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Abstract This paper deals with 2-player coordination games with vanishing actions,
which are repeated games where all diagonal payoffs are strictly positive and all non-
diagonal payoffs are zero with the following additional property: At any stage beyond
r , if a player has not played a certain action for the last r stages, then he unlearns
this action and it disappears from his action set. Such a game is called an r -restricted
game. To evaluate the stream of payoffs we use the average reward. For r = 1 the
game strategically reduces to a one-shot game and for r ≥ 3 in Schoenmakers (Int
Game Theory Rev 4:119–126, 2002) it is shown that all payoffs in the convex hull
of the diagonal payoffs are equilibrium rewards. In this paper for the case r = 2 we
provide a characterization of the set of equilibrium rewards for 2 × 2 games of this
type and a technique to find the equilibrium rewards in m×m games. We also discuss
subgame perfection.

Keywords Game theory ·Repeated games ·Coordination games ·Nash equilibrium ·
Subgame perfect equilibrium

1 Introduction

A 2-player coordination game is a repeated game where both players have the same
number of actions, where all diagonal payoffs are strictly positive and where all
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non-diagonal payoffs are 0. In this paper we use the idea of vanishing actions intro-
duced by Joosten et al. (1995) for zero-sum repeated games. The idea behind vanishing
actions is forgetfulness or unlearning of those actions that have not been used for a
specified number of stages, as a counterpart of learning by doing, as introduced by
Arrow (1962). One can think of a surgeon who unlearns certain surgical skills when
not exercised at some, more or less, regular basis. More precisely, a number r is spec-
ified which is to be interpreted as follows: at any stage t > r , an action i that has not
yet vanished, will vanish from a player’s action set, when this player has not played
i at any of the previous r stages. Actions that have vanished are no longer available
in the remainder of the play. Thus, at any stage of play, players have to balance their
interest between achieving a high payoff and keeping the right actions available. Thus
we get a so-called r -restricted coordination game.

For r = 1 the game strategically reduces to a one-shot game and for r ≥ 3 in
Schoenmakers et al. (2002) it is shown that all payoffs in the convex hull of the diag-
onal payoffs are equilibrium rewards. In this paper we examine the case r = 2 and we
provide a characterization of the set of equilibrium rewards for 2 × 2 games of this
type and a technique to find the equilibrium rewards in m×m games. We also discuss
subgame perfection.

An r -restricted coordination game can also be interpreted as a stochastic game with
finite state and action spaces, introduced by Shapley (1953). In general n-player sto-
chastic games, the existence of approximate-equilibria is still unclear, but for certain
specially structured classes, e.g., zero-sum games (Mertens and Neyman 1981) and
general-sum 2-player games (Vieille 2000a,b), they have been shown to exist.

In Sect. 2 we present the model in more detail. In Sect. 3 we investigate 2-restricted
2×2 coordination games by means of two examples, characterizing the set of equilib-
rium rewards. In Sect. 4 we deal with subgame perfection in 2-restricted 2× 2 games.
In Sect. 5 we show how to find equilibria and subgame perfect equilibria in games
where the players have more than 2 actions. Finally, we discuss possible extensions
of our results.

2 The model

A 2-player r -restricted coordination game is determined by the following parameters:

1. K = {1, 2} is the set of players;
2. I k = {1, 2, . . . , m} is the initial set of pure actions for each player k ∈ K , with

m ≥ 2;
3. Rk : I 1 × I 2 → R is the payoff function for each player k ∈ K ; we assume that

Rk(i1, i2) > 0 if i1 = i2 and Rk(i1, i2) = 0 otherwise;
4. r ∈ N is the level of unlearning for the players.

The game is played at stages 1, 2, . . . , where each time simultaneously and inde-
pendently players 1 and 2 each have to choose one of their available actions i1

respectively i2. The action choices are announced and each player k receives a payoff
Rk(i1, i2). Then play moves to the next stage, where actions have to be chosen again.
However, actions may disappear according to the following rule: At any stage t > r ,
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Loss of skills in coordination games 771

an action that has not vanished so far, vanishes from a player’s action set if it was not
played at any of the stages t − r, t − r + 1, . . . , t − 1. Thus the number of available
actions may decrease during the course of play.

The history of play at stage t is the sequence of action pairs chosen at stages
1, . . . , t − 1. Let H be the set of all possible histories. For any history h ∈ H , we
denote by I k(h) the set of available or not (yet) unlearned pure actions of player k
after history h. A probability distribution on I k(h) is called a mixed action for player
k after history h ∈ H . A strategy for player k is a mapping which assigns a mixed
action on I k(h) to every history h. We denote a strategy by π for player 1 and by σ

for player 2. Each player k is assumed to maximize his limiting average reward, i.e.,

γ k(π, σ ) = lim inf
T→∞

1

T

T∑

t=1

Eπσ (Rk
t ),

where Eπσ (Rk
t ) denotes the expected payoff to player k at stage t given that (π, σ ) is

being played. A strategy pair (π, σ ) is called an equilibrium if γ 1(π, σ ) ≥ γ 1(π ′, σ )

for all π ′ and γ 2(π, σ ) ≥ γ 2(π, σ ′) for all σ ′, i.e., each player is playing a best reply
against the strategy of the other player.

Given a history h occurs, we obtain a subgame starting after h. In this subgame,
we can define strategies and equilibria in a similar fashion. We will call them fol-
low-up strategies and follow-up equilibria after history h. Every strategy induces a
follow-up strategy in all subgames, and every equilibrium induces a follow-up equi-
librium in those subgames which occur with a positive probability with respect to this
equilibrium. A strategy pair (π, σ ) in the original game is called a subgame perfect
equilibrium if it induces a follow-up equilibrium in every subgame.

3 Equilibrium rewards in 2 × 2 coordination games

In this section we analyze 2-restricted 2×2 coordination games. A 2×2 coordination
game can be described as follows:

L R
T
B

(
a1, b1 0, 0
0, 0 a2, b2

)
,

where a1, a2, b1, b2 > 0. Here T stands for top, B for bottom, L for left and R for
right. Analogously the entries of such a game will be called T L , T R, BL and B R.
Due to symmetry, it suffices to distinguish between the following 2 types of games.
For type 1 we have a1 ≥ a2 and b1 ≤ b2, whereas for type 2 we have a1 > a2 and
b1 > b2. In the following subsections we characterize the set of equilibrium rewards
for both types.
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3.1 Games of type 1

In this section we characterize the set of equilibrium rewards of 2-restricted 2 × 2
games of type 1. We do so by thoroughly investigating the following type 1 game G:

L R

G = T
B

(
2, 1 0, 0
0, 0 1, 3

)

We will prove the following statement:

Theorem 1 The set of equilibrium rewards in G equals the set of equilibrium rewards
of the following one-shot games:

(
V1 W1
W2 V2

)
,

where V1, V2 ∈
{
(2, 1), ( 3

2 , 2), (1, 3)
}

and W1, W2 ∈ U. Here U is the union of the
following 3 sets:

{(a, 1) | 1 ≤ a ≤ 2},
{(1, b) | 1 ≤ b ≤ 3}

and

{(
1− 1

2q+1 − 1
, 1− 2

3q+1 − 1

) ∣∣∣∣ q ∈ {0, 1, 2, . . .}
}
.

