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Abstract Consider two agents who learn the value of an unknown param-
eter by observing a sequence of private signals. Will the agents commonly
learn the value of the parameter, i.e., will the true value of the parameter
become approximate common-knowledge? If the signals are independent
and identically distributed across time (but not necessarily across agents),
the answer is yes (Cripps, Ely, Mailath, and Samuelson, 2008). This paper
explores the implications of allowing the signals to be dependent over time.
We present a counterexample showing that even extremely simple time de-
pendence can preclude common learning, and present sufficient conditions
for common learning.
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Common Learning with Intertemporal Dependence

1 Introduction

Coordinating behavior requires people to have beliefs that are not too different.
Differences in beliefs may arise when agents must learn about their environment in
order to identify the appropriate action on which to coordinate. Suppose two agents
would like to jointly choose an action that depends on the value of an unknown
underlying parameter, and that each agent observes a sequence of private signals
sufficiently informative as to ensure she will (almost surely) learn the parameter
value. Successful coordination requires that the agents (at least approximately)
commonly learn the parameter value—agent 1 must attach sufficiently high prob-
ability not only to a particular value of the parameter, but also to the event that
agent 2 attaches high probability to this value, and to the event that agent 2 at-
taches high probability to the event that agent 1 attaches high probability to this
value, and so on.

Cripps, Ely, Mailath, and Samuelson (2008) show that common learning obtains
when the private signals are drawn from finite sets and the signal distributions,
conditional on the parameter, are independent over time. A counter-example, based
on Rubinstein’s (1989) email game, shows that common learning can fail when
signal sets are infinite.

We consider common learning when the signal distributions are not independent
over time. We are ultimately interested in applications in which agents’ signals are
affected by their actions, as in repeated games. We then cannot expect signals
to be independent over time. This paper takes an intermediate step toward this
goal, studying a tractable class of time-dependent signal processes. The signals
are generated by an exogenously-specified, parameter-dependent hidden Markov
process. In a hidden Markov process, there is a finite Markov chain determining
the current state, that in turn determines the distribution of the agents’ private
signals. The signals may not be perfectly informative about the current state and
so the state is hidden from the agents.

We begin in Section 3 with an example showing that even a seemingly tiny
touch of intertemporal dependence can preclude common learning. Section 4 shows
that if the hidden state becomes public infinitely often with probability one, then
again we have common learning. For example, there may be a public signal that is
uniquely associated with a single recurrent hidden state.

Sections 5.2 and 5.3 then present two sets of separation conditions on the hidden
Markov process that suffice for common learning when there is no public informa-
tion. When signals are generated by a hidden Markov process, learning in general
calls for the agent to use the frequencies of the signals she observes and the in-
tertemporal structure of these observations to draw inferences about the realized
hidden states and so the parameter. However, drawing inferences about the likely
realizations of hidden states is a notoriously difficult problem. Section 5.2 offers a
“relative separation” condition, that the signal distributions generated by the dif-
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ferent parameter values are not “too close” to one another, that is expressed solely
in terms of expected signal frequencies, saying nothing about intertemporal pat-
terns. We then establish common learning via an argument independent of agent’s
inferences about the history of realized states in the hidden Markov process.

The condition offered in Section 5.2 is quite strong. Section 5.3 offers a weaker
separation condition. However, we must then supplement this condition with an
additional assumption, intuitively requiring that unusual realizations of the states
in the hidden Markov process cannot be too likely as explanations of observed signal
frequencies. The two sets of conditions are thus not nested. We view the sufficient
condition of Section 5.2 as being more demanding, though it has the advantage of
being more concise and more intuitive, as well as more straightforward to verify.

Cripps, Ely, Mailath, and Samuelson (2008) is the obvious point of departure
for this work. Like Cripps, Ely, Mailath, and Samuelson (2008), the primarily
technical tool is the characterization of common p-belief offered by Monderer and
Samet (1989).1

2 Common Learning

2.1 The Model

Nature first selects a parameter θ from the set Θ = {θ′, θ′′} according to the prior
distribution p. There are two agents, denoted by ` = 1, 2, who observe signals in
the periods t = 0, 1, 2, . . ..

Conditional on θ, the agents observe signals generated by a hidden Markov
process (Ephraim and Merhav, 2002). We let X denote the finite set of states for
this Markov process. The state in period zero, x0, is generated by a parameter-
dependent measure ιθ ∈ Δ(X). The subsequent parameter-dependent transition
probabilities are denoted by πθ = {πθ

xx′}, where πθ
xx′ is the probability that the

Markov process is in state x′ in some period t, given state x in period t−1 and
parameter θ.

The agents do not observe the state of the Markov process. However, each
agent ` observes in each period t a private signal z`t ∈ Z`. We assume each Z` is
finite and let zt = (z1t, z2t) ∈ Z1 × Z2 = Z.

The signal profile zt is independent across periods conditional on the parameter
and the hidden state. The joint distribution of z conditional on x and θ is denoted by
φxθ, so that the probability that zt = z is φxθ

z . We similarly denote the probability
that z`t = z` by φxθ

z`
and denote the corresponding marginal distribution by φxθ

` .
We denote the marginal distribution on agent `’s signals induced by the distribution
φxθ

` by φθ
` and the ergodic distribution (when defined) over states by ξθ.

1Steiner and Stewart (2011) examine a setting in which (in its simplest form) one agent
is informed of the parameter and the other receives signals whose distribution shares the
essential features of our example in Section 3. Steiner and Stewart (2011) establish a
common learning result for this setting, and then focus on the conditions under which
adding communication to the model either preserves or disrupts the common learning.
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A state of the world ω ∈ Ω consists of a parameter and a sequence of hidden
states and signal profiles, and hence Ω = Θ × X∞ × Z∞. We use P (respectively
P θ) to denote the measure on Ω induced by the prior p (resp. parameter θ), the
state process (ιθ, πθ) and the signal process φθ. We let E[ ∙ ] and Eθ[ ∙ ] denote the
expectations with respect to these measures. We abuse notation by often writing
θ or {θ} for the event {θ} × X∞ × Z∞, so that θ and {θ} denote both a value of
the parameter and an event in Ω.

A period-t history for agent ` is denoted by h`t = (z`0, z`1, . . . , z`t−1) ∈ H`t =
(Z`)t; {H`t}∞t=0 denotes the filtration induced on Ω by agent `’s histories. The
random variables P (θ | H`t), giving agent `’s posteriors on the parameter θ at the
start of each period, are a bounded martingale with respect to the measure P , for
each θ, and so the agents’ beliefs converge almost surely (Billingsley, 1979, Theorem
35.4).

2.2 Common Learning

For any event F ⊂ Ω, the H`t-measurable random variable P (F | H`t) is the
probability agent ` attaches to F given her information at time t.

We define Bq
`t(F ) to be the set of states for which at time t agent ` attaches at

least probability q to the event F :

Bq
`t(F ) := {ω ∈ Ω : P (F | H`t)(ω) ≥ q}.

Recalling that a state ω is an element of Θ × X∞ × Z∞, the set Bq
`t(F ) can be

thought of as the set of t-length private histories h`t at which agent ` attaches at
least probability q to the event F (since agent ` knows whether Bq

`t(F ) has occurred
(i.e., Bq

`t(F ) ∈ H`t)).
The event that F ⊂ Ω is q-believed at time t, denoted by Bq

t (F ), occurs if each
agent attaches at least probability q to F , that is,

Bq
t (F ) := Bq

1t(F ) ∩ Bq
2t(F ).

Note that while agent 1 knows whether Bq
1t(F ) has occurred, he need not know

whether Bq
2t(F ), and so Bq

t (F ), has occurred. The event that F is common q-belief
at date t is

Cq
t (F ) := Bq

t (F ) ∩ Bq
t (Bq

t (F )) ∩ ∙ ∙ ∙ =
⋂

n≥1

[Bq
t ]n (F ).

Hence, on Cq
t (F ), the event F is q-believed, this event is itself q-believed, and so

on.
We say the agents commonly learn the parameter θ if, for any probability q,

there is a time such that, with high probability when the parameter is θ, it is
common q-belief at all subsequent times that the parameter is θ:

Definition 1 (Common Learning) The agents commonly learn parameter θ ∈
Θ if for each q ∈ (0, 1) there exists a T such that for all t > T ,

P θ(Cq
t (θ)) > q.
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The agents commonly learn Θ if they commonly learn each θ ∈ Θ.

Because Cq
t (θ) ⊂ Bq

t (θ) ⊂ Bq
`t(θ), common learning implies individual learning.

2.3 Sufficient Conditions for Common Learning

The countable collection of events
{
[Bq

t ]n (θ)
}

n≥1
can be cumbersome to work with,

and it is often easier to approach common learning with the help of a characteriza-
tion in terms of q-evident events. An event F is q-evident at time t if it is q-believed
when it is true, that is,

F ⊂ Bq
t (F ).

From Monderer and Samet (1989, Definition 1 and Proposition 3), we have:

Proposition 1 The event F ′ is common q-belief at ω ∈ Ω and time t if and only if
there exists an event F ⊂ Ω such that F is q-evident at time t and ω ∈ F ⊂ Bq

t (F ′).

We use the following immediate implication:

Corollary 1 The agents commonly learn θ if and only if for all q ∈ (0, 1), there
exists a sequence of events {Ft}t and a period T such that for all t > T ,

(i) P θ(Ft) > q,
(ii) θ is q-believed on Ft at time t, and
(iii) Ft is q-evident at time t.

It is straightforward to establish common learning when the signals are inde-
pendent across players. More precisely, suppose that for each t, the private signal
histories h1t and h2t are (conditionally on θ) independent.2 Applying Corollary 1
to the events Ft = B

√
q

t (θ) then shows that common learning holds when agents
individually learn (Cripps, Ely, Mailath, and Samuelson, 2008, Proposition 2). This
simple argument does not rely on finite signal and parameter spaces, being valid
for arbitrary signal and parameter spaces.

The relationship between individual and common learning is more subtle when
the signal histories are not conditionally independent across agents. Cripps, Ely,
Mailath, and Samuelson (2008) study the case where the signals are conditionally
(on θ) independent over time, rather than being determined by a hidden Markov
process, but with arbitrary correlation between different agent’s signals within a
period. Individual learning is then equivalent to the marginal distributions of the
private signals being distinct. Cripps, Ely, Mailath, and Samuelson’s (2008) main
result is:

Proposition 2 Suppose that signals are conditionally (on θ) independently dis-
tributed across time (so that πθ

xx′ = πθ
x†x′ for all x, x†, x′, and θ), and that

the agents individually learn (so that the marginal distributions are distinct, i.e.,
φθ′

` 6= φθ′′

` for all `). Then the agents commonly learn Θ.

2In this case, the intertemporal dependence can be quite general, and need not be
described by a finite state hidden Markov process.
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Figure 1: The hidden Markov process for our example, where 0 < ζ < 1
2 .

The probabilities on the state transitions are indicated above
the transitions, and the signal realizations possible in each state
are indicated below the state, with z1, z2 ∈ {b, c}. The process
begins in state x0, and in each period stays in x0 with probability
1 − 2ζ, and transits with equal probability to either x1 or x2.

This result requires the agents’ signal spaces to be finite. Cripps, Ely, Mailath,
and Samuelson (2008, Section 4) provide an example showing that common learning
can fail when signals are conditionally independent across time (but not agents),
but drawn from infinite sets.

3 An Example with No Common Learning

We present here an example in which intertemporal dependence in the signal dis-
tributions prevents common learning. There are two values of the parameter θ,
given by θ′ and θ′′ with 0 ≤ θ′ < θ′′ ≤ 1 and a hidden Markov process with four
states, xk, k = 0, 1, 2, and 3. There are three signals, denoted by a, b, and c, i.e.,
Z` = {a, b, c}. State x0 is the initial state, and invariably generates the signal pair
(a, a). The signal distributions in the other three states are independent across
agents, conditional on the state and parameter, and are given by (for ` = 1, 2 and
j = 1, 2, 3)

φxjθ
` =

{
(1, 0, 0) if j = `,
(0, θ, 1 − θ) otherwise

. (1)

Figure 1 illustrates the Markov process and specifies the transition probabilities. In
the special case where θ′ = 0 and θ′′ = 1, we have essentially the “clock” scenario
of Halpern and Moses (1990, p. 568). We refer to the case presented here as the
“noisy clock” example.

The process begins in state x0, generating an uninformative a signal for each
agent, and generating a string of such signals as long as it remains in state x0.
However, with probability 1 (under both θ′ and θ′′), the Markov process eventually
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makes a transition to either state x1 or x2 (each transition being equally likely),
with state x` generating signal a for agent ` and either b or c for the other agent.
The Markov process then necessarily moves to state x3, at which point no further
a signals are observed. Here, each player independently draws signal b with prob-
ability θ and signal c with probability 1 − θ, so that the subsequent frequencies of
signals b and c reveal the parameter. We thus have individual learning.

The agents do not commonly learn the parameter. Instead, in reasoning rem-
iniscent of Rubinstein’s (1989) email game, an agent who has seen a string of a
signals (before switching to either signal b or signal c, and never subsequently ob-
serving another a) knows that the other agent has observed either one more or one
less a signal. This sets off an infection argument, with the agents forming iterated
beliefs that attach significant probability to ever-longer strings of a signals, culmi-
nating in a belief that one agent has seen nothing but a’s. But then that agent has
learned nothing, precluding common learning. More formally:

Lemma 1 In the noisy clock example, at any history h`T , each agent has iterated
q-belief that the other agent has observed at least T − 1 periods of a, where q =
(1 − 2ζ)/(2 − 2ζ).

