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ON a-ROUGHLY WEIGHTED GAMES

JOSEP FREIXAS AND SASCHA KURZ

ABSTRACT. Gvozdeva, Hemaspaandra, and Slinko (2011) have introdincee hierarchies for simple games in order
to measure the distance of a given simple game to the classughly) weighted voting games. Their third clags
consists of all simple games permitting a weighted repttasien such that each winning coalition has a weight of agtlea

1 and each losing coalition a weight of at mestFor a given game the minimal possible valuexat called its critical
threshold value. We continue the work on the critical thoddtvalue, initiated by Gvozdeva et al., and contribute some
new results on the possible values for a given number of s@emell as some general bounds for restricted subclasses
of games. A strong relation beween this concept and the éasalility, i.e. the minimum amount of external payment

to ensure stability in a coalitional game, is uncovered.

1. INTRODUCTION

For a given sefV = {1,...,n} of n voters a simple game is a functign: 2" — {0, 1} which is monotone, i.e.
X(S) < x(T) forall S C T C N, and fulfills x(#) = 0, x(N) = 1. Here2" denotes the set of all subsets/of
Those subsets are also called coalitions ahid called the grand coalition. By representing the subsefs by
their characteristic vectors if0, 1}™ we can also speak of a (monotone) Boolean function.(f) = 1 thenS'is
called a winning coalition and otherwise a losing coalitidm important subclass is the class of weighted voting
games for which there are weights for i € N and a quota > 0 such that the conditiop, g w; > ¢ implies
coalition S is winning and the conditio} , ¢ w; < ¢ implies coalitionS is losing. One attempt to generalize
weighted voting games was the introduction of roughly weddlgames, where coalitiogswith » . _ ¢ w; = g can

be either winning or losing independently from each otfleks some games being important both for theory and
practice are not even roughly weighted, [Gvozdeva et all2PBave introduced three hierarchies for simple games
to measurahe distanceof a given simple game to the class of (roughly) weightedngpiames. In this paper we
want to study their third clag,, where the tie-breaking poigtis extended to the interv@ll, o forana € R>;.
Given a game, the smallest possible value faris called the critical threshold-valygy) of x, see the beginning
of Sectior 2. Lets(n) denote the largest critical threshold-value within thesslaf simple gameg € S,, onn
voters. BySpecs(n) := {u(x) | x € Sn} we denote the set of possible critical threshold values.

During the program of classification of simple games, seeeom Neumann and Morgenstern, 2007], several
subclasses have been proposed and analyzed. Althoughteaigbting games are one of the most studied and
most simple forms of simple games, they have the shortcognofinot covering all games. The clasgksresolve
this by introducing a parameter, so that by varyingy the classes of games can be made as large as possible.
The critical threshold value in some sense measures thelegitypof a given game. Another such measure is the
dimension of a simple game, see e.g. [Taylor and Zwicker3[L%ere we observe that there is no direct relation
between these two concepts, i.e. simple games with dimendiave a critical threshold value af but simple
games with dimension larger tharcan have arbitrarily large critical threshold values.

Also graphs have been proposed as a suitable represeatdinguage for coalitional games. There are a lot
of different graph-based games like e.g. shortest path gaocmmnectivity games, minimum cost spanning tree
games, and network flow games. The players of a network flonegana the edges in an edge weighted graph,
see|[Granot and Granot, 1992] and [Kalai and Zemel, 1982 sbealled threshold network flow games, see e.g.
[Bachrach, 20111], a coalition of edges is winning if and afiyrose edges allow a flow from a given source to a
sink which meets or exceeds a given quota or threshold. Hersame phenomenon as for weighted voting games
arises, i.e. those graph baseeightedgames are not fully expressive, but general network flow geaamne (within
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1Some authors, e.d. [Gvozdeva et al., 2012], allowt 0, which makes sense in other contexts like circuits or Baokdgebra. Later on,
we want to rescale the quageo one, so that we forbid a quota of zero by definition. Anotiigsleasant consequence of allowing= 0 would
be that each simple game anvoters is contained in a roughly weighted gamero# 1 voters, i.e., we can add to each given simple game a
voter who forms a winning coalition on its own to obtain a rblygwveighted game.
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the class of stable games). Similarly, one can define a kleydoy requesting a flow of at leasfor each winning
coalition and a flow of at least for each losing coalition.

The concept of the cost of stability was introduced in [Bachret al., 2009]. It asks for the minimum amount
of external payment given to the members of a coaltion to renstiability in a coalition game, i.e., to guarantee a
non-empty core. It will turn out that the cost of stabilityci®sely related to the notion af-roughly weightedness.
For network flow games some results on the cost of stabilitybeafound in[[Resnick et al., 2009].

Another line of research, which is related with our consitiens, looks at the approximability of Boolean
functions by linear threshold functions, sge [Diakonilkadad Servedio, 2012].

In [Gvozdeva et al., 2012] the authors have proven the bogndsZ | < cs(n) < 252 and determined the
spectrum for < 6. For odd numbers of voters we slightly improve the lower lbtars(n) > L"{J /m, which is

conjectured to be tight. As upper bound we proyén) < %. In order to determine the exact valuescg{n) for
small numbers of voters we provide an integer linear prognarg formulation. This approach is capable to treat
cases where exhaustive enumeration is computationadagilile due to the rapidly increasing number of voting
structures. Admittedly, this newly introduced techniquiich might be applicable in several other contexts in
algorithmic game theory too, is still limited to a rather shnamber of voters.

From known results on the spectrum of the determinants @frpim x n-matrices we are able to conclude some
information on the spectrum of the possible critical thaddivalues.