The set of equilibrium rewards in G is depicted in Fig. 1.
We introduce four auxiliary bimatrices which will help us analyse the set of possi-

ble equilibrium rewards in G. Suppose that the play is at stage t ≥ 2, and that all four
actions are still alive. Then, either the two diagonal or the two off-diagonal entries
have been chosen in turn before stage t . Let (π̂, σ̂ ) denote a follow-up equilibrium
from stage t on. Given that the entry chosen at stage t−1 was TL (i.e., entries TL and
BR have been chosen in turn before stage t), we now describe the follow-up rewards
from stage t + 1 depending on which entry is chosen at stage t .

If entry T L is selected at stage t as well: In this case the players unlearn actions B
and R, and entry T L will be played at every further stage, leading to reward (2, 1).

If entry T R is selected at stage t : In this case player 1 unlearns action B. We distin-
guish two subcases. If entry T R had a positive probability according to (π̂, σ̂ ), then
the pair of follow-up strategies from stage t + 1 must form a follow-up equilibrium,
and therefore player 2 will play action L with long-term frequency 1, leading to reward
(2, 1). On the other hand, if entry T R had probability zero according to (π̂, σ̂ ) and
was only played due to a deviation, then the follow-up reward from stage t+1 is either
(2, 1), (0, 0), or (1, 1

2 ); the last reward arises when player 2 plays L and R from stage
t + 1 on alternately.
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Loss of skills in coordination games 773

Fig. 1 Equilibrium rewards in G

If entry BL is selected at stage t : In this case player 2 unlearns action R, and we
find similarly to the previous case that if entry BL had a positive probability according
to (π̂, σ̂ ) then the follow-up reward from stage t + 1 is (2, 1), and that otherwise it is
either (2, 1), (0, 0), or (1, 1

2 ).
Finally, if entry B R is selected at stage t : In this case all actions remain alive, with

some follow-up reward γ t
B R = (γ

t,1
B R, γ

t,2
B R).

This situation for stage t is summarized by the following auxiliary bimatrix:

Gt
T L =

(
2, 1 2, 1�
2, 1� γ t

B R

)
.

Here, the diamonds in entries T R and BL indicate that the corresponding payoffs are
the follow-up rewards from stage t + 1 only if at stage t these entries occur with a
positive probability according to (π̂, σ̂ ).

In a similar way, when entry B R was played at stage t − 1, the situation for stage
t is summarized by the auxiliary bimatrix

Gt
B R =

(
γ t

T L 1, 3�
1, 3� 1, 3

)
.

The other two auxiliary bimatrices corresponding to entries T R and BL are

Gt
T R =

(
2, 1� 0, 0
γ t

BL 1, 3�
)

Gt
BL =

(
2, 1� γ t

T R
0, 0 1, 3�

)
.
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Note that these four auxiliary bimatrices above have in common that an entry con-
tains a diamond if and only if after playing this entry, precisely one of the players loses
an action. Moreover, when an entry with a diamond has probability zero according to
the follow-up equilibrium (π̂, σ̂ ) and nevertheless it is played due to a deviation, then
(0, 0) is a possible follow-up reward.

The following lemma regarding the auxiliary bimatrices Gt
T R and Gt

BL is immediate.

Lemma 2 Let (π̂, σ̂ ) be a follow-up equilibrium from stage t ≥ 2 after at stages
1, 2, . . . , t − 1 the entries T R and BL are selected alternately. If entry BL is the last
one at stage t − 1, then based on Gt

BL , the pair (π̂, σ̂ ) prescribes for stage t one of
the following:

• The players play a completely mixed equilibrium in Gt
BL , i.e., an equilibrium in

which all actions are played with a positive probability. In this case, both players
receive a reward strictly less than 1.

• Player 1 plays T with probability 1 and player 2 uses both L and R with a positive
probability, or player 2 plays R with probability 1 and player 1 uses both T and B
with a positive probability. In the former case player 2 receives reward 1, whereas
in the latter case player 1 receives reward 1.

• Both players play a pure action and they play one of the entries TL, T R, BR.

When entry T R is played last at stage t −1, then based on Gt
T R, the pair (π̂, σ̂ ) either

induces (2, 1) or (1, 3) as a reward, or prescribes for stage t to play entry BL with
probability 1 or to play a completely mixed equilibrium in Gt

T R.

We start the analysis of the set of possible equilibrium rewards for the game G by
discussing what happens if at stage 1 one of the entries T L or B R is selected.

Theorem 3 If at stage 1 one of the entries T L or B R is selected, then the set of
possible follow-up equilibrium rewards is {(2, 1) , (1, 3) , ( 3

2 , 2)}.
Proof Suppose that at stage 1 entry T L is selected; the proof is similar for entry B R.
Clearly, playing T L at every further stage is a follow-up equilibrium with reward
(2, 1), and playing entry B R at every further stage is a follow-up equilibrium with
reward (1, 3). Moreover, playing B R and T L alternately, starting with B R at stage 2,
also yields a follow-up equilibrium, with reward 1

2 · (2, 1)+ 1
2 · (1, 3) = ( 3

2 , 2).
Let (π̂, σ̂ ) be an arbitrary follow-up equilibrium after at stage 1 entry T L is selected.

We will now show that (π̂ , σ̂ ) induces one the three rewards above. Due to the structure
of G1

T L and G1
B R , there are two possibilities for the play induced by (π̂, σ̂ ), after entry

T L is played at stage 1: either entries T L and B R are played alternately during the
whole of play, or at the first stage when the play differs from this alternating sequence,
the chosen entry leads to reward (2, 1) or to reward (1, 3). Hence, the reward induced
by (π̂, σ̂ ) is a convex combination of (2, 1) and (1, 3).