Proof. Fix T , and let A`t be the event that agent ` has observed precisely t > 1
signal a’s in the history h`T , for t < T . Then given agent ` has observed t signal
a’s, he knows that agent ˜̀ has seen either one more a or one less. We have

P θ(A`t ∩ A˜̀t−1) = (1 − 2ζ)t−2ζ

and P θ(A`t ∩ A˜̀t+1) = (1 − 2ζ)t−1ζ,

and so

P θ(A˜̀t+1 | A`t) =
1 − 2ζ

2 − 2ζ
= q.

Thus, conditional on observing A`t, agent ` attaches at least probability q to the
event A˜̀t+1. Or, in the language of belief operators,

A`t ⊂ Bq
` (A˜̀t+1), A˜̀t+1 ⊂ Bq

˜̀(A`t+2), ∙ ∙ ∙ .

Iterating, we get

A`T ⊂ [Bq
` Bq

˜̀]
T−t−1

2 Bq
` A˜̀T , for T − t odd,

and A`T ⊂ [Bq
` Bq

˜̀]
T−t

2 A`T , for T − t even.

Lemma 1 implies that each agent has iterated q-belief that that the other player’s
posterior on θ is close to his prior, and so common learning fails (Morris, 1999,
Lemma 14).

This example generalizes to one in which the signal distributions have full sup-
port in each state. Suppose that, in each state, with probability 1 − 9ε, the signals
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are distributed as in (1) and Figure 1, and with probability 9ε, there is a uniform
draw from the set of joint signals {aa, ab, ac, ba, bb, bc, ca, cb, cc}. We again have a
failure of common learning. Let τ̃ be the first date at which the process is not in
state x0. There exists η > 0 such that at any time t and conditional on τ̃ > τ for
any τ < t, there is probability at least η that agent 2 observes a history h2t such
that Prθ(τ̃ > τ +1 | h2t) > η (Appendix A.1 contains a proof). The same statement
holds reversing the roles of agents 1 and 2, and so there is iterated η-belief in τ̃ = t.
Since the signals are uninformative about the parameter in state x0, there is then
iterated η-belief that the agents do not learn the parameter.

4 Resets: A Block-Based Condition for Common
Learning

Our first positive result requires that there is a public signal “0” that reveals some
recurrent state x̄ of the hidden Markov process. Either both agents observe the
signal 0 or neither do, signal 0 is observed with unitary probability in state x̄, and
signal 0 is never observed in another state. As a result, the hidden state becomes
public infinitely often with probability one. We refer to this as a “reset,” since
observing signal 0 allows an agent to begin a new process of forming expectations
about the other agent’s signals.

The periodic public identification of the state breaks an agent’s private history
into “blocks” of consecutive signals, with a new block beginning each time the signal
0 is observed. The string of signals within each block can be viewed as a single
signal, drawn from a countably infinite (since block lengths are unbounded) set of
signals. By the Markov property (and the common knowledge nature of the signal
0), the strings of signals observed within a block are independent across blocks. We
have thus transformed a model of time-dependent signals selected from a finite set
to a model where, by time t, the agents will have observed a random number of
time-independent signals selected from a countable set of block signals.

Moving to time-independent signals is useful because it allows us to apply a
result from Cripps, Ely, Mailath, and Samuelson (2008). At the same time, we have
lost the finite-signal-set assumption used in our earlier positive result. Nevertheless,
the length of each block is common knowledge, precluding the infections in beliefs
that can disrupt common learning. However, the unbounded block lengths give rise
to a second difficulty, namely unbounded likelihood ratios—arbitrarily long blocks
of private signals can be arbitrarily informative.

Applying the arguments from Cripps, Ely, Mailath, and Samuelson (2008) to
histories where all block lengths are less than some constant c does yield a sequence
of self-evident events. The events in the sequence restrict, for each block length, the
frequency of different blocks to be in an appropriate neighborhood of a distribution
over blocks of signals. However, since arbitrarily long blocks arise eventually with
probability one, the probability of the events in the sequence converges to zero
asymptotically. To obtain common learning on a sequence of events requires that
the sequence accommodate arbitrarily long blocks of signals. The sequence of events
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we use allows for arbitrarily long blocks, but restricts, for each block length less
than c, the frequency of different blocks to be in the appropriate neighborhood. A
key idea is that we do not restrict the frequency of different blocks greater than c,
but we only consider histories on which the average length of all blocks observed
(including those longer than c) is close to its expected value. This ensures that
atypical long blocks have only a small effect on beliefs, and so do not upset the
individual learning and self-evidence implied by the restriction on block lengths
less than c.

4.1 Assumptions and Common Learning

We make four assumptions on the signal processes that determine the measure P θ.
Our first assumption is that the process on the hidden states is ergodic:

Assumption 1 (Ergodicity) For all θ, the hidden Markov process πθ is aperiodic
and irreducible. The implied stationary distribution on X is denoted by ξθ.

The second assumption is technical, while the last two are substantive.
We work with signal-generating processes with the property that no signal re-

veals the true parameter with probability one. This simplifies the analysis by elimi-
nating nuisance cases, such as cases in which likelihood ratios are undefined.3 A full-
support assumption would ensure this, but we cannot literally invoke a full-support
assumption in the presence of resets, since the definition of a reset ensures that
if agent ` observes signal 0, agent ˜̀ cannot observe another signal. The following
assumption accommodates resets while still conveniently excluding cases in which
the posterior jumps to one. Under part 1 of this assumption, all of an agent’s sig-
nals occur with positive probability under both parameters, that is,

∑
x ξθ

xφxθ
z`

> 0
for all θ, `, z`. This avoids the possibility that beliefs might jump to unity because
agent `’s signals have different supports for different parameter values. Similarly if
P θ′

(z`t = z`|z`,t−1 = z′`) = 0 but P θ′′
(z`t = z`|z`,t−1 = z′`) > 0, then observing such

a transition will cause agent `’s posterior on θ′′ to jump to unity, and the second
part of the assumption precludes this possibility.

Assumption 2 (Common Support)

1.
∑

x ξθ
xφxθ

z`
> 0 for all `, θ and all z` ∈ Z`.

2. πθ′

xx′ = 0 if and only if πθ′′

xx′ = 0.

The next two assumptions provide the key ingredients for our result. The first
of these assumptions is necessary and sufficient to ensure that each agent can learn

3For example, we would have to augment the definition of relative entropy in (3) by
specifying a value for those cases in which the probability in the denominator is zero.

8



the parameter, hence providing the individual learning condition of our desired
“individual learning implies common learning” result.4

We need two pieces of notation. First, when signals are time-dependent, cor-
relations between current and future signals convey information about the value of
the underlying parameter. The probability that an arbitrary ordered pair of signals
z`tz`,t+1 is realized under P θ is

P θ(z`tz`,t+1) =
∑

x

ξθ
xφxθ

z`t

∑

x′

πθ
xx′φx′θ

z`,t+1
. (2)

Second, given two distributions, p and q defined on a common outcome space
E , their relative entropy, or Kullback-Leibler distance, is given by

H(p‖q) =
∑

e∈E

p(e) log
p(e)
q(e)

. (3)

The Kullback-Leibler distance is always nonnegative, and equals zero only when
p = q (Cover and Thomas, 1991, Theorem 2.6.3). However, it is not a metric, since
it is not symmetric and does not satisfy the triangle inequality.

Assumption 3 (Identification) For ` ∈ {1, 2} and θ 6= θ̃, there exists β` > 0
such that

H
(

P θ(z`tz`,t+1)
∥
∥P θ̃(z`tz`,t+1)

)
= Eθ

(

log
P θ(z`tz`,t+1)

P θ̃(z`tz`,t+1)

)

= β`.

The final assumption is the reset condition: there exists a public signal identi-
fying a state in the hidden Markov process.

Assumption 4 (Resets) There exists a state x̄ ∈ X and a signal 0 ∈ Z1 ∩ Z2

such that

φxθ
z`

=

{
1 if x = x̄, z` = 0
0 if x 6= x̄, z` = 0.

The signal 0 is a public signal that reveals the hidden state x̄: either both
agents observe it or neither do, and it is never observed in a state other than x̄. It
is without loss of generality to assume that the signal 0 appears with probability 1
in state x̄, since otherwise we could split x into two states, one featuring signal 0
with probability 1 and one featuring signal 0 with probability 0. The pair of zero
signals is also denoted 0.

These assumptions suffice for common learning:

Proposition 3 If the signal process satisfies Assumptions 2–4, then the agents
commonly learn the parameter θ.

4Assumption 3 is necessary and sufficient for identifying the parameter when the hidden
Markov process is irreducible (as assumed here). See Ephraim and Merhav (2002, p. 1439)
and the references therein for details and conditions identifying the parameter in more
general models.
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4.2 Proof of Proposition 3: Preliminary Considerations

4.2.1 Blocks of Data

For a given history (h1t, h2t), define τ1, τ2, ..., τN+1 to be the times (in order) that
the agents observed the public signal 0. We use N to denote the (random) number
of completed blocks observed before time t and use n = 1, ..., N to count these
block-signals, suppressing the dependence of N on t in the notation. Let z̄o

` denote
the block of signals observed up to and including the first zero signal. We define
z̄`n to be the block of signals observed between the nth and n + 1st zero signal (if
there are no such signals z̄`n = ∅). Finally, we define z̄e

` to be the block of signals
after the last public signal (and the empty set again if they do not exist). That is,

z̄o
` = (z`0, z`1, . . . , z`,τ1) = (z`0, z`1, . . . , z`τ1−1, 0),

z̄`n = (z`,τn+1, z`,τn+2, . . . , z`,τn+1−1), (4)

and z̄e
` = (z`,τN+1+1, z`,τN+1+2, . . . , z`t).

We use bs = (z1, z2, . . . , zs) ∈ Bs to denote a generic block of non-zero signal
profiles of length s, where Bs = B1s × B2s and B`s = (Z` \ {0})s.5 The countable
set of all possible agent-` signal blocks is B` =

⋃∞
s=0 B`s (where B`0 = ∅). We

define ζθ(bs) to be the θ-probability that a given block of data bs occurs between
two zero signals, that is,

ζθ(bs) = P θ(z1, z2, . . . , zs, zs+1 = 0 | z0 = 0),

∀bs = (z1, z2, . . . , zs) ∈ B := ∪∞
s=0Bs. (5)

The probability that a zero signal immediately follows another zero signal is ζθ(∅).
The measure ζθ is uniquely defined by the transition and signal probabilities. The
Markov process is stationary and the zero signal is realized infinitely often with
probability one. Therefore,

∑

s

∑

bs∈Bs

ζθ(bs) = 1.

Order the set of possible blocks of signals each player can receive by length,
beginning with the shortest block (the empty set or 0-block), then the possible
1-block signals ordered arbitrarily, and so on. We refer to a given signal block for
agent 1 as bsi ∈ B1s, so that bsi denotes the i-th element of the set of s-blocks. We
perform a similar operation on agent 2’s blocks writing them as bsj ∈ B2s, where j
ranges over all s-blocks for agent 2. This notation implies that any b ∈ B can be
referred to as a triple sij where s is the (public) length of the block and bsi (bsj) is
the data agent 1 (agent 2) observed. The marginals are

ζθ
si =

∑

j

ζθ
sij and ζθ

sj =
∑

i

ζθ
sij , where ζθ

sij = ζθ(bsij).

5It is possible that not all such blocks occur with positive probability when preceded
and followed by zero signals (that is blocks of length s + 2 of the form (0, z̄s, 0)).
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We summarize an agent’s history, h`t, by an initial block, z̄o
` ∈ B`, a terminal

block, z̄e
` ∈ B`, and a potentially large but random number N of full blocks in

B`. The data collected by the agent 1 is summarized by a triple ( z̄o
1 , z̄e

1, f
t
si) where

f t
si ∈ N records the number of observations of the block bsi by agent 1 before time

t. Similarly, agent 2’s data is summarized by (z̄o
2 , z̄e

2, f
t
sj).

The process generating signals is ergodic, so there is an exponential upper bound
on the arrival times of the zero signal. Denote by σ the time of first observation
of the zero signal, that is, σ = min{t ≥ 0 : zt = 0}. The ergodicity of the hidden
Markov process and Assumption 4 imply that for any state x 6= x̄ and any θ there
is a strictly positive probability of moving within |X|−1 steps from state x to state
x̄, at which point signal 0 necessarily appears. Let ρ > 0 be the minimum such
probability, where we minimize over the |X| possible initial states,

ρ = min
x

P θ{σ < ∞ | x0 = x} = min
x

P θ{σ ≤ |X| − 1 | x0 = x}. (6)

Starting from anywhere, therefore, the probability that state x̄ is visited in the next
|X| − 1 periods is at least ρ. Hence (1 − ρ)P θ(σ ≥ t | x0) ≥ P θ(σ ≥ t + |X| | x0).
A simple calculation then gives

P θ(σ ≥ t | x0) ≤
λt

(1 − ρ)
, where λ = (1 − ρ)1/|X| < 1. (7)

We note the following for future reference.

Lemma 2 The expected time to the first realization of the zero signal is finite, as
is the expected length of full blocks. The variance of the length of full blocks is also
finite.

Proof. The expected time till the first realization of the zero signal satisfies

Eθ(σ | x0) =
∞∑

s=1

s
[
P θ(σ ≥ s | x0) − P θ(σ ≥ s + 1 | x0)

]

=
∞∑

s=1

sP θ(σ ≥ s | x0) −
∞∑

s=2

(s − 1)P θ(σ ≥ s | x0)

=
∞∑

s=1

P θ(σ ≥ s | x0) ≤
∞∑

s=1

λs/(1 − ρ) =
λ

(1 − λ)(1 − ρ)
< ∞.