The same set of problems can also be studied for subclassesmé games and we do so for complete simple
games, denoted here I6y Here we conjecture that the maximum critical thresholdieal-(n) of a complete
simple game om voters is bounded by a constant multiplied % on both sides. A proof could be obtained for
the lower bound, and, for some special subclasses of coegitaple games, also for the upper bound. In general,
we can show thatc (n) grows slower than any linear function reflecting the valuathat complete simple games
are somewhatearerto weighted voting games than general simple games.

The remaining part of this paper is organized as followsepfhis introduction we present the basic definitions
and results on linear programs determining the criticaghold value of a simple game or a complete simple game
in Sectior 2. In Section] 3 we provide certificates for theicaltthreshold value. General lower and upper bounds
on the maximum possible critical threshold valug$n) andcc(n) of simple games and complete simple games
are the topic of Sectiopl 4. In Sectibh 5 we provide an inteiperal programming formulation to determine the
exact value:s(n) andcc(n). To this end we utilize the dual of the linear program deteing the critical threshold
value. In Sectiofil6 we give some restrictions on the set dfiptescritical threshold values and tighten the findings
of [Gvozdeva et al., 2012]. We end with a conclusion in Sextilo

2. PRELIMINARIES

In this paper we want to study different classesating structuresAs abbreviation for the most general class we
use the notatioi$,, for the set of Boolean functiont: 2 — {0, 1} with f(#) = 0 onn variable As a shortcut
for the sum of weight$ _,_ o w; of a coalitionS C N we will usew(S) in the following.

In this section we state the preliminaries, i.e., we defimentlentioned classes of voting structures and provide
tailored characterizations of the criticial thresholduealwvithin these classes. As a first result we determine the
largest possible critical threshold value for Boolean fiors in LemmdL. Since it is closely related, we briefly
introduce the concept of the cost of stability for binaryirgtstructures.

Definition 1. A (Boolean) functiory : 2% — {0,1} with f(0) = 0 is calleda-roughly weightedor ana € R>;
if there are weightsuy, ..., w, € R fulfilling

w(§)>1 VSCN:f(S)=1

and
w(S) <« VSCN: f(S)=0.

2\We remark that usually (@) = 1 is possible for Boolean functions too. In our context theambf a-roughly weightedness makes sense
for (@) = 0, so that we generally require this property. Later on, weisfiee these sets to monotone Boolean functions with thiitiadal
restriction f(N) = 1, called simple games, and use the notatihn Even more refined subclasses are theCsedf complete simple games
and the sevV,, of weighted voting games om voters. These sets are ordered®s2 S, 2 C, 2 Wh, where the inclusions are strictsif
is large enough. In order to state examples in a compact mavmeften choose weighted voting gamessince they can be represented by
[q;w1, - .., wn], whereq is a quota and they; are weights. We havg(S) = 1if and only if the sum}_, . g w; > g for each subse C N.
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We remark that a functiogi with f() = 1 cannot bex-roughly weighted for any € R. In contrast to most
definitions of roughly weighted games we allow negative Wesgin the first run, and consider a wider class than
simple games in our initial definition, i.e. Boolean funasowith f () = 0. Later on, we will focus on subclasses
of B,,, where we can assume that all weights are non-negativd,Rinstead ofC,, as in [Gvozdeva et al., 20112])
we denote the class of allroughly weighted Boolean functionswith f(() = 0. If f € T, but f ¢ 7T, for all
1 <o < a, we calla the critical threshold valug(f) of f. Given f we can determine the critical threshold value
using the following linear program:

Min  «
w(S)>1 VSCN:f(S)=1
(1) w(S)<a VYSCN:f(S)=0
a>1
Wi, ..., Wy €R

We consider it convenient to explicitly add the constraint 1 in Definition[d, in accordance with the definition
in [Gvozdeva et al., 2012], and in the linear progréin (1). édifise we would obtain the optimal solutien= 0
for the weighted gamg; 1, 1] € B, or the optimal solutiomx = % for the weighted gamg3; 2,2,1, 1] € B4 using
the weightsw; = wy = £ andws = w4 = 3. Since there are no coalitions with weights strictly betwéeand
1 there are no contradicting implications. Arguably, valless thanl contain more information, but on the other
hand makes notation more complicated. To avoid any misgiitcewe directly requirex > 1 (as in DefinitiorL 1)
to guarantee non-contradicting implications indepengdérdm the possible weights of the coalitions.

At first, we remark that the inequality systed (1) has at lemst feasible solution given by; = 1 for all
1 < i < nanda = n. Next we observe that the critical threshold value is a rimumber, as it is the optimum
solution of a linear programming problem with rational dagénts, and that we can restrict ourselves to rational
weightsw;. For a general Boolean functigh: 2 — {0,1} with f(#) = 0 negative weights may be necessary
to achieve the critical threshold value. An example is gibgrthe functionf of three variables whose entire
set of coalitionsS with f(S) = 1 is given by{{1},{2},{1,2}}. By considering the weighte; = wy = 1,
wz = —2 we see that it id-roughly weighted. On the other hand we have the inequslitie> 1, we > 1, and
w1 + wz + w3 < a = 1 from which we concludevs < —1. Another way to look at this example is to say that the
critical threshold value would b2 if only non-negative weights are allowed. (Here= 3 voters are the smallest
possibility, i.e. forn < 2 there are non-negative realizations for the critical thodd value.)

A quite natural question is to ask for the largest criticak#hold value.(f) within the class of all Boolean
functionsf : 2 — {0, 1} with f(0) = 0, which we denote byz(n), i.e.cs(n) = max{u(f) | f € B,}.