If this convex combination is neither (2, 1) nor (1, 3), then according to G2
T L entry

B R is played at stage 2 with probability 1. Indeed, because player 2’s reward is more
than 1 he will play R with probability 1, and therefore player 1, whose reward is
less than 2, cannot use both actions with a positive probability and will play B with
probability 1 (in this case, the follow-up reward if player 1 deviates to T is not (2, 1)).
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We find similarly that at stage 3 entry T L has to be played with probability 1, and
continuing this way we obtain that (π̂, σ̂ ) induces the alternating sequence with T L
and B R with probability 1. This however leads to reward ( 3

2 , 2), which completes the
proof. 	


The next part of the analysis concerns the case when at stage 1 one of the entries
T R or BL is selected. We will make use of the following type of follow-up strategies
to retaliate deviations after which the deviator loses an action.

Definition 4 Let h be a history after which player k still has both his actions available
whereas his opponent has only one action left. The (0, 0)-threat is the follow-up strat-
egy for player k which, at every future stage, plays the action which yields payoffs
(0, 0).

By applying the (0, 0)-threat we obtain exactly the same set of follow-up equilib-
rium rewards after entry T R as after entry BL .

Lemma 5 Every follow-up equilibrium reward after at stage 1 entry T R is selected
is also a follow-up equilibrium reward after at stage 1 entry BL is selected, and vica
versa.

Proof Let (π̂T R, σ̂T R) be a follow-up equilibrium after at stage 1 entry T R is chosen.
Now consider the pair of follow-up strategies (π̂BL , σ̂BL), after at stage 1 entry BL is
chosen, which prescribes to play as follows: At stage 2 the players play entry T R with
probability 1, and afterwards from stage 3 on, they execute (π̂T R, σ̂T R) by ignoring
stage 1 and thinking of stage 2 as the initial stage. In addition, if a player deviates at
stage 2, he unlearns an action and then the other player punishes him by carrying out
the (0, 0)-threat. The pair (π̂BL , σ̂BL) is clearly a follow-up equilibrium, and induces
the same reward as (π̂T R, σ̂T R). Note that stage 2 is used to shift the game from “the
last move is BL” to “the last move is T R”. The converse statement can be shown
similarly. 	


The next two lemmas examine the possible follow-up equilibrium rewards, after
entry T R or BL , in which at least one player receives a reward of at least 1.

Lemma 6 Let (u1, u2) be a follow-up equilibrium reward after at stage 1 entry T R
or entry BL is chosen. Then, (u1, u2) cannot satisfy any of the following:

1. u1 > 1 and u2 > 1,
2. u1 < 1 and u2 ≥ 1,
3. u1 ≥ 1 and u2 < 1.

Proof We only prove statement 1; the other statements can be proved in a similar
fashion. By lemma 5 we may assume that at stage 1 entry BL was chosen. Suppose,
by way of contradiction, that a follow-up equilibrium (π̂, σ̂ ) from stage 2, after entry
BL at stage 1, induces reward (u1, u2) with u1 > 1 and u2 > 1. To indicate that
(u1, u2) arises after entry BL at stage 1, it will be convenient to use the notation
γ 1

BL = (u1, u2). It follows by lemma 2 based on G2
BL that (π̂, σ̂ ) selects entry T R at

stage 2 with probability 1 and therefore γ 2
T R = γ 1

BL . But then by lemma 2 based on
G3

T R , there are two possibilities for stage 3:
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(i) (π̂, σ̂ ) selects entry BL at stage 3 with probability 1 and therefore γ 3
BL = γ 1

BL .
Now at stage 4 the players face the same situation as at stage 2 and jumping
back and forth between T R and BL can not occur ad infinitum, since that
would lead to a reward of (0, 0). Hence now or later situation (ii) must occur.

(ii) (π̂, σ̂ ) prescribes a completely mixed equilibrium in G3
T R for stage 3 with

reward γ 1
BL . Some straightforward calculations show that then

γ
3,1
BL = 3− 2

γ
1,1
BL

> γ
1,1
BL and γ

3,2
BL = 4− 3

γ
1,2
BL

> γ
1,2
BL .

Continuing this way it follows that γ t
BL converges to (2, 3) when t tends to infinity

over the set of odd numbers, which is obviously impossible as there is no feasible
average reward close to (2, 3). 	

Lemma 7 Every pair (u1, 1), for u1 ∈ [1, 2], and every pair (1, u2), for u2 ∈ [1, 3],
are follow-up equilibrium rewards after at stage 1 one of the entries T R or BL is
selected. Moreover, these are the only follow-up rewards in which at least one player
receives a reward of at least 1.

Proof By lemma 5 we may assume that at stage 1 entry BL is chosen. We prove that
(u1, 1), for u1 ∈ [1, 2], is a follow-up equilibrium reward after at stage 1 entry BL is
selected. The proof for (1, u2) with u2 ∈ [1, 3] is similar, and then the final part of the
lemma follows from lemma 6.

We first show that (1, 1) is a follow-up equilibrium reward from stage 3 after at stage
1 entry BL is chosen and at stage 2 entry T R is chosen. We define a pair of follow-up
strategies (π̂, σ̂ ) from stage 3 as follows: At stage t ≥ 3, if all four actions are still
alive, π̂ prescribes the mixed action ( 2

3 , 1
3 ) and σ̂ prescribes the mixed action ( 1

2 , 1
2 )

when t is odd, whereas they prescribe to play entry T R when t is even. In addition, as
soon as an entry is chosen by which a player unlearns an action then (π̂, σ̂ ) prescribes
to repeat this entry at all further stages.

Notice that, at an odd stage t ≥ 3 when all four actions are still alive, the pair of
prescribed mixed actions (( 2

3 , 1
3 ), ( 1

2 , 1
2 )) forms an equilibrium in the game Gt

T R if
γ t

BL = (1, 1), with reward (1, 1). From this observation it follows easily that (π̂, σ̂ )

is a follow-up equilibrium from stage 3, with reward (1, 1).
Now consider a u1 ∈ [1, 2]. After entry BL at stage 1, let player 1 play T and player

2 play the mixed action (u1−1, 2−u1) at stage 2, and if by doing so entry TL is chosen
at stage 2 then repeat entry TL at all further stages, whereas if entry T R is chosen at
stage 2 then proceed with the above follow-up equilibrium (π̂, σ̂ ) from stage 3 giving
follow-up reward (1, 1). In addition, if player 1 deviates to action B at stage 2 then the
entry chosen at stage 2 should be repeated at all further stages. This is obviusly a follow-
up equilibrium from stage 2 with reward (u1−1) · (2, 1)+ (2−u1) · (1, 1) = (u1, 1).
This completes the proof. 	