Since the minimum in (6) is taken over all x, including x̄, this calculation also
bounds this expected length of a full block (take x0 = x̄). A similar argument
shows that the variance is finite.

4.2.2 Posterior Beliefs

We now show that the agents’ posterior beliefs can be written as a function of the
frequencies of agents’ blocks of data.
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Agent `’s posterior at time t, pθ
`t, is the h`t-measurable random variable de-

scribing the probability that agent ` attaches to the parameter θ at time t given
the observed data. From Bayes’ rule, we have

L`t := log
P θ′

(h`t)
P θ′′(h`t)

= log
pθ′

`t

1 − pθ′

`t

− log
pθ′

0

1 − pθ′

0

. (8)

Repeatedly conditioning on the arrival times τm of the zero signal for the first
equality, then applying the Markov assumption and the fact that 0 signals are
public for the second equality, a substitution from (5) for the third, and finally,
defining nt

si for the number of observations of block bsi in t periods, gives

L1t = log
P θ(h1τ1)P

θ(h1τ2 | h1τ1) ∙ ∙ ∙P
θ(h1τN+1 | h1τN )P θ(h1t | h1τN+1)

P θ̃(h1τ1)P θ̃(h1τ2 | h1τ1) ∙ ∙ ∙P θ̃(h1τN+1 | h1τN
)P θ̃(h1t | h1τN+1)

= log
P θ(h1τ1)P

θ(h1τ2 | zτ1 = 0) ∙ ∙ ∙P θ(h1τN+1 | zτN = 0)P θ(h1t | zτN+1 = 0)

P θ̃(h1τ1)P θ̃(h1τ2 | zτ1 = 0) ∙ ∙ ∙P θ̃(h1τN+1 | zτN
= 0)P θ̃(h1t | zτN+1 = 0)

= log
P θ(z̄o

1)ζθ(z̄11) ∙ ∙ ∙ ζθ(z̄1N )P θ(z̄e
1 | zτN+1 = 0)

P θ̃(z̄o
1)ζ θ̃(z̄11) ∙ ∙ ∙ ζ θ̃(z̄1N )P θ̃(z̄e

1 | zτN+1 = 0)

= log
P θ(z̄o

1)

P θ̃(z̄o
1)

+ log
P θ(z̄e

1)

P θ̃(z̄e
1)

+
∑

si

nt
si log

ζθ
si

ζ θ̃
si

.

We exclude from the summation in the last line any signal profiles bsi that occur
with zero probability (under all θ).

Recall that N is the number of completed blocks observed by time t. We can
write agent 1’s beliefs as a sum of independent random variables: the log-likelihood
of the data before the first zero, the log-likelihood of the data after the last zero
and the empirical measure

ζ̂t
si = nt

si/N

of the block data. That is,

log
pθ
1t

1 − pθ
1t

= log
pθ
0

1 − pθ
0

+ log
P θ(z̄o

1)

P θ̃(z̄o
1)

+ log
P θ(z̄e

1)

P θ̃(z̄e
1)

+ N
∑

si

ζ̂t
si log

ζθ
si

ζ θ̃
si

. (9)

This equation expresses the posterior, pθ
1t, in terms of the data (z̄o

1 , z̄e
1, f

t
si) (an

equivalent argument holds for agent 2).

4.2.3 The Sequence of Events

We now describe the class of events we use to establish common learning. The
events we consider depend on a mixture of private and public information. The
public information is the lengths of blocks. We require the initial and terminal
blocks to be not too long. We also require that the average length of the completed
blocks be close to its expected length. This allows the agent to observe some long
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blocks, but prevents rare events having particularly perverse effects on the agents’
private beliefs. The private event is that the agents’ observations of block signals
of length less than some number c are close to their expected frequencies.

The first event It(b) is the public event that the initial and terminal blocks
are not long. The parameter b ∈ N bounds the length of the initial and terminal
blocks:

It(b) = {(h1t, h2t) : max{τ1, t − τN} ≤ b }.

The second event Mt(α, θ) is the public event that the average length of the
blocks that are complete is close to the expected length of blocks under the relevant
parameter. The average length of the completed blocks is

∑
si sζ̂t

si =
∑

sj sζ̂t
sj . The

expected length is
∑

si sζθ
si =

∑
sj sζθ

sj . The parameter α determines how close the
mean block length is to its expected value:

Mt(α, θ) =

{

(h1t, h2t) :

∣
∣
∣
∣
∣

∑

sk

s(ζ̂t
sk − ζθ

sk)

∣
∣
∣
∣
∣
< α, k = i, j

}

.

To define the private event that agents’ observed signal frequencies are close to
their expected values, we first consider the following c-truncation of the model. In
every period N = 0, 1, 2, . . ., each agent observes one of a finite number of block
signals, drawn from {bsi}s≤c ∪ {b∗}, for agent 1 and {bsj}s≤c ∪ {b∗} for agent 2.
The pair (bsi, bsj) is selected in each period from the ζ-distribution of block signals
generated by θ, with the signal b∗ replacing any block longer than c. The joint
distribution of the agents’ signals in the c-truncation is

P θ(bsij) = ζθ
sij =: ϕθ

sij , ∀s ≤ c; and

1 −
∑

s>c,i,j

ζθ
sij =: ϕθ

b∗ , otherwise.

We use ϕθ
si :=

∑
j ϕθ

sij and ϕθ
sj :=

∑
i ϕθ

sij to denote the agents’ marginals for
signals and (ϕ̂N

si , ϕ̂N
sj , ϕ̂N

b∗) to denote the agents’ empirical measure at time N .
Cripps, Ely, Mailath, and Samuelson (2008, Proposition 3) covers the c-truncation

model, and so there is common learning in that model. From the proof of that
proposition, we have the following for the c-truncation model:6

For all ε > 0, there exists δ ∈ (0, ε) and a sequence of events {F θ
N (ε)}∞N=0 given

by F θ
N (ε) = {θ} ∩ Gθ

1N (ε) ∩ Gθ
2N (ε), where Gθ

`N (ε) is an event on `’s private signal
profiles, such that, for all N ∈ N,

((ϕ̂N
si)s≤c, ϕ̂

N
b∗) ∈ Gθ

1N (ε) =⇒
∑

s≤c,i

|ϕ̂N
si − ϕθ

si| < ε, 7 (P1)

6Condition (P1) follows from Cripps, Ely, Mailath, and Samuelson (2008, (13)–(14))
(modulo different notation) while (P2) is established in Cripps, Ely, Mailath, and Samuel-
son (2008, page 926).

7Since frequencies sum to one, the consequent of (P1) implies
∑

s≤c,i |ϕ̂
N
si−ϕθ

si|+|ϕ̂N
b∗−

ϕθ
b∗ | < 2ε; and a similar comment applies to the antecedent of (P2).
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and ∑

s≤c,i

|ϕ̂N
si − ϕθ

si| < δ =⇒ ((ϕ̂N
si)s≤c, ϕ̂

N
b∗) ∈ Gθ

1N (ε), (P2)

with a similar property holding for agent 2. Moreover, for all q ∈ (0, 1), there is a
Tε ∈ N such that, for all N > Tε,

F θ
N (ε) is q-evident. (P3)

Returning to the untruncated model, we apply Corollary 1 to the intersection
of It(b) (initial and terminal blocks are not too long), Mt(α, θ) (the average block
length is close to its expectation), N > Tε (there are more than Tε completed
blocks), and the event that agents’ frequencies for blocks are in the sets Gθ

`N (ε)
defined above. To make this precise, recall that ζ̂t

si denotes the frequency of the
signal blocks bsi received by agent 1 over the N completed blocks observed in the
first t periods, and denote the frequency of the N blocks observed longer than c in
the first t periods by ζ̂t

b∗ . Then

G̃θ
1t(ε) := {(ht

1, h
t
2) : ((ζ̂t

si)s≤c, ζ̂
t
b∗) ∈ Gθ

1N (ε)},

and mutatis mutandis G̃θ
2t(ε). Define

F̃ θ
t := {θ} ∩ It(b) ∩ Mt(α, θ) ∩ {N ≥ Tε} ∩ G̃θ

1t(ε) ∩ G̃θ
2t(ε). (10)

To complete the specification of the sequence {F̃ θ
t }t, we must specify ε, b, α, and c.

We take b = log t, and the values of ε, α and c are determined in Lemma 5 below.

4.3 Proof of Proposition 3: Common Learning

We define some events that are helpful in constructing bounds on F̃ θ
t . Define

B`t(b, α, c, ε′, θ) = It(b) ∩ Mt(α, θ) ∩ S`t(c, ε
′, θ), (11)

where

S`t(c, ε
′, θ) =





h`t :

∑

s≤c,i

s|ζ̂t
si − ζθ

si| < cε′





.

The event S`t(c, ε′, θ) is the private event that all the signal blocks shorter than c for
agent ` occur with close to the expected frequency under the relevant parameter.
Note that we do not require that the signal blocks be shorter than c.

We bound G̃θ
`t(ε) by events S`t(c, ε′, θ) for different values of ε′. In particular,

taking ε′ = ε, for all ((φ̂t
si)s≤c,i, φ̂

t
b∗) ∈ G̃θ

1t(ε) (with a similar comment for player
2), we have, from (P1), ∑

s≤c,i

|ζ̂t
si − ζθ

si| < ε,
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and hence
cε >

∑

s≤c,i

c|ζ̂t
si − ζθ

si| >
∑

s≤c,i

s|ζ̂t
si − ζθ

si|,

and so G̃θ
1t(ε) ⊂ S1t(c, ε, θ) and hence F̃ θ

t ⊂ B`t(b, α, c, ε, θ).
Similarly, taking ε′ = δ, we have

∑
s≤c,i s|ζ̂t

si − ζθ
si| < δ implies

∑
s≤c,i |ζ̂

t
si −

ζθ
si| < δ, and so (by (P2)) S1t(c, δ, θ) ⊂ G̃θ

1t(ε). Hence, we can bound F̃ θ
t by

{θ} ∩ {N ≥ Tε} ∩ B1t(b, α, c, δ, θ) ∩ B2t(b, α, c, δ, θ)

⊂ F̃ θ
t ⊂ B1t(b, α, c, ε, θ) ∩ B2t(b, α, c, ε, θ). (12)

We use the first bound in (12) to show that F̃ θ
t is likely and the second to show

that the parameter is learned on F̃ θ
t .

4.3.1 The Event is Likely

To show that the events {F̃ θ
t }t are likely, we begin by showing that the events

B`t(log t, α, c, ε′, θ) occur with high probability under the parameter θ for arbitrary
values of the parameters ε′, α, and c.

Lemma 3 Given α > 0, ε′ ∈ (0, 1), c ∈ N and Assumptions 2–4,

P θ(B1t(log t, α, c, ε′, θ)) → 1, as t → ∞.

Proof. We need to verify that with P θ-probability one as t increases:

1. log t ≥ max{τ1, t − τN},

2.
∣
∣
∣
∑

si s(ζ̂t
si − ζθ

si)
∣
∣
∣ < α, and

3.
∑

s≤c,i s|ζ̂t
si − ζθ

si| < ε′.

Verification of 1: The probability that it takes more than b periods for the first
zero signal to arrive is at most λb/(1 − ρ) (by (7)). Thus the probability that the
first condition holds is at least 1 − 2λlog t/(1 − ρ). This tends to one as t becomes
arbitrarily large.

Verification of 2: First we show that N → ∞ (the number of the complete
blocks tends to infinity) with probability one as t → ∞. The probability of no zero
signals in

√
t periods is bounded above by λ

√
t/(1− ρ) (from (7)). The probability

that over t periods divided into blocks of
√

t periods there is at least one zero in
each block is at least 1 −

√
tλ

√
t/(1 − ρ). This tends to one as t → ∞. Thus the

number of blocks tends to infinity as t → ∞ with P θ-probability one.
The length of each block is independent and identically distributed under θ (by

the strong Markov property). We have shown (in Lemma 2) that its distribution
has a finite mean and variance. By the Weak Law of Large Numbers, therefore,
the probability that the average block length

∑
si sζ̂t

si is more than α away from
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the expected block length
∑

si sζθ
si tends to zero as the number of blocks increases

to infinity (a P θ-probability one event).
Verification of 3: There are finitely many block signals i for each block length

s. Let ns denote the number of such signals. We have restricted attention to s ≤ c,
so it suffices to prove

∣
∣
∣ζ̂t

si − ζθ
si

∣
∣
∣ <

ε′

csns
, ∀i, s ≤ c.

The Weak Law of Large Numbers applies to the random variable that indicates

whether the block bsi occurred. Thus for any given si, the probability that
∣
∣
∣ζ̂t

si − ζθ
si

∣
∣
∣ <

ε′/csns tends to one. This then applies to all si.

We now argue that F̃ θ
t is likely under θ, for sufficiently large t. Note that we

can choose t sufficiently large for the event {N ≥ Tε} to have probability arbitrarily
close to one (see the proof of Lemma 3). Hence, from Lemma 3, we have,

lim
t→∞

P θ (B1t(log t, α, c, δ, θ) ∩ B2t(log t, α, c, δ, θ) ∩ {N ≥ Tε}) = 1. (13)

Combining with (10)–(12) and (13), we have

lim
t→∞

P θ(F̃ θ
t ) = 1.