Lemmal. cg(n) = n.

Proof. By choosing the weights; = 1 forall 1 < i < n we havel < w(S) < nforall ) # S C N. Thus
all functionsf : 2 — {0,1} with f() = 0 aren-roughly weighted. The maximums(n) = n is attained for
example at the function witli(N) = 0 and f({i}) = 1 forall 1 < ¢ < n. Since the singleton§i} are winning,
we havew; > 1foralli € N, so thatw(N) > n while N is a losing coalition. O

We would like to remark that if we additionally requifg N) = 1, then the critical threshold value is at most
n — 1, which is tight (the proof of Lemmid 1 can be easily adapted).

More interesting subclasses of Boolean functions vifl) = 0 are simple games, i.e. monotone Boolean
functions withf(§) = 0 and f(N) = 1, wheref(S) < f(T) forall S C T. By 7, N S,, we denote the class
of all a-roughly weighted simple games consistingmofoters and by:s(n) := max{u(f) | f € S.} the largest
critical threshold value within the class of simple gamessisting ofn voters. For simple games we can restrict
ourselves to non-negative weights and can drop some of dggialities in the linear programl (1). (This is not true
for general Boolean functions as demonstrated in the puevagample.)

Lemma 2. All simple gameg € 7, N S,, admit a representation in non-negative weights.

Proof. Let w; € R, for1 < ¢ < n, be suitable weights. We sef := max(w;,0) € R>o forall1 < i < n.
For each winning coalitio C N we havew’(S) > w(S) > 1. Due to the monotonicity property of simple
games for each losing coaliticghi C N the coalitionT” := {i € T : w; > 0} is also losing. Thus we have
w (T) <w(T) <a. O

We remark that we have not usg@)) = 0 or x(INV) = 1 so that the statement can be slightly generalized.



4 JOSEP FREIXAS AND SASCHA KURZ

Definition 2. Given a simple gamg a coalitionS C N is called aminimal winning coalitionif x(S) = 1 and
x(S’") = 0 for all proper subsetss’ of S. Similarly, a coalitionT C N is called amaximal losing coalitiorif
x(T) =0andx(T") = 1forall T C N whereT is a proper subset df’. By W we denote the set of minimal
winning coalitions and by the set of maximal losing coalitions.

We would like to remark that a simple game can be completelynstructed from either the 98¢ of its minimal
winning coalitions or the sef of its maximal losing coalitions, i.e. a coalitigh C N is winning if and only if it
contains a subse&t’ € W. Similarly, a coalitiorll’ C N is losing if thereis&” € L with T C T".

Proposition 1. The critical threshold valug(x) of a simple gameg € S, is given by the optimal target value of
the following linear program:
Min  «
w(S)>1 VSeWw
w(S)<a VSeL
a>1
Wiy .., W Z 0

Proof. Due to LemmaR we can assume w.l.o.g. that. . ., w, > 0. With this it suffices to prove that a feasible
solution of the stated linear program is also feasible ferithear prograni{l). Le$ C N be an arbitrary winning
coalition, i.e.,x(S) = 1. Since there exists asf € W with S’ C S we have

w(S) > w(S) >1.

Similarly, for each losing coalitio C N there exists &’ € £ with T' C T’ so that we have

w(T) < w(T) <a.
Again, we have not usegd()) = 0 or x(N) = 1 in the proof.

A well studied subclass of simple games (and superclass ightesl voting games) arises from Isbell’s desir-
ability relation, seg/[Isbell, 1958]: We write—1 j for two votersi, j € N iff we havey ({i} U S\{j}) > x(S) for

allj € S C N\{i}. Apair (N, x) is called acomplete simple ganigit is a simple game and the binary relation
1 is a total preorder. To factor out symmetry we assume j forall 1 < i < j < n, i.e. voteri is at least as
powerful as voteyj, in the following. We abbreviate 3 j, j 0 ¢ by ¢ O j forming equivalence classes of voters
Ny, ..., N;. Letus denotéN;| = n; for 1 < < t. We assume that those equivalence classes are ordered with
decreasing influence, i.e. far< v, i € N,, j € N, we havei 1 j. A coalition in a complete simple game can be
described by the numbedsg of voters from equivalence clad§,, i.e. by a vecto(as, . .., a;). Note that the same
vector represent§’!) (1,2) ... (1*) coalitions that only differ in equivalent voters.

To transfer the concept of minimal winning coalitions andximeal losing coalitions to vectors, we need a
suitable partial ordering:

~ ~ k
Definition 3. For two integer vector& = (as,...,a:) andb = (by,...,b;) we writea < b if we have}_ a; <
=1

k ~ ~ ~ ~ ~
S biforalll <k <t Fora <banda # bwe usex < b as an abbreviation. If neithef < b norb < @ holds
=1

we writed >4 b.

In words, we say that is smaller tharb if @ < b and thafi andb are incomparable i < b.
With Definition[3 and the representation of coalitions ageexin Nt at hand, we can define:
Definition 4. A vectorm := (mg, ..., m;) in a complete simple game
((nl, cey M)y X) is a shift-minimal winning vectoif m is a winning vector and every vectét’ < m is losing.

Analogously, a vectofnn is a shift-maximal losing vectoif m is a losing vector and every vectat’ = m is
winning.
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As an example we consider the complete simple ggreeC, whose minimal winning coalitions are given by
{1,2}, {1,3},{1,4}, and{2, 3,4}. The equivalence classes of voters are giveiVpy= {1} and N, = {2, 3,4}.
With this the shift-minimal winning vectors are given fi; 1) and(0, 3). By W we denote the set of shift-minimal
winning vectors and by the set of shift-maximal losing vectors. Each complete singame can be entirely
reconstructed from eithéd or L.