The next three lemmas examine the possible follow-up rewards, after at stage 1 one
of the entries T R or BL is selected, in which both players receive strictly less than 1.

Lemma 8 (0, 0) is a follow-up equilibrium reward from stage t ≥ 2 after at stages
1, 2, . . . , t − 1 the entries T R and BL are selected alternately.
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Loss of skills in coordination games 777

Proof Suppose that at stage t−1 entry T R is chosen; the proof is similar for entry BL .
Let

(
π̂ , σ̂

)
be the following pair of follow-up strategies: From stage t on

(
π̂ , σ̂

)
pre-

scribes to play the action pairs BL and T R in turn, starting with BL at stage t , as long
as neither player deviates. If a player deviates at some stage, he immediately unlearns
an action and then the other player punishes him by carrying out the (0, 0)-threat. This
is a follow-up equilibrium, and the corresponding reward is (0, 0). 	

Lemma 9 Let

(
π̂ , σ̂

)
be a follow-up equilibrium after at stage 1 one of the entries

T R or BL is selected, with reward γ
(
π̂ , σ̂

)
< (1, 1). Let t ≥ 2 and let ht denote

the alternating sequence with T R and BL of length t − 1, starting with the one which
was selected at stage 1. Suppose that, with respect to (π̂, σ̂ ), the history at stage t is
ht with a positive probability. Then, given that this history ht occurs, we necessarily
have that:

(i) The follow-up equilibrium reward from stage t is strictly smaller than (1, 1).
(ii) At stage t either both players randomize or neither player randomizes.

(iii) If from stage t on no more randomization takes place, then the follow-up reward
from stage t is (0, 0).

Proof First we prove part (i). Suppose by way of contradiction that player 1’s fol-
low-up equilibrium reward from stage t is at least 1. Then against σ̂ , starting at stage
2, player 1 can assure a reward of at least 1. Indeed, player 1 should play T and B
alternately at stages 2, . . . , t − 1, starting with the action that he did not use at stage
1, so that he keeps both actions alive. Subsequently, if player 2 has only one action
left at stage t then player 1 can obtain a reward of at least 1 through the entries TL
and BR. On the other hand, if player 2 has both actions alive at stage t , which means
precisely that history ht occurs, then player 1 obtains at least 1 according to the fol-
low-up equilibrium from stage t . In either case, player 1 receives a reward of at least
1, which is a contradiction.

Part (ii) follows from part (i) and lemma 2. As for part (iii), if from stage t on no
more randomization takes place, then by parts (i) and (ii) and by lemma 2, we obtain
an infinite alternating sequence with entries T R and BL , which yields reward (0, 0).

	

Remark 10 Notice that for (λ, μ) < (1, 1) the unique completely mixed equilibrium
in the one-shot game

GBL =
(

2, 1 λ,μ

0, 0 1, 3

)

provides a reward of ( 2
3−λ

, 3
4−μ

) < (1, 1) and that this is also the reward that is yielded
by the unique completely mixed equilibrium in the one-shot game

GTR =
(

2, 1 0, 0
λ,μ 1, 3

)
.

We say that a pair of (follow-up) strategies (π, σ ) randomizes q times if q is the
largest number m ∈ N ∪ {0,∞} for which there is a history h such that, with respect
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to (π, σ ), history h occurs with a positive probability and there are m stages at which
both players randomized along h.

Let (π̂q , σ̂q) be a follow-up equilibrium after at stage 1 one of the entries T R or BL
is selected, with reward γ

(
π̂ , σ̂

)
< (1, 1), which randomizes q times (after stage 1).

Note that we do not have to consider randomization by only one player at a stage.
Indeed, this follows from part (ii) of lemma 9 when no action has vanished yet, and
from the uniqueness of the follow-up equilibrium reward when a player unlearns an
action.

Assume that q is finite; we will in fact show in the proof of lemma 11 that infinite
randomization cannot occur (it would lead to reward at least 1 for both players). In
view of remark 10, it makes no difference for the reward induced by (π̂q , σ̂q) when
these q randomizations take place. Hence, we can assume without loss of generality
that (π̂, σ̂ ) randomizes at stages {2, 3, . . . , q + 1}, as long as all four actions are alive
(i.e., entries T R and BL have been chosen in turn at the previous stages). So after at
stage 1 entry T R or BL is selected,

(
π̂q , σ̂q

)
prescribes to play as follows:

1. At stages t ∈ {2, 3, . . . , q + 1}, if all actions are alive then play the completely
mixed equilibrium in Gt

BL with γ t
T R = u(q + 1 − t) or in Gt

T R with γ t
BL =

u(q + 1 − t), depending on the entry selected at stage t − 1, where u(z) =
(1 − 1

2z+1−1
, 1 − 2

3z+1−1
). Note that q + 1 − t is the number of randomizations

left after stage t , and that u(0) = (0, 0).
2. If at stage q+2 all actions are alive, then from stage q+2 on, play the follow-up

equilibrium as in lemma 8, yielding reward (0, 0) (cf. part (iii) of lemma 9).
3. If at some stage t ∈ {2, 3, . . . , q + 1} a player unlearns an action (an this happens

for the first time) then play the action pair that is selected at stage t at all further
stages.

Lemma 11 For each q ∈ {0, 1, 2, . . .} the pair
(
π̂q , σ̂q

)
is a follow-up equilibrium

after at stage 1 entry T R or entry BL is selected, and it induces reward u(q) =
(1 − 1

2q+1−1
, 1 − 2

3q+1−1
). Moreover, these are the only follow-up rewards that are

strictly smaller than (1, 1).

Proof From stage q + 2 on,
(
π̂q , σ̂q

)
yields a follow-up equilibrium with reward

u(0) = (0, 0). At stage q + 1, at the last randomization, the players play the com-
pletely mixed equilibrium in Gq+1

BL with γ
q+1
T R = u(0) or in Gq+1

T R with γ
q+1
BL = u(0),

depending on the entry selected at stage q. By remark 10, this induces follow-up
reward u(1) = ( 2

3 , 3
4 ) from stage q + 1 on. Continuing this way we find that

(
π̂q , σ̂q

)

is a follow-up equilibrium from stage 2 on with reward u(q).
We will now show that there are no other follow-up rewards that are strictly smaller

than (1, 1). To this end, we argue that infinitely many randomization leads to reward
at least 1. Suppose that, after at stage 1 entry T R or entry BL is selected,

(
π̂∞, σ̂∞

)
is

a follow-up equilibrium which for every stage t ≥ 2 prescribes to play the completely
mixed equilibrium in Gt

BL or in Gt
T R , as long as all actions are still alive, such that γ t

T R
or respectively γ t

BL are precisely equal to the follow-up reward from stage t + 1 on.
Consider any stage q ≥ 2. When all actions are alive at stage q, the follow-up reward
after stage q is at least (0, 0) and, moreover, there have been q − 2 randomizations
before stage q. By the first part of the lemma, we obtain γ

(
π̂∞, σ̂∞

) ≥ u(q − 2).
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Since q ≥ 2 was arbitrary, we must have γ
(
π̂∞, σ̂∞

) ≥ (1, 1), which completes the
proof. 	