4.3.2 The Parameter is Learned

Our next task is to show that θ is q-believed on F̃ θ
t . From (12), it suffices to show

that the agents learn the parameter θ on the event B`t(b, α, c, ε, θ). Assumption 3
is sufficient to ensure that observed block frequencies identify the parameter. We
let [ζθ

si] denote player 1’s distribution of block-signals, with [ζθ
sj ] denoting player 2’s

distribution.

Lemma 4 Given Assumptions 1 and 3, there exists β > 0 such that, for θ 6= θ̃ ∈
{θ′, θ′′},

β < H
(

[ζ θ̃
si]
∥
∥
∥ [ζθ

si]
)

, H
(

[ζ θ̃
sj ]
∥
∥
∥ [ζθ

sj ]
)

.

Proof. Since
∑

i ζθ
ti is the probability that a completed block has length t, the

distribution of arrival times of the zero signal is determined by ζθ. Similarly,
P θ(z`tz`,t+1 = z`z

′
` | x̄), the probability that the pair of signals z`z

′
` is observed in

period t, conditional on the hidden Markov process starting in period −1 in state x,8

is determined by ζθ. From Assumption 1 and (2), we have that limt→∞ P θ(z`tz`,t+1 =
z`z

′
` | x̄) = P θ(z`z

′
`).

Suppose the statement of the lemma is false, and H([ζ θ̃
si]‖[ζ

θ
si]) = 0 (an identical

argument applies if it fails for agent 2). Then, [ζθ′

si ] = [ζθ′′

si ] for all si, and so

8Recall that the first signal of a completed block of signals is the realization following
a period in which after the 0 signal, and so state x, is observed.
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P θ′
(z`tz`,t+1 = z`z

′
` | x̄) = P θ′′

(z`tz`,t+1 = z`z
′
` | x̄), for all t, and all pairs z`z

′
`.

But Assumption 3 implies that there is at least one pair of signals for which

P θ′

(z`z
′
`) 6= P θ′′

(z`z
′
`),

a contradiction.

In the next lemma we show that learning occurs on B`t(log t, α, c, ε, θ). While
learning on the intersection of S`t(c, ε, θ) and the event that all blocks are of length
c or less is straightforward, arbitrarily long blocks may preclude learning. However,
B`t also requires that the average block length be approximately correct, and so
for c sufficiently large, the arbitrarily long blocks are sufficiently infrequent that
the learning cannot be overturned. In making this argument another feature of
the block structure is important: a block’s effect on learning is proportional to its
length. Thus we can bound the informativeness of the long blocks by controlling
their average length.

Lemma 5 If Assumptions 2–4 hold, then there exists α, ε ∈ (0, 1), c ∈ N and a
sequence ξ : N→ [0, 1] with limt→∞ ξ(t) = 1 such that

pθ
`t = P (θ | h`t) ≥ ξ(t),

for all θ and all ht
` ∈ B`t(log t, α, c, ε, θ).

Proof. We prove for ` = 1. Choose ε and α sufficiently small and c sufficiently
large so that

−
β

2
<

(

α + 2cε +
2λc+1

(1 − ρ)

(
1 + c(1 − λ)

(1 − λ)2

))

log ν, (14)

where β is given by Lemma 4, ρ is defined in (6), λ in (7), and ν > 0 is a lower
bound on all positive “observable” transition probabilities, that is,

ν = min
θ,x,x′,z1

{
πθ

xx′φx′θ
z1

: πθ
xx′φx′θ

z1
> 0
}

.

We now bound the probability of the initial and terminal blocks z̄o
1 and z̄e

1. On
histories in B1t(b, α, c, ε, θ), the initial and terminal block last less than b periods.
By Assumption 2, the stochastic processes under θ′ and θ′′ have common support
and this support is finite when restricted to the first b periods. Hence,

P θ(z̄o
1) =

∑

(x0,x1,...,xτ1 )

τ1∏

m=1

φxmθ
z1m

P θ(xm | xm−1)P
θ(x0)φ

x0θ
z10

≥ min
(x0,x1,...,xτ1 )

τ1∏

m=1

φxmθ
z1m

πθ
xm−1xm

P θ(x0)φ
x0θ
z10

≥ φx0θ
z10

P θ(x0)

(

min
θ,xx′,z1

φx′θ
z1

πθ
xx′

)b
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= φx0θ
z10

P θ(x0)ν
b.

Hence, there is a lower bound on the probabilities of all positive probability out-
comes in the first b = log t periods. Letting φx0θ

z10
P θ(x0) = K, we have P θ′

(z̄o
1) >

Kνlog t. We similarly have that P θ′
(z̄e

1) > K ′νlog t, for a different constant K ′. A
substitution into (9) then gives

log
pθ
1t

1 − pθ
1t

≥ log
pθ
0

1 − pθ
0

+ 2 log t log ν + log KK ′ + N
∑

si
ζ̂t
si log

ζθ
si

ζ θ̃
si

. (15)

We now argue that we can approximate the summation on the right side by
∑

si ζθ
si log(ζθ

si/ζ θ̃
si) > β, and hence show the log likelihood grows linearly in N . A

similar calculation to the one bounding P θ(z̄o
1) above implies that ζθ

si/ζ θ̃
si ≤ ν−s.

Hence,
∣
∣
∣
∣
∣

∑

si

ζ̂t
si log

ζθ
si

ζ θ̃
si

−
∑

si

ζθ
si log

ζθ
si

ζ θ̃
si

∣
∣
∣
∣
∣
≤
∑

si

∣
∣
∣ζ̂t

si − ζθ
si

∣
∣
∣

∣
∣
∣
∣
∣
log

ζθ
si

ζ θ̃
si

∣
∣
∣
∣
∣

≤ log(ν−1)
∑

si
s
∣
∣
∣ζ̂t

si − ζθ
si

∣
∣
∣ . (16)

On the set B1t, the sum of these differences for s ≤ c of is bounded. So, on B1t,

∑

si
s
∣
∣
∣ζ̂t

si − ζθ
si

∣
∣
∣ ≤ cε +

∑

s>c,i
s
∣
∣
∣ζ̂t

si − ζθ
si

∣
∣
∣

≤ cε +
∑

s>c,i
sζ̂t

si +
∑

s>c,i
sζθ

si. (17)

We now construct an upper bound for the right side of (17) that holds on the
event B1t. The public event that the mean lengths are close can be re-written as

∣
∣
∣
∑

s≤c,i s(ζ̂t
si − ζθ

si) +
∑

s>c,i s(ζ̂t
si − ζθ

si)
∣
∣
∣ < α.

On S1t, the private event for agent 1, we have
∣
∣
∣
∑

s≤c,i s(ζ̂t
si − ζθ

si)
∣
∣
∣ < cε. Combining

these two inequalities,
∣
∣
∣
∑

s>c,i s(ζ̂t
si − ζθ

si)
∣
∣
∣ < α + cε.

Hence
∑

s>c,i sζ̂t
si ≤

∑
s>c,i sζθ

si + α + cε. Substituting into (17), we get

∑

si
s
∣
∣
∣ζ̂t

si − ζθ
si

∣
∣
∣ ≤ α + 2cε + 2

∑

s>c,i
sζθ

si.

Using (7) for the third inequality, we have

∑

s>c,i

sζθ
si ≤

∑

s>c

sP θ(σ = s) ≤
∑

s>c

sP θ(σ ≥ s)
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≤ (1 − ρ)−1
∑

s>c

sλs,

=
λc+1

(1 − ρ)

(
1 + c(1 − λ)

(1 − λ)2

)

.

This allows us to rewrite the bound in (17) on S1t as

∑

si

s
∣
∣
∣ζ̂t

si − ζθ
si

∣
∣
∣ ≤ α + 2cε +

2λc+1

(1 − ρ)

(
1 + c(1 − λ)

(1 − λ)2

)

.

From (16), Lemma 4, and (14), we then have

∑

si

ζ̂t
si log

ζθ
si

ζ θ̃
si

≥
∑

si

ζθ
si log

ζθ
si

ζ θ̃
si

+

(

α + 2ε +
2λc+1

(1 − ρ)

(
1 + c(1 − λ)

(1 − λ)2

))

log ν

≥ β +

(

α + 2ε +
2λc+1

(1 − ρ)

(
1 + c(1 − λ)

(1 − λ)2

))

log ν ≥ β/2.

A final substitution into (15) then gives

log
pθ
1t

1 − pθ
1t

≥ log
pθ
0

1 − pθ
0

+ 2 log t log ν + log KK ′ + Nβ/2.

It only remains to show that N (the number of completed blocks) increases linearly
in t on B1t. (This swamps any effect of the log t in the other term.) But (on B1t)
the total length of the completed blocks is at least t − 2b and the average block
length is

∑
si sζ̂t

si ≤
∑

si sζθ′

si + α. Hence, on B1t,

N ≥
t − 2b
∑

si sζ̂t
si

≥
t − 2 log t
∑

si sζθ
si + α

,

completing the proof of the lemma.

4.3.3 The Event is q-Evident

To show that F̃ θ
t is q-evident, it is sufficient to show that

P ({θ} ∩ G̃θ
2t(ε) | h1t) > q,

for all h1t in the event It(log t)∩Mt(α, θ)∩ {N ≥ Tε} ∩ G̃θ
1t(ε). But when N > Tε,

this is ensured by (P3), since the only aspects of blocks longer than c relevant to
F̃ θ

t are their publicly known length and number.
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5 Separation: Frequency-Based Conditions for Com-
mon Learning

5.1 Learning from Intertemporal Patterns

Agents draw inferences about the value of the parameter from the frequencies of the
signals they observe, and from the intertemporal pattern of signals across periods
(see footnote 4). As part of their inference procedure, agents will make inferences
about the history of hidden states that has generated their history of signals. How-
ever, the problem of calculating the posterior probabilities of hidden-state histories
is notoriously difficult (Ephraim and Merhav, 2002, p.1573). Moreover, we are
interested in common learning, which also requires each agent to infer the signal
history of the other agent. Even in the simplest setting of temporally independent
signals, there are signal histories on which an agent learns and yet does not believe
that the other agent learns. Hence, common learning occurs on a subset of the
histories on which individual learning occurs. The trick is to identify the “right”
tractable subset. Tractability forces us to focus on events defined by signal frequen-
cies alone. On such events, for common learning, agents need only infer frequencies
of the other agent’s signals, not their temporal structure.

Suppose the hidden Markov process is ergodic, and denote by ψθ
` :=

∑
x ξθ

xφxθ
`

the ergodic distribution over agent `’s signals. Following our analysis of resets and
Cripps, Ely, Mailath, and Samuelson (2008), the natural events to use to prove
common learning are neighborhoods of ψθ

` . The difficulty with using such events is
that individual learning effectively requires an agent to make inferences about the
evolution of the hidden states, and the relationship between these states and the
signals.

Accordingly, we first investigate the possibility of common learning on large
events. Recall that, conditional on the hidden state x and parameter θ, φxθ

` is the
distribution over agent `’s signals. The convex hull of these distributions under
each parameter are denoted by

Φθ′

` = co{φxθ′

` : x ∈ X} and Φθ′′

` = co{φxθ′′

` : x ∈ X}. (18)

The events we study are neighborhoods of Φθ′

` and Φθ′′

` . Individual learning
on these events is not guaranteed. For example, in Figure 2, if the data φ̂t

` were
observed, the agent would not infer θ′, since φ̂t

` is more likely to be have been
generated by a hidden state history close to the ergodic distribution from θ′′. In
order to obtain individual learning on such crude events, the two events must be
significantly separated (Assumption 7). When the sets are significantly separated,
the parameter is identified on the relevant convex hull, and common learning is
almost immediate. As a byproduct, we obtain learning even when the hidden
Markov process is not irreducible, since the agents are able to learn without needing
to make inferences about the hidden states.

We then turn to learning on the neighborhoods of the ergodic distribution of
signals. This makes it easier to verify that agents learn (and Assumption 7 implies
Assumption 8), but complicates the verification that the events are q-evident.
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Figure 2: The convex hulls of the signal distributions generated by the
various states of the hidden Markov process under parameters
θ and θ′, Φθ′

` and Φθ′′

` , are disjoint, but individual learning is
not ensured. In particular, individual learning of θ′ does not
occur at the empirical frequency φ̂t

`, since it is more likely to
have occurred under θ′′ and a hidden state distribution close to
the ergodic distribution ξθ′′

than under θ′ and a hidden state
distribution far from the ergodic distribution ξθ′

.

5.2 Convex Hulls

This section establishes that if the distributions of signals for different states are
sufficiently close together for a given parameter, and these sets of distributions are
sufficiently far apart for different parameters, then there is common learning. We
refer to this as a “relative separation” condition. This condition is intuitive and
relatively straightforward to check, but it is demanding (since it must deal with the
issue illustrated in Figure 2). Section 5.3 presents sufficient conditions for common
learning that are less demanding but more cumbersome.

5.2.1 Common Learning on Convex Hulls

Our first assumption is that the signals agents observe under P θ′
and P θ′′

have full
support.

Assumption 5 (Full Support Signals) φxθ
z`

> 0, for all `, θ, z` and x.

We also assume that, conditional on each hidden state, the agents’ private signals
are independent.

Assumption 6 (Conditional Independence) φxθ
z1z2

= φxθ
z1

φxθ
z2

, for all (z1, z2),
x, and θ.
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Figure 3: Illustration of Assumption 7. The distance between any two
points within Φθ′

` (and similarly for Φθ′′

` ) is less than Λ. Relative
separation requires the distance between any point in Φθ′

` and
any point in Φθ′′

` to be greater than 2Λ, using relative entropy
to measure distance.