In [Carreras and Freixas, 1296] there is a very useful patenmation theorem for complete simple games:

Theorem 1.
(a) Let a vector
~ t
n=(ny,...,ny) € Ny
and a matrix
le m172 e ml_,t mia
m271 m272 e mg_’t mo
M= ) ) ) ) =1 .
Mp1 My ... My m,

be given, which satisfies the following properties:
(I) Ogmingnj,miyjGNZOforlgigr,lgjgt,
(i) mipam;foralll <i<j<r,
(iii) for eachl < j < tthere is at least one row-indexsuch thatn; ; > 0, m; ;41 < nj41 if t > 1 and
mi1 > 0ift =1, and
(iv) m; > m,41 for 1 < i <t (lexicographic order).
Then there exists a complete simple gdiNey) whose equivalence classes of voters have cardinalities as
in n and whose shift-minimal winning vectors coincide with &g of M.
(b) Two complete gamé&,, M;) and (72, M3) are isomorphic, i.e., there exists a permutation of the ngote
so that the games are equal, if and onlyif = 7, and M = M..

The rows of M correspond to the shift-minimal winning vectors whose namsb denoted by. The number of
equivalence classes of voters is denoted.by

By cc(n) := {max u(x) | x € C,,} we denote the largest critical threshold value within ttesslof complete
simple games on voters. As)Y C W andZ C £ we want to provide a linear programming formulation for the
critical threshold valug:() of a complete simple game € C,,, similar to Propositiofi]1, based on shift-minimal
winning and shift-maximal losing vectors. At first, we shdvat we can further restrict the set of weights. To this
end we call a feasible solutian of the inequality system in Propositibh 1, wherés given, arepresentatiorfwith
respect tav).

Lemma 3. All complete simple gameg € 7, N C,, admit a representation with weights satisfying > --- >
wy > 0.

Proof. As x € C,, C S, is a simple game, there exists a representation with weights. ., w/, € R>o due to
Lemmal2. Let(j, h) be the lexicographically smallest pair such thgt < wj, andj < h. By 7 we denote the
transpositior(j, h), i.e. the permutation that swapsndh, and setw; := w;(i).

For a winning coalitionS with j € S, h ¢ S we havew(S) > w'(S) > 1. If S is a winning coalition with
j ¢S, h e Sthenr(S) is a winning coalition too and we have(S) = w'(7(S)) > 1. For a losing coalitiory’
with j ¢ T, h € T we havew(T) < w'(T') < «. If T'is alosing coalition withj € T', h ¢ T then7(T') is a losing
coalition too and we have(T') = w'(7(T)) < .

By recursively applying this argument we can constructesenting weights fulfillingv; > --- > w, > 0. O

We remark that the previous complete simple game with mihimraning coalitions{1, 2}, {1, 3}, {1,4}, and
{2,3,4} can be represented as a weighted voting g&m® 2,1, 1]. Another representation of the same game
using equal weights for equivalent voters would®e2, 1, 1, 1].

Lemma 4. All complete simple games € 7, N C,, admit a representation with weights, > --- > w,, > 0
where voters of the same equivalence class have the samigtweig

Proof. Letw} > --- > w/, > 0 be a representation gfand Ny, ..., N; the set of equivalence classes of voters.
By 1 < j < ¢ we denote the smallest index such that not all voter¥ jrhave the same weight and define new
> wh,

heN;

weightsw; := wj for all ¢+ € N\N; andw; := N i.e. the arithmetic mean of the previous weights\in
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By recursively applying this construction we obtain a regergation with the desired properties. It remains to show
that the new weights; fulfill the a-conditions.

Let S be a winning coalition withk = |S N N,|. By S” we denote the union &8\ N; and thek lightest voters
from N;. SinceS’ is a winning coalition too we have(S) > w’'(S’) > 1. Similarly, letT be a losing coalition
with & = |T'N N;|: By 7" we denote the union df"\ V; and thek heaviest voters fron;. SinceT” is also a
losing coalition we havey(T') < w'(T') < «. O

Lemma 5. The critical threshold value:(y) of a complete simple game € C,, with ¢ equivalence classes of
voters is given by the optimal target value of the followiimgar program:

Zaiwi21 V(al,--- 704)EW

t _
Saw; <a Y(a,--,a:) €L
i=1

a>1

w; > wipy V1I<i<t—1
’U}tZO

Proof. Due to Lemmd¥ we can assume that for the critical threshdigeva(y) = o there exists a feasible
weighting fulfilling the conditions of the stated linear gram. It remains to show that(W) > 1 andw(L) < «
holds for all shift-winning vector$?” and all losing vectord.. Therefore, we denote b/’ € WV an arbitrary
shift-minimal winning vector withV = W’ and byL’ € £ an arbitrary shift-maximal losing vector with < L'.
The proof is finished by checking(L) < w(L’) < e andw(W) > w(W’) > 1. O

So, for complete simple games the number of constraintgdoeifurther reduced. In this context we remark
that by additionally disregarding the conditioins > w; 1, from the linear program we would lose the information
about the order on equivalence classes. This effect is detnaded by the following example. Let us consider the
complete simple gam@u1,n2) = (15,4) with unique shift-minimal winning vectof7, 2). There are two shift-
maximal losing vectors(8,0) and(6,4). Choosing the special solutiany = 4, ws = 3, « = 2 would be

feasible for

Twy 4+ 2ws > 1
8w < «

6wy + 4dws < «
a>1

wi, w2 >0

For the coalition8, 1) we obtain the weigh8w; + 1w = % < 1, so that it should be a losing coalition, which is
a contradiction td8,1) > (7,2). So we have to use the ordering on the weights.