The following Theorem, which follows from the combination of lemmas 7 and 11,
summarizes our results for the case when at stage 1 one of the entries T R or BL is
selected.

Theorem 12 If at stage 1 one of the entries T R or BL is selected, then the set of
possible follow-up equilibrium rewards is the union of the following 3 sets:

{(a, 1) | 1 ≤ a ≤ 2},
{(1, b) | 1 ≤ b ≤ 3}

and

{(
1− 1

2q+1 − 1
, 1− 2

3q+1 − 1

) ∣∣∣∣ q ∈ {0, 1, 2, . . .}
}
.

Now we are ready to prove the main result of this section.

Proof of Theorem 1 Due to Theorems 3 and 12, it is clear that all equilibrium rewards
in the one-shot games given in Theorem 1 are equilibrium rewards in G. It remains to
show the converse. To this end, suppose that (π, σ ) is an equilibrium in G. We denote
by γT L the reward that (π, σ ) induces after at stage 1 entry TL is chosen. Note that if
entry TL is chosen at stage 1 with a positive probability, then γT L must be a follow-up
equilibrium reward, and Theorem 3 is applicable. A similar notation and remark hold
for the other entries too.

Let (x1, x2) denote the pair of mixed actions prescribed by (π, σ ) for stage 1.
Depending on which entries are played with a positive probability at stage 1, we dis-
tinguish different cases, and show in each of them that the reward γ (π, σ ) is also an
equilibrium reward in one of the one-shot games given in Theorem 1:

Case 1: x1 and x2 use all actions with a positive probability. In this case, (x1, x2)

is an equilibrium in the one-shot game with V1 = γT L , W1 = γT R, W2 =
γBL , V2 = γB R , with reward γ (π, σ ).

Case 2: x1 uses both actions T and B with a positive probability, whereas x2 places
probability 1 on one action. Suppose that this action is L; the proof is sim-
ilar for R. This means that player 1 is indifferent between entries TL and
BL . Due to Theorems 3 and 12, either γ (π, σ ) = γT L = γBL = (2, 1)

or γ (π, σ ) = γT L = γBL = (1, 3). Notice that, if γ (π, σ ) = (2, 1), then
playing T and L at stage 1 is an equilibrium in the one-shot game with
V1 = W1 = W2 = V2 = (2, 1) with reward (2, 1). The same holds for
reward (1, 3).

Case 3: x2 uses both actions L and R with a positive probability, whereas x1 places
probability 1 on one action. This case is similar to the previous one.
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Case 4: x1 and x2 both place probability 1 on one action. Suppose first that this yields
either entry TL or entry BR. This entry is obviously also an equilibrium in
the one-shot game with V1 = γT L , W1 = (0, 0), W2 = (0, 0), V2 = γB R ,
with reward γ (π, σ ). Now suppose that the entry prescribed by (x1, x2)

is BL; the proof is similar for entry T R. Then γBL belongs to one of the
3 sets in Theorem 12. If it belongs either to {(a, 1)|1 ≤ a ≤ 2} or to
{(1, b)|1 ≤ b ≤ 3}, then playing B and L at stage 1 is an equilibrium in the
one-shot game with V1 = (1, 3), W1 = γT R, W2 = γBL , V2 = (2, 1), with
reward γ (π, σ ). Finally, we prove that γBL cannot belong to the third set
in Theorem 12. Indeed, in that case player 1 would receive a reward strictly
less than 1. However, if player 1 deviates to action T at stage 1, then entry
TL will be chosen, and player 1 will be able to guarantee reward 1. This he
can do by, after entry TL , playing as follows: player 1 plays his two actions
alternately, unless player 2 loses an action at some point. In that case, player
1 plays the action repeatedly which gives him at least 1. This completes the
proof. 	


3.2 Games of type 2

In this section we characterize the set of equilibrium rewards in 2-restricted games of
type 2. We do so by examining the following type 2 game H:

L R

H = T
B

(
1, 2 0, 0
0, 0 4, 3

)
.

When at stage 1 entry TL or entry BR is chosen, we find the following analogously
to Theorem 3:

Theorem 13 If in H at stage 1 one of the entries TL or BR is selected, then the set
of possible follow-up equilibrium rewards is {(1, 2), (4, 3), ( 5

2 , 5
2 )}.

Now suppose that at stage 1 entry T R or BL is selected. The analysis is quite similar
to the one of the type 1 game G in the previous section. Of course, (1, 2) and (4, 3)

are follow-up equilibrium payoffs. Also, we find follow-up equilibria (π̂q , σ̂q) as in
lemma 11 for G, now with rewards

γ
(
π̂q , σ̂q

) =
(

1− 3
4q+1−1

, 2− 1(
3
2

)q+1−1

)

for all q ∈ {0, 1, 2, . . .}. One can check with a proof similar to the proof of lemma 6
that there are no other possibilities for follow-up equilibrium rewards, so a result
similar to lemma 7 does not hold for H. Hence we obtain:
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Fig. 2 Equilibrium rewards in H

Theorem 14 If in H at stage 1 one of the entries T R or BL is selected, then the
possible follow-up equilibrium rewards are (1, 2), (4, 3) and the rewards in the set

{(
1− 3

4q+1−1
, 2− 1(

3
2

)q+1−1

)
| q ∈ {0, 1, 2, . . .}

}
.

Note that in the above theorem, for q = 0 we obtain (0, 0) as a follow-up equilib-
rium reward.

Based on the results of Theorems 13 and 14 we obtain the following theorem, whose
proof is similar to the proof of Theorem 1.

Theorem 15 The set of equilibrium rewards in H equals the set of equilibrium rewards
of the following one-shot games:

(
V1 W1
W2 V2

)
,

where V1, V2 ∈
{
(1, 2), (4, 3), ( 5

2 , 5
2 )

}
and

W1, W2 ∈
{(

1− 3
4q+1−1

, 2− 1(
3
2

)q+1−1

)
| q ∈ {0, 1, 2 . . .}

}
∪ {(1, 2), (4, 3)}.