Define a parameter Λ that bounds the diversity of the probabilities (φxθ
` )x∈X ⊂

Δ(Z`):
Λ := inf{Λ′ ≥ 1 : Λ′φxθ

` ≥ φx′θ
` , ∀x, x′, θ, `}. (19)

That is, the factor Λ increases the probabilities φxθ
` enough to make them greater

than φx′θ
` for any other hidden state x′. The factor Λ is well defined, since the

supports of the signal distributions are the same (Assumption 5).

Assumption 7 (Relative Separation) For Λ given by (19), and for ` = 1, 2,

min

{

max
φ′′∈Φθ′′

`

min
φ′∈Φθ′

`

H(φ′‖φ′′), max
φ′∈Φθ′

`

min
φ′′∈Φθ′′

`

H(φ′′‖φ′)

}

> 2 log Λ. (20)

Though relative entropy is not a metric, the term on the left can be interpreted as
a Hausdorff-like measure of the distance between the two sets Φθ′

` , Φθ′′

` ⊂ Δ(Z`).
The construction of Λ ensures H(φ‖φ̃) ≤ log Λ for all φ, φ̃ ∈ Φθ′

` and all φ, φ̃ ∈ Φθ′′

` .
So (20) can be interpreted as requiring the distance between Φθ′

` and Φθ′′

` be more
than twice the distance across them (see Figure 3).9

Relative separation, with full support and conditional independence are suffi-
cient for common learning.

Proposition 4 If Assumptions 5–7 hold, then θ is commonly learned.

9If the sets Φθ′′

` , Φθ′

` had a non-empty intersection the minimizer in (20) will be a point
in the intersection, and so the maximum is no larger than log Λ.
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5.2.2 Proof of Proposition 4: Common Learning

Let nt
xz`

denote the number of periods s < t in which (xs, z`s) occurs. We also let
nt

x =
∑

z`
nt

xz`
and nt

z`
=
∑

x nt
xz`

denote the marginal frequencies of states and
signals respectively. The time-t empirical measures of the agent’s signals and the
hidden states are then

φ̂t
` ∈ Δ(Z`), φ̂t

z`
:= nt

z`
/t;

and ξ̂t ∈ Δ(X), ξ̂t
x := nt

x/t.

We are interested in the case that the empirical measure of the private signals
observed by each agent are close to the convex hulls Φθ′

` and Φθ′′

` in (18). The event
we show is common q-belief in state θ for small ε > 0 is

F θ
t (ε) =

{
ω ∈ Ω : φ̂t

1 ∈ Φθ
1(ε), φ̂t

2 ∈ Φθ
2(ε)

}
, (21)

where Φθ
` (ε) = {φ̂` ∈ Δ(Z`) :

∣
∣
∣φ̂` − φ`

∣
∣
∣ < ε for some φ` ∈ Φθ

`}.

We again follow the agenda set out in Corollary 1 The first result is that the
event F θ

t (ε) has asymptotically P θ-probability 1.

Lemma 6 For all ε > 0, P θ(F θ
t (ε)) → 1 as t → ∞.

Proof. For fixed θ and an arbitrary sequence of hidden states x0, x1, x3, . . . ,
P θ(φ̂t

` ∈ Φθ
` (ε) | x0, x1, . . .) → 1 as t → ∞. Taking expectations over the se-

quences of hidden states then yields the result.

The next lemma (proved in Appendix A.2) verifies that the parameter θ is
learned on F θ

t (ε). The proof exploits Assumption 7 to show that signal frequencies
close to Φθ

` are much more likely to have arisen under parameter θ than under θ̃
irrespective of the sequence of hidden states, and hence the posterior attached to θ
by agent ` converges to one, i.e., agent ` learns parameter θ.

Lemma 7 If Assumptions 5 and 7 hold, then there exists ε′ > 0 such that for
ε ∈ (0, ε′), for all η > 0 there exists T such that for all t > T and all h`t ∈ F θ

t (ε),

P (θ | h`t) > 1 − η.

Finally, the q-evidence of F θ
t (ε) will follow almost immediately from individual

learning (Lemma 7) and Lemma 6, since inferences about the hidden states play
no role in determining whether the histories are in F θ

t (ε).

Lemma 8 If Assumptions 5–7 hold, then for any q < 1 there exists ε′ > 0 such that
for ε ∈ (0, ε′), there exists T such that for all t > T , the event F θ

t (ε) is q-evident.
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Proof. For any h1t,

P (φ̂t
2 ∈ Φθ

2(ε) | h1t) ≥ P θ(φ̂t
2 ∈ Φθ

2(ε) | h1t)P (θ | h1t)

=
∑

xt∈Xt

P θ(φ̂t
2 ∈ Φθ

2(ε) | xt, h1t)P
θ(xt | h1t)P (θ | h1t)

=
∑

xt∈Xt

P θ(φ̂t
2 ∈ Φθ

2(ε) | xt)P θ(xt | h1t)P (θ | h1t),

where the last equality follows from Assumption 6.
Fix q ∈ (0, 1). There exists a time T ′ such that for all t ≥ T ′, and all xt ∈ Xt,

P θ(φ̂t
2 ∈ Φθ

2(ε) | xt) >
√

q.10 From Lemma 7, there exists T ′′ such that for all
t ≥ T ′′, P (θ | h1t) >

√
q for h1t ∈ F θ

t (ε). Combining these two inequalities, we
conclude that for all t ≥ max{T ′, T ′′}, P (φ̂t

2 ∈ Φθ
2(ε) | h1t) > q for all h1t ∈ F θ

t (ε),
and so (since the same argument holds for agent 2), F θ

t (ε) is q-evident.

5.3 Average Distributions

The relative separation condition of Assumption 7 is strong, requiring that every
possible signal distribution under θ′ (i.e., generated by an arbitrary distribution
over hidden states) is far away from every possible signal distribution under θ′′.
This section begins with a weaker separation condition (Assumption 8) that places
restrictions on neighborhoods of the average signal distributions (rather than their
convex hulls) under the two parameters, requiring them to differ by an amount
that is related to the differing distributions of the hidden Markov process induced
by the two parameters. This weakened separation condition comes at a cost, in
that we must then introduce an addition assumption (Assumption 9). This as-
sumption requires that, for a given value of the parameter, likely explanations of
anomalous signal realizations must not rely too heavily on unlikely realizations of
the underlying hidden states.

We denote the ε-neighborhood of the stationary signal distribution by Φ̆θ
` (ε) :=

{φ` ∈ Δ(Z`) : ‖φ` − ψθ
` ‖ < ε}.11 An advantage of working with an assumption

on average signal frequencies rather than the convex hulls of signal distributions, is
that we can use a sequence of smaller events (defined in terms of neighborhoods of
average frequencies Φ̆θ

` (ε), rather than neighborhoods of convex hulls, Φθ
` (ε)) when

applying Corollary 1 to establish common learning. In particular, this makes it eas-
ier to verify that the agents learn. However, it is now harder to show that an agent

10Suppose not. Then, there is some q such that for all T ′, there is a t ≥ T ′ and xt

such that P θ(φ̂t
` 6∈ Φθ

` (ε) | xt) > 1 −
√

q. But, since X is finite, there is then a single
state x ∈ X such that the event that the frequency of signals in the periods in which x is
realized is more than ε distant from φxθ

2 has P θ-probability at least 1−
√

q, for arbitrarily
large T ′. But this is ruled out by the Weak Law of Large Numbers.

11In this section the norm used will always be the variation norm, defined by ‖ζ‖ :=
(1/2)

∑
w |ζw|.
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expects the opponent’s observations to lie in the target set, and so the argument
for q-evidence is more involved. This latter argument relies on constructing bounds
on probabilities using large deviations arguments.

We maintain the assumptions that the signal distributions have full support
under each parameter value (Assumption 5) and that the distributions are con-
ditionally (on the hidden state and parameter) independent (Assumption 6). We
complement this with two assumptions. These assumptions are designed to ensure
that if agent `’s signals are in Φ̆θ

` (ε) for some small ε, then (1) the agent’s posteriors
pθ to tend to one and (2) agent ` believes that `′’s signals are in Φ̆θ

`′(ε). The first
of these implications will ensure learning, and the second q-evidence, leading to
common learning.

We begin by introducing a function

Aθ(ξ̃) := sup
v∈Δ(X)

v�0

∑

x′

ξ̃x′ log
vx′

∑
x̃ vx̃πθ

x̃x′

. (22)

The function Aθ is nonnegative, strictly convex, and Aθ(ξθ) = 0 uniquely.12 Also,
Aθ increases as ξ̃ moves away from ξθ. We can interpret Aθ as a measure of how
far the distribution ξ̃ over hidden states is from the ergodic distribution ξθ. In
particular, fixing ξ̃, we can ask how much less likely v is under distribution ξ than
is vT πθ, and Aθ(ξ) takes the maximal difference as the measure of the distance
of ξ̃ from ξ. It is this function that will capture the role of hidden states in our
conditions.

Next, given a distribution ξ on the hidden states and a signal distribution
φ̂t

` from a history h`t, we allocate the signals to states of the hidden Markov
process, under the assumption that the hidden states themselves appear in pro-
portions ξ. Any such allocation can be interpreted as an explanation of the ob-
served signal frequency (data) in terms of the underlying hidden state realizations.
An allocation determines a collection of conditional distributions (φ̂x

` )x∈X , where
φ̂x

` := (nt
xz`

/nt
x)z`

∈ Δ(Z`), nt
xz`

is the number of observations of the xz` pair in
the allocation, and nt

x =
∑

z`
nt

xz`
. The set of all possible such allocations, a convex

linear polytope in the space Δ(Z)|X|, is the set of possible explanations of the data.
For arbitrary φ` ∈ Δ(Z`) and ξ ∈ Δ(X), the set of possible explanations is

J`(φ`, ξ) :=
{
(φx

` )x∈X ∈ Δ(Z)|X| : φ` =
∑

x ξxφx
`

}
. (23)

Our first assumption is designed to ensure individual learning on a neighborhood
Φ̆θ

` (ε) of the stationary distribution ψθ
` .

12To get some intuition, observe that Aθ(ξ) = supv H(ξ‖vT πθ) − H(ξ‖v). Choosing
v = ξ ensures the second term is zero so Aθ ≥ 0. If ξ is a stationary measure for πθ, then
vT πθ is closer to ξ than v is, so Aθ cannot be strictly positive. For more on this function,
see den Hollander (2000, Theorem IV.7, p.45).
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Assumption 8 For θ 6= θ̃, for ` = 1, 2, there exists ε̄ > 0 such that for all φ` ∈
Φ̆θ

` (ε̄),

− min
(φ̂x

`
)x∈

J`(φ`,ξθ)

∑

x,z`

ξθ
xφ̂x

z`
log φxθ

z`
< min

ξ∈Δ(X)





Aθ̃(ξ) − max

(φ̂x
`
)x∈

J`(φ`,ξ)

∑

x,z`

ξxφ̂x
z`

log φxθ̃
z`





. (24)

This condition is implied by the Assumption 7: In particular, since Aθ ≥ 0, a
sufficient condition for (24) is that, for all ξ ∈ Δ(X),

min
(φ̂x

` )x∈J`(ψθ
` ,ξθ)

∑

x,z`

ξθ
xφ̂x

z`
log φxθ

z`
> max

(φ̂x
` )x∈J`(ψθ

` ,ξ)

∑

x,z`

ξxφ̂x
z`

log φxθ̃
z`

.

It can only make the minimum smaller if each signal observed is matched to the
hidden state for which it is least likely. Similarly, it can only make the maximum
larger if each signal observed is matched to the hidden state for which it is most
likely. Hence a sufficient condition for the above is

∑
z`

ψθ
z`

log φθ

z`
>
∑

z`
ψθ

z`
log φ̄θ̃

z`
,

where this notation is defined just before (A.4). However, this last inequality is
implied by (A.4), which is ensured by Assumption 7.

Suppose we are given a parameter θ′ and a collection of signals whose frequencies
φ` match (up to ε) the expected signal distribution under θ′ (that is, φ` ∈ Φ̆θ′

` (ε)).
In order for agent ` to learn θ′, observing φ` under θ′ should be much more likely
than under θ′′, a property implied by Assumption 8. The likelihood of φ` depends
on how the signals are allocated to hidden states.

The expression on the left of (24) bounds (from below) the probability of ob-
serving φ`, under θ′ and the most likely distribution of hidden states ξθ′

, where we
construct the bound by asking: what is the least likely way of allocating the signals
to the hidden states consistent with φ`?

The expression on the right of the inequality bounds (from above) the probabil-
ity of φ`, under θ′′, where we construct the bound by asking: what is the most likely
way of allocating the signals to the hidden states consistent with φ`? Importantly,
as illustrated by our discussion of Figure 2, for φ` far from ψθ′′

` , this allocation
requires trading off the probability “costs” of

1. likely realizations of hidden states and unlikely realizations of the signals

against

2. unlikely realizations of hidden states and likely realizations of the signals.

Recall that the Aθ′′
function captures the cost of specifying the distribution of

hidden states that is different from the stationary distribution (since the expression
on the left of the inequality is calculated at the stationary distribution ξθ′

, the
analogous term does not appear).

Our second condition ensures q-evidence of the event we study below.
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Assumption 9 For ` = 1, 2 and all θ and some ε† ∈ (0, ε̄) and all φ` such that
‖φ` − ψθ

` ‖ < ε†,

− min
J`(φ`,ξθ)

∑

x,z`

ξθ
xφ̂x

z`
log φxθ

z`
< min

{‖ξ−ξθ‖≥f(Λ)ε†}

{

Aθ(ξ) − max
J`(φ`,ξ)

∑

x,z`

ξxφ̂x
z`

log φxθ
z`

}

.