At the beginning of this section we have argued that the ¢mmdix > 1 is necessary, since otherwise the
optimal target value of the stated linear programming fdations will not coincide withu(x) in all cases. On the
other hand, it* () denotes the optimal target value of one of the stated LPs;enke have dropped the condition
« > 1, then we have

p(x) = max(z*(x), 1).

In the following we will drop the conditioa > 1 whenever it seems beneficial for the ease of a shorter pegant
while having the just mentioned exact correspondence idmin

An important solution concept in cooperative game theotthésore, i.e. the set of all stable imputations, see
e.g. [Tijs, 2011] for an introduction. Since the core can bty under certain circumstances, the possibility of
external payments was considered in order to stabilizeubeme, see [Bachrach et al., 2009]. The external party
quite naturally is interested in minimizing its expendésir This leads to the concept of thest of stability(C'o.S)
of a coalition game. Skipping the relation@bS with the core, we directly define the cost of stabilityS(f) of
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a given Boolean functioyf with f(()) = 0 as the solution of the following linear program:

(2 Min A

3 A > 0

4) Yopi o= fIN)+A
1EN

(5) b = f(S) VSCN
€S

(6) pi > 0 Vi € N.

The cost of stability is an upper bound for the critical tinas value:
Lemma 6. For a Boolean functiorf € B,, with f(N) =1 we haveu(f) <1+ CoS(f).

Proof. Letp,...,pn, A be an optimal solution for the above linear program for thet ob stability. If we choose
the weights asv; = p;, then we havev; € R and we havew(S) > 1 for all winning coalitionsS due to
constraint[(). Applying constrairitl(6) and constraintylds

w(S) =Y "pi <Y pi=f(N)+A=1+CoS(f)
€S ieEN
for all coalitionsS C N. Thus every losing coalition has a weight of at mbst CoS(f). O

Due toCoS(f) < n - maxgcy f(S) < n, see Theorem 3.4 in [Bachrach et al., 2009], we hav&(f) < n
for all f € B,,, where equality is attained for the Boolean function wfit) = 1 for all S # (. With respect to
Lemmdl we mention the relation

cg(n) = max u(f) = max CoS(f) =n.

On the other hand, we observe that the ratio betw@€ef(f) and .(f) can be quite large. Theorem 3.3 in
[Bachrach et al., 2009] stat€SoS(x) = % — 1 for the weighted voting gamg = [q;w, ..., w], while we
haveu(x) = 1. Settingw = ¢ = 1 we see that the ration can become at least as large-ak.

By imposing more structure on the set of feasible games,abadCoS(f) < n, for f € B,,, could be reduced

significantly. To this end we introduce further notation:

Definition 5. A Boolean functiorf € B,, is calledsuper-additivéf we havef(S) + f(T) < f(SuT) for all
disjoint coalitionsS, T C N. It is calledanonymousf we havef(S) = f(T) for all coalitions S, C N with
|S| = |T, i.e. the outcome only depends on the cardinality of theittoal

In our context super-additivity means that each pair of wigrcoalitions has a non-empty intersection, which
is also called ropergame. These are the most used voting games for real worithirsts.

3. CERTIFICATES

In computer science, more precisely in complexity theorgesificate is a string that certifies the answer to a
membership question (or the optimality of a computed soih)ti In our context we e.g. want to know whether a
given simple gamg € S, is a-roughly weighted. If the answer is yes, we just need to staimble weights.
Given the weights, the answer then can be checked by testngalidity of the inequalities in the linear program
of PropositiorLll. Since both and £ form antichains, i.e. no element is contained in anothercareconclude
from Sperner’s theorem that at mdittn’/‘%) + n + 1 inequalities have to be checked. But also in the other case,
where the answer is no, we would like to have a computatioitabss thaly is nota-roughly weighted.

For weighted voting games trading transforms, seele.glgTayd Zwicker, 1999], can serve as a certificate for
non-weightedness. In [Gvozdeva and Slinko, 2011] this ephbas been transfered to roughly weighted games
and it was proven that for each non-weighted simple gamestingof n voters there exists a trading transform of
length at mos{(n +1).23nlogan |

Using the concept of duality in linear programming one cailgaonstruct a certificate for the fact that a given
voting structurey is nota’-roughly weighed for alb’ < o, wherea > 1 is fixed. To be more precise, we present
a certificate for the inequality(x) > a.

The dual of a general linear programin c’'z, Ax > b,x > 0 (called primal) is given bynax b”y, ATy <
¢,y > 0. The strong duality theorem, see elg. [Vanderbei, P00&lestthat if the primal has an optimal solution,
x*, then the dual also has an optimal solutigh,such that” 2* = b7 y*. As mentioned before, the linear program
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for the determination of the critical threshold value al@énas an optimal solution, so that we can apply the strong
duality theorem to obtain a certificate.

