use of ai,σ = ai,(σi,σj)), player i is indifferent between playing
σ′i and playing σ′′i . When ai,σ is not well defined, u(σ′′) is another point in
Ai(σj) (satisfying (12)).

ui

uj
ui+Luj = Const.

Ai(σ̄j)

u(σ′)

u(σ̄′)

u(σ′′)

u(σ̄′′)

ε

ε

Ai(σj)

ui+Luj = Const.

Figure 2: Case I

Since B(u(σ̄′), ε) ∈ Int Ai(σ̄j) and u(σ′′) ∈ B(u(σ′), ε), it follows that
there exists σ̄′′i ∈ Σj such that

u(σ̄′′)− u(σ̄′) = u(σ′′)− u(σ′). (14)

Eqs. (13) and (14) imply that

ui(σ̄
′) + Luj(σ̄

′) = ui(σ̄
′′) + Luj(σ̄

′′) (15)
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(geometrically, the line through u(σ′) and u(σ′′) is parallel to the line through
u(σ̄′) and u(σ̄′′)). As Ai(σ̄j) has a nonempty interior, ai,σ̄ is uniquely deter-
mined. Furthermore, it follows from eq. (15) that

ui(σ̄
′′) + ai,σ̄uj(σ̄

′′) = ui(σ̄
′) + ai,σ̄uj(σ̄

′) + (ai,σ̄ − L)(uj(σ̄
′′)− uj(σ̄′)). (16)

Since uj(σ
′′) > uj(σ

′), it follows that uj(σ̄
′′) > uj(σ̄

′), and we obtain from
(16) that

ui(σ̄
′′) + ai,σ̄uj(σ̄

′′) R ui(σ̄
′) + ai,σ̄uj(σ̄

′)⇐⇒ ai,σ̄ R L. (17)

Case Ia: L = ai,σ. We have (from eq. (13)) that σ′i ∼i,σ σ′′i and so by
eq. (14), the first three conditions in the definition of reciprocal altruism
hold.

1. If σ̄ �oppi σ, then, by reciprocal altruism, σ̄′′i �i,σ̄ σ̄′i iff uj(σ̄
′′) > uj(σ̄

′).
Since uj(σ̄

′′) > uj(σ̄
′), it follows that σ̄′′i �i,σ̄ σ̄′i. But

σ̄′′i �i,σ̄ σ̄′i ⇐⇒ ui(σ̄
′′) + ai,σ̄uj(σ̄

′′) > ui(σ̄
′) + ai,σ̄uj(σ̄

′). (18)

The equivalence in (17) guarantees that the inequality in the rhs of (18) holds
iff ai,σ̄ > L = ai,σ. Therefore, σ̄ �oppi σ implies ai,σ̄ > ai,σ.

2. If σ̄ ∼oppi σ, then by reciprocal altruism, σ̄′i ∼i,σ̄ σ̄′′i , which means ui(σ̄
′) +

ai,σ̄uj(σ̄
′) = ui(σ̄

′′) + ai,σ̄uj(σ̄
′′). By eq. (17), ai,σ = ai,σ̄ = L.

3. If σ �oppi σ̄, then it follows from the definition of reciprocal altruism
(when the roles of σ̄ and σ are reversed in the axiom) that σ̄′′i �i,σ̄ σ̄′i implies
σ′′i �i,σ σ′i. Hence, since σ′i ∼i,σ σ′′i , it must be that σ̄′i �i,σ̄ σ̄′′i and so, by
equivalence in (17) ai,σ̄ < L = ai,σ.

When L 6= ai,σ, L is defined by (10). If σ′′i �i,σ σ′i, then we can represent
�i,σ by setting ai,σ equal to anything strictly greater than L. If σ′i �i,σ σ′′i ,
we can represent �i,σ by setting ai,σ equal to anything strictly less than L.

Case Ib: ai,σ > L. We know from (11) and (12) that σ′′i �i,σ σ′i. If σ̄ �oppi σ,
then reciprocal altruism implies that if uj(σ̄

′′) > uj(σ̄
′), then σ̄′′i �i,σ̄ σ̄′i. Since

uj(σ̄
′′) > uj(σ̄

′), it follows that σ̄′′i �i,σ̄ σ̄′i. But

σ̄′′i �i,σ̄ σ̄′i ⇐⇒ ui(σ̄
′′) + ai,σ̄uj(σ̄

′′) > ui(σ̄
′) + ai,σ̄uj(σ̄

′). (19)
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Equivalence (17) guarantees that the inequality in the rhs of eq. (19) holds
iff ai,σ̄ > L.

1. σ̄ �oppi σ implies ai,σ̄ > L. The conclusion of the theorem holds provided
that ai,σ ∈ (L, ai,σ̄).

2. If σ̄ ∼oppi σ, then by reciprocal altruism, σ̄′′i �i,σ̄ σ̄′i, which means ui(σ̄
′′) +

ai,σ̄uj(σ̄
′′) > ui(σ̄

′) + ai,σ̄uj(σ̄
′). By (17), ai,σ̄ > L, so letting ai,σ = ai,σ̄

satisfies the conclusion of the theorem.

3. If σ �oppi σ̄, then any choice of ai,σ strictly greater than both L and ai,σ̄
satisfies the conclusion of the theorem.

Case Ic: ai,σ < L. We know from (11) and (12) that σ′i �i,σ σ′′i .
1. If σ̄ �oppi σ, then it is clearly possible to specify ai,σ so that ai,σ̄ > ai,σ.