(25)
where f(Λ) := (2/ log Λ)1/2 and Λ is defined in (19).

In order to demonstrate q-evidence of an event of the form Φ̆θ′

1 (ε†) ∩ Φ̆θ′

2 (ε†),
we need to show that agent 1 is confident that 2’s private signal frequencies are
in Φ̆θ′

2 (ε†) when φ1 ∈ Φ̆θ′

1 (ε†). By Assumption 6, 1’s inferences about 2’s private
signals are determined by 1’s inferences about the hidden states. This explains
why Assumption 9 can imply q-evidence of the relevant event even though it only
involves characteristics of agent 1. In particular, since 1 learns θ′ on Φ̆θ′

1 (ε†), if 1
is sufficiently confident that the hidden state distribution is close to its stationary
distribution under θ′, 1 will be confident that 2’s private signal frequencies are in
Φ̆θ′

2 (ε†).
Assumption 9 essentially requires, given θ′, the private signal frequency φ` is

more likely to have been realized from the stationary distribution of states ξθ′
(the

left side of (25)) than from some state distribution not in some neighborhood of
ξθ′

(the right side of (25)). Since the probability trade-offs faced by agent 1 mimic
those described above, the form of (25) is very close to that of (24). In particular,
deviations from the ergodic distribution are penalized at rate Aθ (the right side).
Notice that Assumption 8 compares various explanations of the data under different
values of the parameter, while Assumption 9 is comparing explanations based on
the same value of the parameter. The parameter Λ ≥ 1 measures the dissimilarity of
the signal distributions for different states under the parameter θ (with Λ = 1 if the
signal distributions are identical under the different states). The factor f(Λ) > 0
is a decreasing function of Λ with limΛ→1 f(Λ) = ∞. As one would expect, this
constraint becomes weaker as the signal distributions in each state become more
similar.

Proposition 5 Common learning holds under assumptions 5, 6, 8, and 9.

The proof again takes us through the agenda set out in Corollary 1. The event
we will show to be common p-belief is the event that the empirical measure of the
private signals observed by each agent are close to their expected values under the
parameter.

Define
F̆ θ

εt :=
{

ω ∈ Ω : φ̂t
1 ∈ Φ̆θ

1(ε), φ̂t
2 ∈ Φ̆θ

2(ε)
}

. (26)

The event that we show is common p-belief for parameter θ is F̆ θ
ε†t where ε† > 0 is

from Assumption 9.
We first show that the event occurs with sufficiently high probability.

Lemma 9 For all ε > 0, P θ(F̆ θ
εt) → 1 as t → ∞.
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The (omitted) proof is a straightforward application of the ergodic theorem
(Brémaud, 1999, p. 111).

The next step is that the parameter is individually learned on the event F̆ θ
ε†t.

Lemma 10 Suppose Assumptions 5, 6, and 8 hold. For all q ∈ (0, 1), ε < ε̄, θ,
and `, there exists T such that for all t ≥ T , P (θ | h`t) > q for all h`t ∈ F̆ θ

εt.

Finally, we show that if agent 1’s signals are in F̆ θ
ε†t, then she attaches arbitrarily

high probability to agent 2’s signals being in F̆ θ
ε†t — that is, q-evidence. This proof

proceeds in two steps. First we show that if agent 1 believes agent 2’s signals are not
in F̆ θ

ε†t then she must also believe that the hidden distribution ξ̂ is a long way from
its stationary distribution under θ, because if it were close to ξθ, the independence
of signals alone would ensure 2’s signals were in F̆ θ

ε†t. The second step is to use our
earlier bounds to characterize the probability agent 1 believes ξ̂ is far from ξθ when
she has seen a history h1t consistent with the event F̆ θ

ε†t.

Lemma 11 Suppose Assumptions 5, 6, 8, and 9 hold. For all q ∈ (0, 1) and θ, the
set F̆ θ

ε†t is q-evident under the parameter θ for t sufficiently large.

A Appendix: Proofs

A.1 A Full Support Example with No Common Learning

Suppose the hidden Markov process π is described by the state transitions in Fig-
ure 1. The private signal distribution in state x ∈ {x0, x1, x2, x3} is given by (1) and
Figure 1 with probability 1−9ε, and by a uniform draw from {aa, ab, ac, ba, bb, bc, ca, cb, cc}
with probability 9ε.

Let τ̃ be the first date at which the process is not in state x0. The following
lemma implies that there exists η > 0 such that at any time t and conditional on
τ̃ > τ for any τ < t, there is probability at least η that agent ` observes a history
h`t such that P θ(τ̃ > τ + 1 | h2t) > η (take η = min{η1, η2}). We can iterate this
argument to obtain iterated η-belief at time t that the process is still in state x0,
precluding common learning.

Lemma A.1 For ε > 0 sufficiently small, there exists η1, η2 > 0 such that for all
times τ and t > τ , and all `,

P θ
({

h`t : P θ(τ̃ > τ + 1 | h`t) > η1

}∣∣ τ̃ > τ
)

> η2.

.

Proof. Fix τ . For any t > τ , define the event

Et :=
{
h`t : ∀τ ′ ≤ τ + 1, #{s : z`s = a, τ + 1 − τ ′ < s ≤ τ + 1} ≥ 2

3τ ′
}

.

We first argue that for all h`t ∈ Et, P θ(τ̃ > τ + 1 | h`t) is bounded away from 0
independently of t and the particular history h`t, giving η1. Then we argue that,
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conditional on the hidden Markov process still being in the state x0 at time τ (i.e.,
τ̃ > τ ), Et has probability bounded away from 0 independently of t, giving η2 and
completing the proof.

Observe that for all h`t ∈ Et, P θ(τ̃ > τ + 1 | h`t) is bounded away from 0
independently of t and h`t if and only if there exists an upper bound independent
of t and h`t for

1 − P θ(τ̃ > τ + 1 | h`t)
P θ(τ̃ > τ + 1 | h`t)

=

∑τ+1
s=1 P θ(τ̃ = s | h`t)

P θ(τ̃ > τ + 1 | h`t)
. (A.1)

Fix t and a history h`t ∈ Et. For fixed s, we have

P θ(τ̃ = s | h`t)
P θ(τ̃ > τ + 1 | h`t)

=

P θ(h`,(τ+2,t) | h`,τ+2, τ̃ = s)P θ(h`,τ+2 | τ̃ = s)P θ(τ̃ = s)

P θ(h`,(τ+2,t) | h`,τ+2, τ̃ > τ + 1)P θ(h`,τ+2 | τ̃ > τ + 1)P θ(τ̃ > τ + 1)
, (A.2)

where h`,(τ+2,t) is the history of signals observed by agent ` in periods {τ +2, . . . , t−
1}.

Let na and nz be the number of a and z ∈ {b, c} signals observed in periods
{s + 1, . . . , τ + 1} of h`t, respectively. Since h`t ∈ Et, we have na ≥ 2(τ − s + 1)/3,
so that na − nz ≥ (τ − s + 1)/3.

In periods before s, the hidden Markov process is in state x0, and so the prob-
abilities of the signals in those periods are identical on the events {τ̃ > τ} and
{τ̃ = s}, allowing us to cancel the common probabilities in the first s periods. In
period s, the hidden Markov process is either in state x1 or in state x2, and we
bound the probability of the signal in the numerator in that period by 1, and use
3ε as the lower bound in the denominator. In periods after s and before τ + 2,
signal b in state x3 has probability θ(1 − 9ε) + 3ε, while signal c has probability
(1 − θ)(1 − 9ε) + 3ε. These two probabilities are bounded above by 1 − 6ε, the
probability of a in state x0. Thus,

P θ(h`,τ+2 | τ̃ = s)P θ(τ̃ = s)
P θ(h`,τ+2 | τ̃ > τ + 1)P θ(τ̃ > τ + 1)

<
(3ε)na(1 − 6ε)nz

3ε(1 − 6ε)na(3ε)nz

P θ(τ̃ = s)
P θ(τ̃ > τ + 1)

(A.3)

=
(3ε)na(1 − 6ε)nz

3ε(1 − 6ε)na(3ε)nz

(1 − 2ζ)s−12ζ

(1 − 2ζ)τ+1

=
2ζ

3ε(1 − 2ζ)
(3ε)na−nz

(1 − 6ε)na−nz

1
(1 − 2ζ)τ−s+1

.

For ε > 0 sufficiently small,

κ :=
(3ε)

1
3

(1 − 6ε)
1
3 (1 − 2ζ)

< 1.

and so the left side of (A.3) is bounded above by

2ζ

3ε(1 − 2ζ)2
κτ−s+1.
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We then note that, for s ≤ τ + 1,

P θ(h`,(τ+2,t) | h`,τ+2, τ̃ = s)

P θ(h`,(τ+2,t) | h`,τ+2, τ̃ > τ + 1)
≤ max

t′,h`,(τ+2,t′),x
′

P θ(h`,(τ+2,t′) | xτ+2 = x3)

P θ(h`,(τ+2,t′) | xτ+2 = x′)

is bounded. Hence, the left sides of (A.2) and therefore (A.1)are bounded above by
a geometric series, and so have an upper bound independent of t and h`t.

Now we show that the probability of the event Et, conditional on the hidden
state being x0 at time τ , is bounded away from zero. Given that we are conditioning
on the state being x0 at time τ , it is convenient to show that the probability of the
event

Ẽt :=
{
h`t : ∀τ ′ ≤ τ, #{s : z`s = a, τ + 1 − τ ′ < s ≤ τ} ≥ 2

3τ ′
}

,

is bounded away from zero, and then to extend the result to Et by noting that
probability of an a signal in period τ +1, conditional on being in state x0 in period
τ , is at least (1 − 2ζ)(1 − 9ε).

Conditional on being in state x0 at time τ , the distribution of agent `’s signals
is identical and independently distributed through time, and so Ẽt has the same
probability as the event

Êt :=
{
h`t : ∀τ ′ ≤ τ, #{s : z`s = a, 0 ≤ s < τ ′} ≥ 2

3τ ′
}

.

Moreover, Ê ⊂ Êt, where

Ê :=
{
{z`,s}

∞
s=0 ∈ Z∞

` : #{s : z`s = a, 0 ≤ s < t} ≥ 2
3 t
}

is the collection of outcome paths of agent ` signals for which every history h`t has
at least a fraction two thirds of a’s. The proof is complete once we show that Ê
has strictly positive probability, conditional on xt = x0 for all t.

Let Xk be a random walk on the integers described by

Xk+1 =






Xk + 1, with probability p1 = (1 − 6ε)3,

Xk, with probability p2 = 3(1 − 6ε)26ε,

Xk − 1, with probability p3 = 3(1 − 6ε)(6ε)2, and

Xk − 2, with probability p4 = (6ε)3,

with initial condition X0 = 1. The process {Xk} tracks the fraction of a signals
over successive triples of signal realizations at periods 3k as follows:

1. if the triple aaa is realized, Xk+1 = Xk + 1,

2. if a single non-a is realized in the triple, Xk+1 = Xk,

3. if two non-a’s are realized in the triple, Xk+1 = Xk − 1, and

4. if only non-a’s are realized in the triple, Xk+1 = Xk − 2 .
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An outcome that begins with the triple aaa and for which Xk is always a strictly
positive integer is in Ê. Hence, it is enough to argue that the probability that {Xk}
is always strictly positive is strictly positive, when ε is small. This is most easily
seen by considering the simpler random walk {Yk} given by

Yk+1 =

{
Yk + 1, with probability p1,

Yk − 2, with probability 1 − p1,

with initial condition Y0 = 1. Clearly, Pr(Xk ≥ 1, ∀k | X0 = 1) ≥ Pr(Yk ≥ 1, ∀k |
Y0 = 1). Moreover, for p1 6= 2

3 , every integer is a transient state for {Yk}. Finally,
if p1 > 2

3 (which is guaranteed by ε small), Pr(Yk ≥ 1, ∀k | Y0 = 1) > 0.

A.2 Common Learning on Convex Hulls: Proof of Lemma 7

We need to show that the posteriors, P (θ | h`t), converge to one on F θ
t (ε) (since

posteriors are a martingale, almost sure convergence is immediate). It is sufficient
to show that

P (θ′ | h`t)
P (θ′′ | h`t)

p(θ′′)
p(θ′)

=
P θ′

(h`t)
P θ′′(h`t)

→ ∞,

for all h`t ∈ F θ′

t (ε) as t → ∞. Denoting the hidden state history by xt =
(x0, x1, . . . , xt−1) ∈ Xt, we have

P θ′
(h`t)

P θ′′(h`t)
=

∑
xt∈Xt P θ′

(h`t | xt)P θ′
(xt)

∑
xt∈Xt P θ′′(h`t | xt)P θ′′(xt)

≥
minxt∈Xt P θ′

(h`t | xt)
maxxt∈Xt P θ′′(h`t | xt)

=
minxt∈Xt

∏t
s=0 φxsθ′

z`s

maxxt∈Xt

∏t
s=0 φxsθ′′

z`s

.

The last line calculates P θ(h`t | xt): conditional on a state history xt, with state
xs at time s, the probability of the signal z` is φxsθ

z`
. Define the maximum and

minimum probability of the signal z` under the parameter θ:

φ̄θ
z`

= max
x∈X

φxθ
z`

and φθ

z`
= min

x∈X
φxθ

z`
.