Considering only a subset of the winning coalitions for tieéedmination of the critical threshold value means
removing some constraints of the corresponding linearnag This enlarges the feasible set such that the optimal
solution will eventually decrease but not increase. Fahferrutilization we state the resulting lower bound for the
critical threshold value of this approach:

Lemma 7. For a given simple gamg € S,, let W' be a subset of its winning coalitions atid be a subset of its
losing coalitions. If(u,v) is a feasible solution of the following linear program witirget valueo’ then we have

n(x) = o

Max Z us
Sew!’
ug — Y. or<0 Vi<i<n
SeW:ieSs TeLieT
Z vT S 1
TEL

us >0 VvVSeWw
vp >0 VI el
Proof. The stated linear program is the dual of
Min  «
Z w; >1 VS e w’
i€s
a—>Y w; >0 VI'elL
€T
w; >0 V1<i<n,
which is a relaxation of the linear prograii (1) determining tritical threshold value. O

To briefly motivate the underlying ideas we consider an eXxaniget the simple gamg for 5 voters be defined
by its set{{l, 2},{2,4},{3,4},{2,5}, {3, 5}} of minimal winning coalitions. The set of maximal losing tiea

tions is given by{{l, 3},{2,3},{1,4, 5}}. For this example the linear program of Proposifibn 1 to wheitee the
critical o (after some easy equivalence transformations) reads as

Min  « s.t.

’LU1—|—’LU221

wo +wy > 1

w3 +wy > 1

wo +wy > 1
’LU3—|—’LU521

a—w; —wg >0
a—wy —wz >0
a—wp —wy —ws >0

a>1
w1 ZO,...,U)5 ZO
(We have replaced the condition$.S) < « for the losing coalitionss' by o — w(.S) > 0.)
Running a linear program solver yields the optimal solutign= w, = ws = 2, w = w3 = £, anda = 2.
By inserting these values into the inequalities of the sttéiteear program we can check thate 7s N Ss. Thus
the weights form a certificate for this fact. ’

To obtain a certificate for the fact that¢ 7. forall o’ < £,i.e.u(x) > £, we consider the dual problem:

Max y1+y2+ys+ya+ys+2 st
Y1 — Y —ys <0
y1+y2+ys—y7r <0
Ys+ys —yr <0
Y2+ ys—ys <0
Ya+ys —ys <0
Yo +yr+ys+2<1
y1 >0,...,y8,2 >0
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An optimal solution is given by = ys = ys = 2,2 = y3 = 2, y7 = 2, andy, = ys = z = 0 with target
vaIueg (as expected using the strong duality theorem). In comionatith the weak duality theorem, see e.g.
[Vanderbei, 2008], the stated feasible dual solufigrr) is a certificate for the fact that the critical threshold alu
for the simple game is larger or equal t(g. In general, the optimal solution vecty, z) has at most: + 1
non-zero entries so that we obtain a very short certificate.

We would like to remark that one can use the values of the caredbles as multipliers for the inequalities in the
primal problem to obtain the desired bound on the criticedshold value. In our case multiplying all inequalities
with the respective values yields

2 1 1 2
5~(w1+w2)+5-(w2+w4)+3-(w3+w4)+0-(w2+w5) = (w3 + ws)
+O-(a—w1—wg)—i—g-(oz—wQ—wg)—l-g-(a—wl wy —ws)+ 0«
S22y o0 2020
-5 5 5 5 5

which is equivalent tax > g i.e. a certificate for the fact that¢ 7., N S5 for o/ < g

4. MAXIMAL CRITICAL THRESHOLD VALUES

In Lemmd_l we have shown that the maximum critical threshaldesof a Boolean functiofi : 2V — {0, 1} with

f(@) = 0 is given bycg(n) = n. If additionally f(N) = 1 is required the upper bound dropsro- 1 (which

is tight). In this section, we want to provide bounds for thaximal critical threshold values for simple games
and complete simple games arvoters. By considering a complete simple game with two tygfesters we can
derive a lower bound of2(/n) for cc(n). Apart from constants, this bound is conjectured to be tigthis will

be substantiated by upper bounds¥(f,/n) for cc(n) for several special subclasses of complete simple games.
For the general case, we can only obtain the resultdf@at) is asymptotically smaller tha®(n), which is the
asymptotic of the maximum critical threshold value for siengames. Finally, we relate the more sophisticated
upper bounds on the cost of stability from [Bachrach et 810 to upper bounds for the critical threshold value
for other special subclasses of Boolean games.

The authors of [Gvozdeva et al., 2012] have proven the bodinds < cs(n) < 252 forn > 4 and determined
the exact valuess (1) = cs(2) = ¢s(3) = cs(4) = 1, ¢s(5) = 2, ¢s(6) = 3. By considering null voters we
concludecs(n) < cs(n + 1) andee(n) < ce(n+ 1) foralln € N.

2],

Proof. For the even integers we took an example from [Gvozdeva,&2@12] and consider far = 2k the simple
game uniquely defined by the minimal winning coalitidiis = {2: — 1, 2i} for 1 < i < k. Then the two coalitions

Proposition 2. For n > 4 we havers(n) >

Ly ={1,3,...,2k — 1} and Ly = {2,4,...,2k} are maximal losing coalitions. Our example given above is of
k
this type ¢ = 4). We apply Lemmal7 withuiy, = - -+ = uw, = v, = vz, = 5 to deduce:s(n) > > 3 = 4.
i=1

n2

Using a null voter, as done in [Gvozdeva et al., 2012], givgs) > “;* for oddn, WhereL | — ool —nod
For oddn = 2k + 1 we consider the simple game uniquely defined by the m|n|mahw|g coalltlonsW =

{i,i+ 1} for1 < i < n — 1. Two maximal losing coalitions are given By = {1,3,...,2k + 1} andL, =

{2,4,...,2k}. Next we apply Lemmal7 and construct a certificatedofn) > ("‘127(1”“) _ ¥ . We set
Uy, = B uy,, = Lforall1 <i <k, v, = £, v, = L and check that it is a feasible Solution. Since
n—1