In Fig. 2 the set of equilibrium rewards in H is depicted.
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4 Subgame perfect equilibrium rewards in 2 × 2 coordination games

In this section we characterize the set of subgame perfect equilibria in the games G
and H. We start with G.

Lemma 16 If in G at stage 1 entry TL or respectively entry BR is selected, then the
unique subgame perfect follow-up equilibrium reward is (2, 1) (1, 3).

Proof We only prove the statement for action pair T L; the arguments for B R are
analogous. Let

(
π̂ , σ̂

)
be a subgame perfect follow-up equilibrium in G after at stage

1 entry T L is selected. In order to prove that
(
π̂ , σ̂

)
induces reward (2, 1), it suffices

to show that if player 1 plays T at stage 2 (possibly by individually deviating at this
stage), then his reward is 2. If player 1 plays T at stage 2, he unlearns action B and
there are two possible scenarios:

1. If player 2 plays action L at stage 2, he unlearns action R and entry T L will be
played at all further stages. This gives reward (2, 1).

2. If player 2 plays action R at stage 2, then he keeps both actions alive. Since(
π̂ , σ̂

)
is subgame perfect, in this case player 2 will eventually unlearn action R

and again the reward is (2, 1).

In both cases player 1 receives reward 2, hence the statement. 	

Lemma 17 If in G at stage 1 entry T R or entry BL is selected, then set of possible
subgame perfect follow-up equilibrium rewards is

{(a, 1) | 1 ≤ a ≤ 2} ∪ {(1, b) | 1 ≤ b ≤ 3}.

Proof Let
(
π̂ , σ̂

)
be a subgame perfect follow-up equilibrium in G after at stage 1 one

of the entries T R or BL is selected. Then
(
π̂ , σ̂

)
is an equilibrium in the following

stochastic game:

(2, 1)∗ (0, 0)→
(0, 0)∗ (1, 3)∗

state BL

(2, 1)∗ (0, 0)∗
(0, 0)← (1, 3)∗

state TR

.

The initial state is state BL if entry BL is chosen at stage 1, otherwise it is state T R.
The interpretation of state BL is the following. If in state BL entry T R is chosen then
the players receive zero payoffs and the play moves to state T R. If any other entry
is chosen, then, as indicated by an asterisk, the play moves to an absorbing state in
which this particular payoff will be obtained at all stages during the remainder of the
play. The interpretation of state T R is similar.

Notice that player 1 can guarantee himself a reward of 1 by stationarily playing( 1
2 , 1

2

)
in state BL and (0, 1) in state T R. Similarly player 2 can guarantee himself a

reward of 1 by stationarily playing ( 2
3 , 1

3 ) in state BL and (1, 0) in state T R. The only
follow-up equilibria in G which induce a reward of at least (1, 1) are, by the analysis
in the previous section, the strategies as mentioned in the proof of lemma 7. Since
these strategies do not make use of the (0, 0)-threat, they are subgame perfect, which
completes the proof. 	
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Based on the results of lemmas 16 and 17 we obtain following theorem, whose
proof is similar to the proof of Theorem 1.

Theorem 18 In G the following rewards can be obtained by subgame perfect equi-
libria:

{(a, 1) | 1 ≤ a ≤ 2} ∪ {(1, b) | 1 ≤ b ≤ 3}.

For games of type 2, like H, the analysis is even more straightforward. The reason
is, as mentioned before, that a result similar to lemma 7 does not hold for H. Hence:

Theorem 19 If
(
π̂ , σ̂

)
is a subgame perfect follow-up equilibrium in H after at stage

1 entry B R is selected, then γ
(
π̂ , σ̂

) = (4, 3). Furthermore if any of the other entries
was selected at stage 1, then γ

(
π̂ , σ̂

) ∈ {(1, 2), (4, 3)}. Hence in H only the rewards

(1, 2) , (4, 3) and 1
2 (1, 2) + 1

2 (4, 3) = ( 5
2 , 5

2 ) can be obtained by subgame perfect
equilibria.

5 m × m coordination games

In this section we describe a method to obtain both the set of equilibrium rewards
and the set of subgame perfect equilibrium rewards in 2-restricted m × m coordina-
tion games. In Sect. 3 we saw that for 2 × 2 games the characteristic property of a
coordination game, the (0, 0)-payoffs outside the main diagonal, gave rise to a sur-
prisingly complex set of equilibrium rewards. For bigger games however, the same
characteristic ensures that the analysis does not get much more complicated. A few
useful observations:

Observation (A): After two stages each player has at most two actions left. In
this subgame from stage 3 on, the action pair selected at stage 2
determines the set of follow-up (subgame perfect) equilibrium
rewards. Indeed, from the actions available at stage 3 and the
action pair selected at stage 2, we can deduce which actions
were chosen at stage 1.

Observation (B): Note that (0, 0) is not an equilibrium reward. A player can, in
expectation, get a strictly positive reward by using the follow-
ing strategy: Randomize uniformly over all m actions at stages
1 and 2. Now irrespective of the other player’s strategy, with
probability 1

m2 both times a diagonal entry is selected. In that
case the player can guarantee a strictly positive reward.

Observation (C): If at stage 1 an off-diagonal entry is selected, then (0, 0) is a fol-
low-up equilibrium reward. Indeed, suppose that entry (i1, i2)

is chosen at stage 1 with i1 �= i2. Then consider the pair of fol-
low-up strategies (π̂, σ̂ ) which prescribes to play as follows: At
stage 2, the players should play (i2, i1). If this occurs, then play
the follow-up equilibrium with reward (0, 0) from stage 3 on
(cf. Theorems 12 and 14). On the other hand, if a player deviates
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at stage 2, then his opponent should play the action chosen at
stage 1 at every future stage, which gives the deviator reward 0.
The pair (π̂, σ̂ ) is a follow-up equilibrium with reward (0, 0).

5.1 Equilibrium rewards

Let � be a 2-restricted m × m coordination game. We will now describe a method
based on backwards induction to find the set of equilibrium rewards in �. Observation
(A) enables us to list all the essentially different game-situations after stage 2 and
their corresponding sets of follow-up equilibrium rewards. Let i = (i1, i2) denote the
entry chosen at stage 1 and j = ( j1, j2) denote the entry chosen at stage 2. We use
the notation �E (i; j) for the follow-up equilibrium rewards after at stage 1 entry i
and at stage 2 entry j are chosen. We distinguish the following game-situations:

• Game-situation (1): After stage 2 all payoffs are (0, 0). In this case, �E (i; j) =
{(0, 0)}.