As we can do the maximization and minimization above term by term, and taking
logs allows us to write the product as a summation, we have

log
P θ′

(h`t)
P θ′′(h`t)

≥
t−1∑

s=0

log
φθ′

z`s

φ̄θ′′

z`s

=
∑

z`

nt
z`

log
φθ′

z`

φ̄θ′′

z`

= t
∑

z`

φ̂`t
z`

log
φθ′

z`

φ̄θ′′

z`

.
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Since h`t ∈ F θ′

t (ε), to establish the Lemma, it is sufficient to show that for ε
sufficiently small,

0 < min
φ∈Φθ′

` (ε)

∑

z`

φz`
log

φθ′

z`

φ̄θ′′

z`

. (A.4)

Fix Λ̄ > Λ such that (20) continues to hold as a strict inequality with Λ̄ replacing
Λ. Choose ε′ > 0 sufficiently small that for all ε ∈ (0, ε′),

Λ̄φθ

z`
≥ φ̄θ

z`
+ (1 + Λ̄)ε, ∀x, x′, θ, z`, `, (A.5)

and
max

φ′′∈Φθ′′
` (ε)

min
φ′∈Φθ′

` (ε)
H(φ′‖φ′′) > 2 log Λ̄. (A.6)

From (A.5), φ′
z`

Λ̄−1 ≤ φθ′

z`
for all φ′ ∈ Φθ′

` (ε) and φ′′
z`

Λ̄ ≥ φ̄θ′′

z`
for all φ′′ ∈

Φθ′′

` (ε). Thus

min
φ′∈Φθ′

` (ε)

∑

z`

φ′
z`

log
φθ′

z`

φ̄θ′′

z`

≥ min
φ′∈Φθ′

` (ε)

∑

z`

φ′
z`

log
φ′

z`

Λ̄2φ′′
z`

, ∀φ′′ ∈ Φθ′′

` (ε).

Maximizing the right side over φ′′ ∈ Φθ′′

` (ε) we get

min
φ∈Φθ′

` (ε)

∑

z`

φz`
log

φθ′

z`

φ̄θ′′

z`

≥ max
φ′′∈Φ′′

` (ε)
min

φ′∈Φθ′
` (ε)

H(φ′‖φ′′) − 2 log Λ̄.

The right side is positive by (A.6), and so (A.4) holds.

A.3 Common Learning from Average Distributions

A.3.1 Preliminaries and a Key Bound

The frequencies of pairs xsxs+1 of successive hidden states determines the proba-
bilities we are interested in. We first derive an expression for P θ(h`t ∩ xt) in terms
of these hidden pairs. Let u`s := (xs, z`s) ∈ X ×Z` =: U be a complete description
of agent `’s data generating process at time s. Denote by nt

u`u′
`

the number of

occurrences of the ordered pair u`u
′
`, under the convention of periodic boundary

conditions (u`t = u`0).13 We write P̂ t(u`u
′
`) for the empirical pair probability mea-

sure (t−1nt
u`u′

`
). Since the process generating {u`t} is Markov, we can explicitly

calculate the probability of h`t ∩ xt as

P θ(h`t ∩ xt) = P θ(ut
`) =

P θ(u`0)
P θ(u`0 | u`,t−1)

∏

u`u′
`

P θ(u′
` | u`)

nt
u`u′

`

13This guarantees that the marginal distributions of u` and u′
` agree. See den Hollander

(2000, §2.2) for more on the empirical pair-measure.
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(where the denominator P θ(u`0 | u`,t−1) only appears if it is nonzero, in which case
its presence is implied by the periodic boundary condition), and so

P θ(h`t ∩ xt) = O(1) exp






∑

u`u′
`

nt
u`u′

`
log P θ(u′

` | u`)






= O(1) exp





t
∑

u`u′
`

P̂ t(u`u
′
`) log P θ(u′

` | u`)





. (A.7)

Thus, the frequencies of successive pairs of states and signals determines the like-
lihood of P θ(h`t ∩ xt). If one wanted to infer the hidden state xt the conditional
distribution of xt given h`t is determined by the frequencies of the pairs (xs, z`s)
and (xs+1, z`,s+1).

The subset of possible P̂ t, empirical pair measures at time t, consistent with
the observed history h`t of private signals is

Lt(h`t) :=
{

P̂ t ∈ Δ(U2) : ∃xt s.t. (nt
u`u′

`
) = tP̂ t under (xt, ht

`)
}

.

We are now in a position to state and prove a key bound for both Lemmas 10
and 11, where Aθ is the function defined in (22).

Lemma A.2 Suppose that agent ` observed a history, h`t, of private signals at
time t. For all X ∗ ⊂ Δ(X),

t−1 log P θ({ξ̂t ∈ X ∗} ∩ h`t) − t−1O(log t)

≤ − inf
ξ̂t∈X∗

{

Aθ(ξ̂t) − max
J`(φ̂t

`,ξ̂t)

∑

x,z`

ξ̂t
xφ̂x

z`
log φxθ

z`

}

. (A.8)

Proof. We consider the probability that the signals h`t occurred for each history
of the hidden state,

P θ({ξ̂t ∈ X ∗} ∩ h`t) =
∑

{xt : ξ̂t∈X∗}

P θ(h`t ∩ xt). (A.9)

We do the summation (A.9) in two stages: first summing over sets (or classes) of
xt’s and then summing over the sets. We bound above the probability of these sets
and then use the fact that the number of sets grows polynomially in t to bound
this sum.

The set of state histories xt that (when combined with the signal history h`t)
generate any particular empirical pair-measure P̂ t ∈ L(h`t) is

Rt(P̂
t, h`t) :=

{
xt : (nt

u`u′
`
) = tP̂ t under the history (xt, h`t)

}
. (A.10)
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Partitioning Xt using the sets Rt(P̂ t, h`t), we rewrite the sum in (A.9) as

P θ({ξ̂t ∈ X ∗}∩h`t) =
∑

{xt : ξ̂t∈X∗}

P θ(h`t∩xt) =
∑

P̂ t∈Lt(h`t),

ξ̂t∈X∗

∑

xt∈Rt(P̂ t,h`t)

P θ(h`t∩xt).

On Rt(P̂ t, h`t), the value of P θ(h`t ∩xt) is constant (by (A.7)) (up to O(1) effects).
Hence a substitution from (A.7) gives

P θ({ξ̂t ∈ X ∗} ∩ h`t)

=
∑

P̂ t∈Lt(h`t),

ξ̂t∈X∗

∣
∣
∣Rt(P̂, h`t)

∣
∣
∣O(1) exp





(t − 1)

∑

u`u′
`

P̂ t(u`u
′
`) log P θ(u′

` | u`)





. (A.11)

(We use | ∙ | to denote the number of elements in a set.)
It remains to estimate the number of histories xt with the property that, when

combined with the signal history h`t, they generate a fixed frequency of the pairs
(u`su`,s+1). That is, we need to estimate the cardinality of the set Rt(P̂ t, h`t) for
different values of P̂ t ∈ Lt(h`t).

Generate sequences xt by taking the current state us and choosing a successor
state us+1 (which determines xs+1) consistent with next period’s signal z`,s+1.
There are nt

usz`,s+1
such transitions from u = us to u′ = us+1, and so there

are
∏

u`z′
`
(nt

u`z′
`
!) choices. This double counts some histories (permuting the nt

uu′

transitions from u to u′ does not change the history), so we divide by the factor∏
u`u′

`
(nt

u`u′
`
!). Hence, we have the upper bound

∣
∣
∣Rt(P̂

t, ht
`)
∣
∣
∣ ≤

∏
u`z′

`
(nt

u`z′
`
!)

∏
u`u′

`
(nt

u`u′
`
!)

.

This upper bound is not tight, since it also includes impossible histories (there is
no guarantee that it is possible to move to zs+2 from the successor pair (zs+1, x)).

Applying Stirling’s formula,

∣
∣
∣Rt(P̂

t, h`t)
∣
∣
∣ ≤ exp






∑

u`z′
`

log(nt
u`z′

`
!) −

∑

u`u′
`

log(nt
u`u′

`
!)






∼ O(1) exp





1
2

∑

u`z′
`

log nt
u`z′

`
− 1

2

∑

u`u′
`

log nt
u`u′

`

+
∑

u`z′
`

nt
u`z′

`
log(nt

u`z′
`
) −

∑

u`u′
`

nt
u`u′

`
log(nt

u`u′
`
)






= O(t) exp
∑

u`u′
`

nt
u`u′

`
log

nt
u`z′

`

nt
u`u′

`
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= −O(t) exp





t
∑

u`u′
`

P̂ t(u`u
′
`) log P̂ t(x′ | u`, z

′
`)





.

Combining this with (A.11), we obtain

P θ({ξ̂t ∈ X ∗} ∩ h`t) ≤ O(t)
∑

P̂ t∈Lt(h`t),

ξ̂t∈X∗

exp





t
∑

u`u′
`

P̂ t(u`u
′
`) log

P θ(u′
` | u`)

P̂ t(x′ | u`, z′`)





.

The number of terms in Lt(h`t) is bounded above by (t + 1)|U |2 and so only grows
polynomially in t.14 Applying this upper bound to the number of terms in the
summation and multiplying it by the largest term (and rewriting the argument of
the log using Bayes’ rule) yields

P θ({ξ̂t ∈ X ∗} ∩ h`t)

≤ O(t)(t + 1)|U |2 sup
P̂ t∈tL(h`t),

ξ̂t∈X∗

exp





t
∑

u`u′
`

P̂ t(u`u
′
`) log

P θ(u′
` | u`)

P̂ t(u′
` | u`)

P̂ t(u`, z
′
`)

P̂ t(u`)





.

Taking logarithms and dividing by t, we get

t−1 log P θ({ξ̂t ∈ X ∗} ∩ ht
`) − t−1O(log t) (A.12)

≤ sup
P̂ t∈Lt(h`t)

ξ̂t∈X∗

∑

u`u′
`

P̂ t(u`u
′
`) log

P θ(u′
` | u`)

P̂ t(u′
` | u`)

+
∑

u`z′
`

P̂ (u`, z
′
`) log

P̂ t(u`, z
′
`)

P̂ t(u`)

= sup
P̂ t∈Lt(h`t)

ξ̂t∈X∗

EP̂ t

(

log
πθ

xx′φx′θ
z′

`

P̂ t(u′
` | u`)

+ log P̂ t(z′` | u`)

)

(A.13)

= sup
P̂ t∈Lt(h`t)

ξ̂t∈X∗

EP̂ t

(

log
πθ

xx′

P̂ t(x′ | u`)
+ log

φx′θ
z′

`

P̂ t(z′` | x′, u`)
+ log P̂ t(z′` | u`)

)

= sup
P̂ t∈Lt(h`t)

ξ̂t∈X∗

EP̂ t

(

log
πθ

xx′

P̂ t(x′ | u`)
+ log

P̂ t(z′` | u`)

P̂ t(z′` | x′, u`)
+ log φx′θ

z′
`

)

.

Above we decompose the first term of (A.13) into two parts (using Bayes’ Rule).
Now we write out the expectations in full, which allows us to write the first two
terms in the above as relative entropies of conditional distributions:

∑

u`u′
`

P̂ t(u`u
′
`)

(

− log
P̂ t(x′ | u`)

πθ
xx′

− log
P̂ t(z′` | x′, u`)

P̂ t(z′` | u`)
+ log φx′θ

z′
`

)

(A.14)

14There are at most (t+1)|U|2 elements in this summation: the number in the (u, u′)th
entry can take at most t+1 values. See Cover and Thomas (1991, Theorem 12.1.1, p.280).
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= −
∑

u`

P̂ t(u`)H
(
[P̂ t(x′ | u`)]x′

∥
∥[πθ

xx′ ]x′

)

−
∑

u`,x′

P̂ t(u`, x
′)H

(
[P̂ t(z′` | x′u`)]z′

`

∥
∥
∥[P̂ t(z′`|u`)]z′

`

)
+
∑

x,z`

P̂ t(x, z`) log φxθ
z`

.

Since
∑

z`

P̂ t(z` | x)P̂ t(x′ | u`) =
∑

z`

P̂ t(x′ | x, z`)P̂
t(z` | x) = P̂ t(x′ | x) := π̂t

xx′ ,

from the convexity of relative entropy, the first term in (A.14) is less than

−
∑

x

P̂ t(x)H
(
[π̂t

xx′ ]x′

∥
∥[πθ

xx′ ]x′

)
.

Writing H∗ for the middle (relative entropy) of (A.14) we now have the following
upper bound for (A.12):

− inf
P̂ t∈Lt(h`t)

ξ̂t∈X∗

∑

x,z`

P̂ t(x, z`)
{
H
(
[π̂t

xx′ ]x′

∥
∥[πθ

xx′ ]x′

)
+ H∗ − log φxθ

z`

}
.

As H∗ is a relative entropy it is non-negative so excluding it only weakens the
bound.

The infimum over P̂ t ∈ Lt(h`t) can be taken by first minimizing over π̂xx′

subject to the requirement that ξ̂t is the marginal distribution of x′ given the
marginal distribution ξ̂t of x (so that ξ̂t is the stationary distribution of the Markov
chain with transition probabilities π̂). By a version of Sanov’s Theorem for empirical
pair-measures (den Hollander, 2000, Theorem IV.7, p.45),

inf
π̂

∑

x

ξ̂xH
(
[π̂xx′ ]x′

∥
∥
∥[πθ′′

xx′ ]x′

)
= sup

v∈R|X|
++

∑

x′

ξ̂x′ log
vx′

∑
x̃ vx̃πθ′′

x̃x′

= Aθ′′

(ξ̂).

We thus have the following upper bound for (A.12):

− inf
ξ̂t∈X∗

{

Aθ(ξ̂t) − max
J`(φ̂t

`,ξ̂t)

∑

x,z`

ξ̂t
xφ̂x

z`
log φxθ

z`

}

.