> gy, = HEED — (=1t he proposed lower bound follows. O

i n
=1

So, we are only able to slightly improve the previously kndamer bound forcs(n) if the number of voters is

odd. One can easily verify that the given examples have igarthreshold value o@

4

n2
Conjecture 1. For n > 4 we havecs(n) = ﬂ

n
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We would like to remark that the simple game defined in the fpob&ropositior 2 is very far from being the

n2
unique one withu(x) = M For the proof we need that, L, are losing coalitions and that the stated subsets of

n

cardinality two are winning coalitions. We can construceaponential number of simple games having a critical
712

« of at Ieast[;;J as follows: Letl} C L, andL C L, such that none of the winning coalitions of size two

is contained inL} U L5 and|Lf |, |L5| > 1. With this we can specify the coalitiab; U L5, either as winning or

as losing without violating the other properties. This faggests that it might be hard to solve the integer linear

program exactly to determing (n) for larger values of., see Sectiohl5.

Another concept to measure the deviation of a simple gafnem a weighted voting game is its dimension, i.e.
the smallest numbérof weighted voting games thatis given by their intersection, see elg. [Deineko and Wgeyi, 2006].
It is well known that each simple game has a finite dimensi@pétding om), see|[Taylor and Zwicker, 1993].
Simple games of dimensiohcoincide with weighted voting games having a critical thiedd value ofl. The
next possible dimension is two, where the critical thredhmdn be as large as the best known lower bound of

{"{J /m. Thus, there is no direct relation between the dimensionsiinple game and its critical threshold value.

To construct such examples we split the voters into setsrofrwaity of at Ieast[%J, i.e. as uniformly distributed
as possible, and assign weight vectfrsd) to the elements of one such set &fd1) to the elements from the
other set. Using a quota vectdr, 1) we obtain a simple game that satisfies the necessary rearitefior a critical

« of at Ieastmij /n. In other words the dimension of a simple game is somewha&ipeddent from the critical
threshold parameter.

Lemma 8. Let x be a simple game with voters andu(x) = «. If alosing coalition of cardinality: exists, then
we haven < n — k.

Proof. Let S C N be a losing coalition of cardinality. We use the weights; = 0 for all i € S andw,; = 1 for
alli € N\S. Sincew(N) = n — k the weight of each losing coalition is at most- k£ and since each winning
coalition must contain at least one element frafS their weight is at least. O

Lemma 9. Let x be a simple game with voters andu(x) = «. If the maximum size of a losing coalition is
denoted by we haven < max(1, £).

Proof. We assign a weight of to every voteri where{i} is a winning coalition and a weight (%fto every other
voter. Thus each winning coalition has a weight of at ldaestd each losing coalition a weight of at m(§st O

Corollary 1. For each integen > 3 we havers(n) < 3.

Proof. Let x be a simple game with largest losing coalition of sizend consisting of. voters. Ifk < %" then we
haveu(x) < max (1, %) < 2. Otherwise, we have(x) <n -k < Z. O

To further improve Corollarfy]l some reduction techniqueghmbe useful.

Lemma 10. If a simple gamey onn > 2 voters contains a winning coalition of cardinality one thee have
n(x) < cs(n —1).

Proof. W.l.o.g. let{n} be a winning coalition. If1,...,n — 1} is a losing coalition thery is roughly weighted
using the weightsy; = -+ = w,_1 = 0, w, = 1. Otherwise we consider the simple gagiearising fromy by
dropping votem. Letw;, ..., w,—1 be a weighting fory’ corresponding to a threshold value of at mestn — 1).
By choosingw,, = 1 we can extend this to a valid weighting fgrsince every coalition which contains voteiis
a winning coalition. O

From now on, we consider complete simple games. To providevarlbound ore¢(n) we consider a special
subclass of complete simple games, i.e., complete simpteegavitht = 2 types of voters and a unique shift-
minimal winning vector(a,b) (r = 1). So, if a coalition contains at leastvoters of the first type and and least
a + b members in total, then it is winning, otherwise it is losing.

In the following we will derive conditions on the parameterandb in order to exclude weighted games, which
would lead to a critical threshold value df Since the shift-maximal losing vectors depend on a cer&lation
betweena andb, we have to consider two different cases to state the line@grpm to determine the critical
threshold value.
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Fora+b—1 < n; (case 1) the shift-maximal losing vectors are giveridyb—1,0), (a— 1, n2) and otherwise
(case 2) by(ni,a+b—1—n1), (a—1,ns).

Due to condition (a).(iii) in Theoreml 1 we have> 0. andw; = wy = % shows that the game is roughly
weighted in this case. Far= n; a quota ofy = nins + b and weightav; = n, andw, = 1 testify that the game
is weighted. So, we only need to considex a < n; — 1,0 < b < ng — 1. Forb = 0 the games are weighted via
guotag = a and weightav; = 1, wy = 0. Forb = 1 the games are weighted via quata- ans + 1 and weights
w; =ng,we = 1. Ifb=nsaquotaofy =a+ns — 1+ nljnz and weights ofv; = 1 + m wy = 1 show
that these games are weighted so that we can asgutmie< n, — 2 andn > 6.