• Game-situation (2): After stage 2 we are left with a payoff matrix

(
α1, β1 0, 0
0, 0 α2, β2

)
,

where α1, α2, β1, β2 > 0. In this case, the values of the α’s and the β’s deter-
mine whether this matrix corresponds to a game of type 1 or of type 2. Recall that
by observation (A) the set of follow-up equilibrium rewards depends on entry j .
If j was on the main diagonal, then �E (i; j) is the set described in Theorem 3
(in case of a type 1 game) or Theorem 13 (type 2 game); if j was off-diagonal,
then �E (i; j) is the set described in Theorem 12 (in case of a type 1 game) or
Theorem 14 (type 2 game).

• Game-situation (3): After stage 2 we are left with a payoff matrix

(
α, β 0, 0
0, 0 0, 0

)
,

where α, β > 0. In this case we have two possibilities. If entry j , which was
selected at stage 2, was on the main diagonal of this matrix, then similarly to the
proof of Theorem 3 we find that �E (i; j) = {(α, β), 1

2 (α, β), (0, 0)}. If j was
off-diagonal, we now argue that �E (i; j) = {(0, 0) , (α, β)}. Clearly, both (0, 0)

and (α, β) can be obtained as follow-up equilibrium rewards (for (0, 0), the players
should alternately play the two off-diagonal entries in turn, supplemented with the
(0, 0)-threat). It remains to verify that there are no other follow-up equilibrium
rewards. Suppose by way of contradiction that c · (α, β) is a follow-up equilibrium
reward where c ∈ (0, 1). Suppose also that j is entry BL; the proof is similar when
j is entry T R. Then, at stage 3, player 1 never chooses action B, which would
with certainty yield reward (0, 0), and hence the only possibility is that entry T R
is chosen at stage 3 with follow-up reward c · (α, β). At stage 4, we find similarly
that entry BL has to be chosen with probability 1, and by continuing this way we

123



Loss of skills in coordination games 785

obtain an alternating sequence on BL and T R. This however yields reward (0, 0),
which is a contradiction.

• Game-situation (4): After stage 2 we are left with one of the following payoff
matrices:

(
α, β 0, 0

)
,

(
α, β

0, 0

)
or (α, β) ,

where α, β > 0. Obviously here �E (i; j) = {(α, β)}.
Now we describe the set of all follow-up equilibrium rewards after at stage 1 the

action pair i = (i1, i2) is selected. Note that at stage 2 both players still have all of
their m actions available. First we need additional notations. For every player k, let V k

i
be the m × m matrix whose entry j = ( j1, j2) consists of the value of the zero-sum
game which arises after at stage 1 entry i and at stage 2 entry j are played, and in
which player k maximizes his own reward, whereas his opponent minimizes player
k’s reward. This is player k’s punishment level in this subgame, and for its calculation
we refer to Joosten et al. (1995).

Let S1 and S2 be non-empty subsets of the action sets {1, 2, . . . , m} of the players,
and let S = S1 × S2. Let M S

i denote an m × m matrix that is constructed as follows:

M S
i ( j) =

{
a reward in�E (i; j) if j ∈ S
(V 1

i ( j), V 2
i ( j)) if j /∈ S.

Thus, when entry j is chosen in this auxiliary bimatrix-game M S
i , if j ∈ S then the

players receive a follow-up equilibrium reward in the subgame after at stage 1 entry i
and at stage 2 entry j are played, whereas if j /∈ S then they receive their punishment
levels in the same subgame. We denote by �E (M S

i ) the set of rewards which can be
obtained by an equilibrium in M S

i in which each player k uses every action from Sk

with a positive probability and every other action with probability 0. Obviously, for
some matrices M S

i and subsets S1 and S2, the set �E (M S
i ) may be empty.

Let �E (i) be the union of the sets �E (M S
i ) for all possible matrices M S

i and all
possible subsets S1 and S2 of {1, 2, . . . , m}.

Note that every reward in �E (M S
i ) is a follow-up equilibrium reward that can be

obtained after at stage 1 action pair i is selected. Indeed, play the corresponding equi-
librium in the bimatrix game M S

i at stage 2, and subsequently, if the entry j = ( j1, j2)

chosen at stage 2 is in S then continue with a follow-up equilibrium that induces the
reward M S

i ( j), whereas if action j1 does not belong to S1 then player 2 should punish
player 1 by lowering player 1’s reward to at most V 1

i ( j), and if action j2 does not
belong to S2 then player 1 should punish player 2 by lowering player 2’s reward to at
most V 2

i ( j).
Based on this observation, one can verify that the set �E (i) exactly consists of

all follow-up equilibrium rewards that can be obtained after at stage 1 the action pair
i is selected. Using the set �E (i) for each action pair i , we can then use a similar
technique for stage 1 to find the set of all equilibrium rewards in �.
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5.2 Subgame perfect equilibrium rewards

Backwards induction can also be used to find the set of subgame perfect equilibrium
rewards in an m×m game �. After stage 2 the play will still be in one of the four dif-
ferent game-situations mentioned in Sect. 5.1. We use the notation �S P E (i; j) for the
subgame-perfect follow-up equilibrium rewards after at stage 1 entry i and at stage 2
entry j are chosen. We first determine �S P E (i; j) in each of the four game-situations:

• In game-situation (1), we obviously have �S P E (i; j) = {(0, 0)}.
• Now consider game-situation (2). If entry j was on the main diagonal, then

�S P E (i; j) follows from lemma 16 for a type 1 game and from Theorem 19
for a type 2 game. If j was off-diagonal, then �S P E (i; j) follows from lemma 17
for a type 1 game and from Theorem 19 for a type 2 game.

• For game-situation (3), we find similarly to Theorem 19 that if j is entry TL
then �S P E (i; j) = {(α, β)}, whereas if j is any other entry then �S P E (i; j) =
{(0, 0), (α, β)}.

• In game-situation (4), we obviously have �S P E (i; j) = {(α, β)}.

Now we describe the set of all subgame perfect follow-up equilibrium rewards after
at stage 1 the action pair i is selected. Let Ni be an m × m matrix such that every
entry j of Ni contains a reward from �S P E (i; j). We denote by �(Ni ) the set of
equilibrium rewards in the bimatrix game Ni , and by �S P E (i) the union of the sets
�(Ni ) for all possible matrices Ni .

The set �S P E (i) exactly consists of all subgame perfect follow-up equilibrium
rewards that can be obtained after at stage 1 action pair i is selected. Using the set
�S P E (i) for each action pair i , we can then use a similar technique for stage 1 to find
the set of all subgame perfect equilibrium rewards in �.