A.3.2 Proof of Lemma 10

We prove that θ′ is individually learned (θ′′ is identical). It is sufficient to show
that

P θ′
(h`t)

P θ′′(h`t)
→ ∞, (A.15)
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on the event F̆ θ′

εt as t → ∞, and that the divergence is uniform in the histories on
F̆ θ′

εt . We prove this by constructing an upper bound for the numerator and a lower
bound for the denominate of (A.15) that only depend on the event F̆ θ′

εt .
We define Xθ′

ν to be the set of hidden state frequencies ξ within ν of their
stationary distribution under θ′:

Xθ′

ν := {ξ ∈ Δ(X) : ‖ξ − ξθ′

‖ < ν}.

For any signal distribution φ`, Kθ′

ν`(φ`) is the set of pairs of state frequencies ξ ∈ Xθ′

ν

and conditional signal distributions (φx
` )x with the property that the conditional

signal distributions (φx
` )x are consistent with φ` and ξ:

Kθ′

ν`(φ`) :=
{

(ξ, (φx
` )x∈X) : ξ ∈ Xθ′

ν , (φx
` )x ∈ J`(φ`, ξ)

}
.

Given the distribution, φ̂t
`, of signals from h`t, the event Kθ′

ν`t(φ̂
t
`) is the event

that the realized frequencies ξ̂t of hidden states are both close to their stationary
distribution and the associated realized conditional frequencies (φ̂x

` )x are consistent
with the observed history of private signals, i.e., (ξ̂t, (φ̂x

` )x) ∈ Kθ′

ν`(φ̂
t
`).

We begin by providing a lower bound for the numerator in (A.15), where we
write xt ∈ Xθ′

ν if the implied frequency over hidden states from the hidden state
history xt is in Xθ′

ν :

P θ′

(h`t) ≥
∑

xt∈Xθ′
ν

P θ′

(h`t | xt)P θ′

(xt)

≥ min
x̃∈Xθ′

ν

P θ′

(h`t | x̃t)P θ′

(xt ∈ Xθ′

ν ).

Here we take the minimum of one of the terms in the summation and take it outside
the sum. This inequality can be rewritten as

t−1 log P θ′

(h`t) ≥ t−1 log P θ′

(xt ∈ Xθ′

ν ) + min
(ξ̂,(φ̂x

` ))∈Kθ′
ν`t(φ̂

t
`)

∑

x

ξ̂x

∑

z`

φ̂x
z`

log φxθ′

z`
,

using t−1 log P θ′
(h`t | xt) =

∑
x ξ̂x

∑
z`

φ̂x
z`

log φxθ′

z`
, where (ξ̂, (φ̂x

` )) are the relevant

frequencies in (xt, h`t). As P θ′
(xt ∈ Xθ′

ν ) → 1, we can simplify this to

t−1 log P θ′

(h`t) ≥ O(t−1) + min
Kθ′

ν`t(φ̂
t
`)

∑

x,z`

ξ̂xφ̂x
z`

log φxθ′

z`
. (A.16)

Now we combine this with the bound from Lemma A.2. In particular, using the
bound (A.8) with X ∗ = Δ(X) on the denominator and (A.16) on the numerator,
we obtain a bound on the ratio given by

t−1 log
P θ′

(h`t)
P θ′′(h`t)

≥ O(t−1) + min
Kθ′

ν`t(φ̂
`)

∑

x,z`

ξ̂xφ̂x
z`

log φxθ′

z`
− t−1O(log t)
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+ inf
ξ̂t∈Δ(X)

{

Aθ′′

(ξ̂t) − max
J`(φ̂t

`,ξ̂t)

∑

x,z`

ξ̂t
xφ̂x

z`
log φxθ′′

z`

}

.

A sufficient condition for (A.15) is therefore that there exist % > 0 such that for t
sufficiently large,

min
(ξ̂,φ̂x

` )∈Kθ′
ν`t(φ̂

t
`)

∑

x,z

ξ̂xφ̂x
z`

log φxθ′

z`

+ inf
ξ̂t∈Δ(X)

{

Aθ′′

(ξ̂t) − max
J`(φ̂t

`,ξ̂t)

∑

x,z`

ξ̂t
xφ̂x

z`
log φxθ′′

z`

}

> %. (A.17)

For ε small, any h`t ∈ Φ̆θ′

` (ε) implies a signal distribution close to ψθ′

` , and for ν

small, every state distribution in Xθ′

ν is close to ξθ′
. Hence, for ν and ε sufficiently

small, Kθ′

ν`t(φ̂
t
`) is close to J`(ψθ′

` , ξθ′
) and (A.17) is implied by

min
J`(ψθ′

` ,ξθ′ )

∑

x,z`

ξθ′

x φ̂x
z`

log φxθ′

z`
+ min

ξ̃∈Δ(X)

[

Aθ′′

(ξ̃) − max
J`(ψθ′

` ,ξ̃)

∑

x,z`

ξ̃xφ̂x
z`

log φxθ′′

z`

]

> 0.

This is clearly ensured by Assumption 8.

A.3.3 Proof of Lemma 11

We prove that the set F̆ θ′

ε†t is q-evident under θ′ for t sufficiently large (the argument
for the other parameter is identical). To establish this, it is sufficient to show that
for all q ∈ (0, 1), there exists a T such that for all t ≥ T , if φ̂t

1 ∈ Φ̆θ′

1 (ε†), then
agent 1 attaches probability at least q to θ′ (proved in Lemma 10) and probability
at least q to φ̂t

2 ∈ Φ̆θ′

2 (ε†). We, therefore, consider agent 1’s beliefs about agent 2’s
signals.

The first step is to show that to characterize agent 1’s beliefs about agent 2’s
signals it is sufficient to characterize her beliefs about the hidden states. Agent
2’s signal in period s is sampled from φxsθ

2 . Conditional on xt, therefore, agent 2’s
signals are independently (but not identically) distributed across time and we can
apply Cripps, Ely, Mailath, and Samuelson (2008, Lemma 3) to deduce that there
exists a κ > 0 such that for all γ > 0,

P θ′
(
‖φ̂t

2 −
∑

x ξ̂t
xφxθ

2 ‖ > γ
∣
∣
∣xt
)

< κe−tγ2
, ∀xt.

Hence, conditional on xt, agent 1 makes a very small error in determining φ̂t
2. This

inequality holds for all xt and also holds conditioning on the full history (xt, h1t),
because (conditional on xt) agent 2’s signals are independent of h1t. If we define
Gt := {ω : ‖φ̂t

2 −
∑

x ξ̂t
xφxθ

2 ‖ > γ}, then for all h1t

P θ′
(
‖φ̂t

2 −
∑

x ξ̂t
xφxθ

2 ‖ > γ
∣
∣
∣h1t

)
=

∑

xt

P θ′

(xt | h1t)P
θ′

(Gt | h1t, x
t)
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=
∑

xt

P θ′

(xt|h1t)P
θ′

(Gt | xt)

< κe−tγ2

,

where the last line substitutes the previous inequality. The triangle inequality can
be used to bound the gap between φ̂t

2 and its unconditional expected value, ψθ′

2 , by
two terms. One measures the gap between φ̂t

2 and its expected value conditional
on xt. The other measures the gap between its unconditional expected value and
its expectation conditional on xt:

‖φ̂t
2 − ψθ′

2 ‖ ≤ ‖φ̂t
2 −

∑
x ξ̂t

xφxθ′

2 ‖ + ‖
∑

x ξ̂t
xφxθ′

2 − ψθ′

2 ‖.

Conditional on h1t, we have an upper bound on the probability that the first of the
terms on the right side is bigger than γ for all h1t. This probability, therefore, is
also the probability that the the second term on the right side is close to a bound
on the left side, and so assuming γ < ε†:

P θ′
(
‖φ̂t

2 − ψθ′

2 ‖ > ε†
∣
∣
∣h1t

)
< κe−tγ2

+ P θ′
(∥∥
∥
∑

x
ξ̂t
xφxθ′

2 − ψθ′

2

∥
∥
∥ > ε† − γ

∣
∣
∣h1t

)
.

(A.18)
The next step in the argument is to describe how close the hidden state distri-

butions, ξ̂t, need to be to their expected values for agent 1 to believe 2’s signals are
in Φ̆θ′

2 (ε†). The summation in the right side of (A.18) can be written as Mξ̂t and
the term ψθ′

2 can be written as Mξθ′
, where M is the |Z|×|X| matrix with columns

φxθ′

2 . In the variation norm, Dobrushin’s inequality (Brémaud, 1999, p.236) implies
∥
∥
∥
∑

x
ξ̂t
xφxθ′

2 − ψθ′

2

∥
∥
∥ = ‖Mξ̂t − Mξθ′

‖ ≤ ‖ξ̂t − ξθ′

‖max
x̃x̄

∥
∥
∥φx̃θ′

2 − φx̄θ′

2

∥
∥
∥ . (A.19)

However, Pinsker’s inequality (Cesa-Bianchi and Lugosi, 2006, p. 371), i.e., ‖a −
b‖ ≤

√
H(a‖b)/2, implies

max
x̃x̄

‖φx̃θ′

2 − φx̄θ′

2 ‖ ≤ max
x̃x̄

(
1
2

∑

z2

φx̃θ′

z2
log

φx̃θ′

z2

φx̄θ′

z2

)1/2

≤

(
1
2

log Λ

)1/2

, (A.20)

where Λ > 1 was defined in (19). Definef(Λ) := (2/ log Λ)1/2. Applying (A.19) in
(A.18) gives

P θ′
(
‖φ̂t

2 − ψθ′

2 ‖ > ε†
∣
∣
∣h1t

)
< κe−tγ2

+ P θ′
(
‖ξ̂t − ξθ′

‖ > (ε† − γ)f(δ)
∣
∣
∣h1t

)

for all h1t. (Notice that as the signal distributions become closer and so f(Λ) → ∞,
the last term approaches zero, and so it is easy for 1 to infer 2’s signals, because
as the conditional distributions φxθ′

2 become more similar, it less important to infer
the hidden states accurately.) Re-writing this in terms of our earlier definitions,

P θ′
(

φ̂t
2 6∈ Φ̆θ′

2 (ε†)
∣
∣
∣h1t

)
< κe−tγ2

+ P θ′
(

ξ̂t 6∈ Xθ′

(ε†−γ)f(Λ)

∣
∣
∣h1t

)
. (A.21)

39



We now use our previous bounds to estimate the probability on the right side
of (A.21) for some φ̂1 ∈ Φ̆θ′

1 (ε†). First, from Bayes’ rule we have

log P θ′
(

ξ̂t 6∈ Xθ′

(ε†−γ)f(Λ)

∣
∣
∣h1t

)
= log

P θ′
(
Ω \ Xθ′

(ε†−γ)f(Λ), h1t

)

P θ′(h1t)
. (A.22)

From Lemma A.2, we use (A.8) to bound the numerator,

t−1 log P θ′
(
Ω \ Xθ′

(ε†−γ)f(Λ), h1t

)
− t−1O(log t)

≤ − inf
ξ̂t∈Ω\Xθ′

(ε†−γ)f(Λ)

{

Aθ′

(ξ̂t) − max
J`(φ̂t

`,ξ̂t)

∑

x,z`

ξ̂t
xφ̂x

z`
log φxθ′

z`

}

.

This infimum is finite by Assumption 5: If the signals did not have full support it
might be impossible to generate the history h1t ∈ F̆ θ′

ε†t from the hidden histories in
Ω \ Xθ′

(ε†−γ)f(Λ).
We use (A.16) to bound the denominator of (A.22) in the same way as it was

used to derive (A.17). Substituting the bounds on the fraction (A.22) into (A.21),
therefore, provides an upper bound on the probability that agent 1 believes that
agent 2’s signals are not in the set F̆ θ′

ε†t. That is,

P θ′
(
h2t 6∈ F̆ θ′

ε†t | h1t ∈ F̆ θ′

ε†t

)
= P θ′

(
φ̂t

2 6∈ Φ̆θ′

2 (ε†) | h1t

)
≤ κe−tγ2

+ κ′e−tH,

where κ′ > 0 is polynomial in t and

H := min
Kθ′

ν1t(φ̂
t
1)

∑

x,z1

ξ̂xφ̂x
z1

log φxθ′

z1
+ inf

Ω\Xθ′

(ε†−γ)f(Λ)

{

Aθ′

(ξ̂t) − max
J`(φ̂t

`,ξ̂t)

∑

x,z`

ξ̂t
xφ̂x

z`
log φxθ′

z`

}

.

If we can show H > 0 for all φ̂1 ∈ Φ̆θ′

1 (ε†), then we have proved the lemma. By
choosing ν small the terms ξ̂t

x in the first sums can be made arbitrarily close to ξθ′

x .
We can also choose γ = ct−1/3 → 0 as t → ∞. So a sufficient condition for the
above is

min
J1(φ̂t

1,ξθ′ )

∑

x,z1

ξθ′

x φ̂x
z1

log φxθ′

z1
+ inf

‖ξ−ξ′‖>ε†f(Λ)

{

Aθ′

(ξ) − max
J1(φ̂t

1,ξ)

∑

x,z1

ξxφ̂x
z1

log φxθ′

z1

}

> 0

for all φ̂t
1 ∈ Φ̆θ′

1 (ε†). Assumption 9 thus implies that H > 0. The proof is completed
by observing that the bound H is independent of the details of the history h1t. In
particular, the order of the polynomial terms in T is determined by the number of
state-signal pairs, and not the specific history.
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