2. If σ̄ ∼oppi σ, then, by reciprocal altruism, σ′i �i,σ σ′′i implies that σ̄′i �i,σ̄ σ̄′′i ,
which means ui(σ̄

′) + ai,σ̄uj(σ̄
′) > ui(σ̄

′′) + ai,σ̄uj(σ̄
′′). By equivalence (17),

ai,σ̄ < L, hence setting ai,σ̄ = ai,σ has the desired properties.

3. If σ �oppi σ̄, then, by reciprocal altruism, σ̄′′i �i,σ̄ σ̄′i implies σ′′i �i,σ σ′i.
Therefore, as σ′i �i,σ, it follows that σ̄′i �i,σ̄ σ̄′′i . It follows from the equivalence
in (17) that L > ai,σ̄. Consequently we can satisfy the conclusion of the
theorem provided that ai,σ is an element of the (non-empty) interval (ai,σ̄, L).

Case II: Both Ai(σj) and Ai(σ̄j) have empty interiors. Let L̄ be the unique
value for which

zi + L̄zj = z′i + L̄z′j for all (z1, z2), (z′1, z
′
2) ∈ Ai(σ̄j).

It is possible to find σ′i, σ
′′
i , σ̄

′
i, and σ̄′′i ∈ Σi that satisfy (12), (13),

uj(σ̄
′′)− uj(σ̄′) = uj(σ

′′)− uj(σ′) (20)

and

ui(σ̄
′) + L̄uj(σ̄

′) = ui(σ̄
′′) + L̄uj(σ̄

′′). (21)

It follows from equivalence (11) and inequality (12) that

σ′′i �i,σ σ′i ⇐⇒ ai,σ − L > 0 (22)
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is a necessary and sufficient condition for ai,σ to represent preferences �i,σ.
Similarly, it follows from eq. (21) that

ui(σ̄
′′) + auj(σ̄

′′) > ui(σ̄
′) + auj(σ̄

′)⇐⇒ (a− L̄)(uj(σ
′′)− uj(σ′)) > 0. (23)

It follows from inequality (12) and equivalence (23) that

σ̄′′i �i,σ̄ σ̄′i ⇐⇒ ai,σ̄ − L̄ > 0 (24)

is a necessary and sufficient condition for ai,σ̄ to represent preferences �i,σ̄.
Observe that (13), (20), and (21) imply that

ui(σ̄
′′)− ui(σ̄′) = ui(σ

′′)− ui(σ′) + (L− L̄)(uj(σ̄
′′)− uj(σ̄′)). (25)

The remainder of the proof differs depending on whether L and L̄ are equal.

Case IIa: L̄ > L.

1. If σ̄ �oppi σ, then the theorem holds because it is always possible to specify
ai,σ̄ >

L̄+L
2

> ai,σ.

2. If σ̄ ∼oppi σ and σ′′i �i,σ σ′i, then it follows from (22) that any a > L
represents the preferences �i,σ and when L̄ > L it is possible to find an ai,σ̄
that represents �i,σ̄ such that ai,σ̄ = ai,σ. (If σ̄′i �i,σ̄ σ̄′′i , ai,σ̄ can be chosen
to be between L and L̄).

3. If σ̄ ∼oppi σ and σ′i �i,σ σ′′i , then inequality (12), eq. (20), and eq. (25)
allow us to apply the definition of reciprocal altruism to conclude that σ̄′′i �i,σ̄
σ̄′i =⇒ σ′′i �i,σ σ′i. Therefore, σ̄′i �i,σ̄ σ̄′′i . From equivalence (24) we can take
any a < L̄ to represent �i,σ̄. Therefore it is possible to satisfy the conclusion
of the theorem.

If σ �oppi σ̄ and σ′i �i,σ σ′′i , then inequality (12), eq. (20) and eq. (25) allow
us to apply reciprocal altruism to conclude that σ̄′i �i,σ̄ σ̄′′i . It follows from
equivalence (24) that we can take any a < L̄ to represent �i,σ̄. Therefore it is
possible to satisfy the conclusion of the theorem by taking ai,σ̄ < min{L̄, ai,σ}.
If σ �oppi σ̄ and σ′′i �i,σ σ′i, then it follows from equivalence (22) that we can
take any a > L to represent �i,σ̄. Therefore it is possible to satisfy the
conclusion of the theorem.
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Case IIb: L̄ = L. In this case it follows from (20) and (25) that Conditions
2 and 3 in the definition of reciprocal altruism hold (and Condition 3 holds
as an equation). Also note that inequality (12) and eq. (20) imply that
uj(σ

′′) > uj(σ
′) and uj(σ̄

′′) > uj(σ̄
′).

1. If σ̄ �oppi σ and σ′′i �i,σ σ′i, then reciprocal altruism implies that σ̄′′i �i,σ̄ σ̄′i.
Hence, from (22) and (24) we can set ai,σ = L (if σ′′i ∼i,σ σ′i) or ai,σ > L (if
σ′′i �i,σ σ′i) and ai,σ̄ such that ai,σ̄ > ai,σ to satisfy the theorem. If σ′i �i,σ σ′′i ,
then ai,σ can be arbitrarily small by equivalence (22). So, when σ̄ �oppi σ, it
is possible to select a value for ai,σ̄ > ai,σ that represents �i,σ̄ since ai,σ̄ can
be close to L̄. Similar analysis holds for the case σ �oppi σ̄.

2. If σ̄ ∼oppi σ, then reciprocal altruism implies that σ′′i �i,σ σ′i iff σ̄′′i �i,σ̄ σ̄′i,
hence it is possible to satisfy the conclusion of the theorem by choosing
ai,σ = ai,σ̄. �
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