6 Concluding remarks

General 2 × 2 games: In Sects. 3 and 4 we characterized the set of equilibrium and
subgame perfect equilibrium rewards in all 2 × 2 coordination games. However, our
techniques are also useful for the analysis of general 2 × 2 games. Unfortunately, it
seems inevitable to distinguish a large number of cases and the results strongly depend
on several characteristics of the payoff matrix, such as whether the players have strictly
or weakly dominant actions, or are indifferent between two actions, but for instance
also on the averages of the payoffs on a diagonal compared to the other payoffs. We
will provide illustrative examples below for some of these cases and show that even
seemingly simple cases may contain hidden difficulties and require a lengthy analysis.
We note that in Borm (1987), no fewer than 15 different types of 2×2 payoff matrices
are distinguished for the classification of the possible one-shot equilibria. In our set-
ting, the averages of the payoffs on the diagonals further complicate the classification,
although there might be a way to treat some cases simultaneously. To simplify the
discussion, we focus on equilibrium rewards.

123



Loss of skills in coordination games 787

Consider the two games K1 and K5 where:

Kx =
L R

T
B

(
6, 1 0, 0
x, 0 2, 1

)
.

Notice that in the one-shot versions of both K1 and K5 there are three equilibria,
namely T L , B R and a completely mixed one; this is also the case for the one-shot
versions of the coordination games G and H that we discussed in Sects. 3 and 4. Now
consider the 2-restricted versions of these games and assume that at stage 1 entry T R
is selected. In K1 we find that 1

2 · (0, 0)+ 1
2 · (1, 0) = ( 1

2 , 0) is not a follow-up equi-
librium reward, since player 1 can get at least 1 by only playing action B. However, in
K5 the payoff 1

2 · (0, 0)+ 1
2 · (5, 0) = (2 1

2 , 0) is a follow-up equilibrium reward. The
corresponding follow-up strategies are as follows: Play T R at odd stages and BL at
even stages, unless a player deviates. If player 1 deviates at any stage, then he unlearns
an action and player 2 punishes him by playing only action R in the future. If player
2 deviates at any stage, then he too unlearns an action and player 1 punishes him by
playing the action that reduces player 2’s payoff to 0 in the future.

Another factor that influences the analysis is a player having identical payoffs in
different entries. Just consider the following seemingly simple game in which player
1, who has a strictly dominant action, can fully determine player 2’s payoff:

L R
T
B

(
2, 1 5, 1
3, 0 6, 0

)

In this game, every pair in the set [3, 5] × [0, 1] is an equilibrium reward. To induce
an arbitrary pair (u1, u2) in [3, 5]× [0, 1], we use a type of equilibrium which did not
play a role in our analysis for coordination games. The players should play as follows:
At stage 1, player 1 makes a lottery by choosing an action according to the proba-
bility distribution (u2, 1 − u2), and at every later stage he repeats this action. Note
that player 1 loses an action after stage 2. Player 2 simply waits by playing actions L
and R at stages 1 and 2 respectively. Subsequently, player 2 makes a lottery at stage
3 depending on the remaining action of player 1, and plays the mixed action which
gives player 1 expected payoff u1. At all stages from stage 4 onwards, player 2 keeps
on repeating this action. In addition, if player 1 deviates to the other action at stage 2,
then player 2 should punish him with playing action L in the future. Notice that the
reward of each player is determined by the lottery of the opponent.

The above set [3, 5] × [0, 1] can be used to generate new equilibrium rewards. For
instance as follows: at stage 1, each player plays the mixed action ( 1

2 , 1
2 ). If an entry on

the main diagonal is chosen, then they play B R in the future (which is an equilibrium
in the one-shot game), whereas if an entry on the other diagonal is chosen then they
induce reward (5, 1) by playing strategies as above (in this case, player 1 will make
his lottery at stage 2, and player 2 should wait again by playing his two actions alter-
nately). This induces reward (5.5, 0.5). There are of course other equilibrium rewards
as well, and maybe some of these can only be obtained with more complex strategies.
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These examples above provided a brief illustration of the difficulties in general
2×2 games, and indicate that one may need to distinguish a large number of different
cases. For equilibria in bigger games we refer to Schoenmakers (2004).

Discounted rewards: We will now briefly discuss what happens to the sets of equi-
librium and subgame prefect equilibrium rewards when each player evaluates his
sequence of payoffs by discounting, instead of taking the average reward. The bottom
line is that these sets will change essentially, and will moreover contain a plethora
of rewards. To illustrate the changes, we examine the set of (discounted) equilibrium
rewards in the type 1 game G for a fixed discount factor β ∈ (0, 1). As before, the
main difficulty lies in determining the possible follow-up equilibrium rewards given
a certain entry is chosen at stage 1. Once this is done, we only have to investigate the
resulting one-shot games as in Theorem 1.

Assume first that entry TL is chosen at stage 1 (cf. Theorem 3); we obtain similar
results for entry BR. In this case, we obtain many follow-up equilibrium rewards by
letting the players play entries BR and TL in turn, starting with BR at stage 2, at
a specified number of stages (possibly infinite), and then repeating either entry TL
or entry BR at all further stages. This means in particular that, for relatively large
discount factors, we obtain follow-up equilibrium rewards that are “far” from the set
{(2, 1), (1, 3), ( 3

2 , 2)} as found for the average reward in Theorem 3. Thus, it is not
true that the discounted game approaches the average reward game when the discount
factor tends to 1.

Besides, for small discount factors, we also have other types of follow-up equilibria,
such as the following: at stage 2 play the unique completely mixed equilibrium in the
bimatrix game

L R
T
B

(
2, 1 β · (2, 1)

β · (2, 1) 1, 3

)

and at all further stages from stage 3 on, play entry BR if the entry at stage t was BR,
and play entry TL otherwise. Note that the payoffs of this bimatrix game are exactly
the corresponding follow-up rewards. In fact, the special case β = 0.5 would even
allow randomization at stage 2 on the entries T R and BR.

Assume now that entry BL is chosen at stage 1 (cf. Theorem 12); we obtain similar
results for entry T R. Here again, we have a large number of follow-up equilibrium
rewards. Just consider the type of follow-up strategies as in lemma 11. Now it will
also matter, in contrast with the average reward game, when the randomizations take
place, which leads to plenty of possibilities. Moreover, as part (i) of lemma 9 is no
longer valid for discounted rewards, part (i i) does not hold any more either, and this
has the consequence that in the follow-up strategies as in lemma 11 we also have to
consider randomization by only one player at certain stages.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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