To computec(n,r = 1,t = 2) we have to solve the linear program

min o S.t.
(7 awi +bwy >1
(8) a—(a+b—1w >0
(9) a—(a—1)w; —nowe >0
(10) wy 2 Wa
(112) we >0
for case 1 and
min o S.t.
(12) awi + bwy > 1
(13) a—nw —(a+b—1—np)ws >0
(14) a— (a—1)w; —ngwy >0
(15) w1 = we
(16) wg >0

for case 2. We would like to remark that we may also includectirestraintx > 1. Once it is tight we have. = 1,
so that we assume > 1 in the following.

The optimal solution of these linear programs is attaineal@irner of the corresponding polytope which is the
solution of a3-by-3-equation system arising by combining three of the five iditigs. As notation we usd C
{ZB QA0 1T} with [A] = 3. (Some of these solutions may be infeasible.) At first, wearkthatw; = ws = 0
is infeasible in both cases so that we assume {I0IT} < 1.

For case 1 the basic solutions, parameterized by sets ofnighualities, are given by:

@BB} w = 725, wy = lgm o = % always feasible, e.g. we have (b — 1) > b? due to
b < ng —2andb > 2 so thatoe > 1 holds.

{ZB[T} o = 2L < 1, contradiction

@BIT} wy = 1, ws=0,a=2L=L always feasible
{@BIT} wy = -1, wo = &5, o = =152 always feasible
{BBII} o= 2 <1, contradiction

{8810} « =0 < 1, contradiction

BOII} o =0 < 1, contradiction

We always havg+b=1 > atb_i _ mlathbol) gng

a+% angz+b?
a—14+ns no(a+b—1) 9
b) - b?) - — =blng—b —b 0.
(a4 fama +07) - (S5 - PO s ) 4 a0 >
Thusa = % is always the minimum value.

For case 2 the basic solutions are given by:
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QI3 w, = nitno+l—a—b Wo — ni+l—a
1= —a?—2ab+a+ani+nibt+ans+b’ 2= —a?2—2ab+atani+nibt+ans+b’?
nlng—ab+b—a2+2a+an1—l—n1 L : H 1
A 2ab Tatam fmbran, 1b = O wh(_ere we havey; _2 wy. & 2 1is equivalenttoine +a—1
ny > —ab + n1b + any which can be simplified to the valid inequalify; — a) - (no —b—1) > 1.

a =

>1 >1

{I2[13[15} o = 2L < 1, contradiction

{I2[13[16} w1 =1, wy =0, =2, always feasible
{I2I415} wi = 5, wo = 5, 0= “‘al% always feasible
{12[14[16} o = =1 < 1, contradiction

{I3[14[15} « =0 < 1, contradiction

{31416} « =0 < 1, contradiction

o < ™ is equivalent to

(nm+1—a)-(a(ni +1—a)+b(ni —a))
a-(a(ny+na+1l—a—-0)+bni+1—a))

>0

ando’ < 4142 is equivalent to
(ne — b)(a(ng — b) +b)
(a+b)- (a(ng )+ (@tb)(n +1— a))

Since in both cases all factors are non-negative the ragpantqualities are valid and the minimum possible
a-value is given by,

> 0.

To answer the question for the maximum possible case 1 depending anwe have to solve the following
optimization problem

at+b—1

max ———5— S.t.
a-i-n—z
a+b—1<mny

ny+ne=mn
ny,ng > 1
1<a<n —1
2<b<ng—2,

where all variables have to be integers. Eor 1,z > y > 0 we havejjiz > jj;jj Thus the maximum is

attained at the minimum value afwhich is1. (¢ = 1 also yields the weakest constraint- b — 1 < n;.) Since

1 <a <mnp—1lisequivalenttor; > 2, which isimplied bya +b—1 < n; viab > 2, we can drop this constraint.
If a +b— 1 < n; then we could decreasa by 1 and increase. by 1 yielding a larger target value. Thus we

havea + b — 1 = ny, which is equivalent td = ny. Usingn; + ny = nyieldsns = n — b. Inserting then yields

the optimization problem

Lza 2§b§n_2a
1+ -2 2

whereb, n € N. Relaxing the integrality constraint results in

b= (Vii—1) =

max

n
-1

with optimal value

n5/2 _ 9n2 4 p3/2 B Vi
2n2 —3n3/2 +nl/2 — 2

tending to@ asn approaches infinity. Since the target function is contirsuand there is only one inner local
maximum, the optimal integer solution is eitlier {(\/ﬁ -1)- %J orb= [(\/ﬁ —-1)- LW Forn > 9 also

n—1

the condition2 < b < 232 is fulfilled. Let us denote the first bound kfy(n) and the second bound bfy (n).

In the following table we compare these bounds with the exaltte cc(n), determined using the methods from

Sectior b, and/Q—ﬁ.
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n 9 10 11 12 13 14 15 16
n) 1.2727 1.3333 1.3846 1.4286 1.4667 1.5000 1.7143 1.7727

) 1.2000 1.3125 1.4118 1.5000 1.5789 1.6500 1.6296 1.7143
cc(n) 1.3333 1.4074 1.4667 1.5556 1.6500 1.7344 1.8088 1.8750
T

1.5000 1.5811 1.6583 1.7320 1.8028 1.8708 1.9365 2.0000

In case 2 we obtain the optimization problem

nng —ab+b—a?+2a+an; —1—m
max S.t.
—a?2 —2ab+a+any +nmb+ang +0b

a+b—1>n;+1

ny+nog=n

niy,ne > 1
1<a<n —1
2§b§n2—2,

Fora > 1 we can check that decreasingn; and increasing, n. by 1 does not decrease the target value. Thus

we can assume = 1 in the optimal solution so that the target function simpéfie m(bﬁ;ﬁ?nrb) = b+1}:2"2*b .
ny

Decreasing by 1 increases this target function so that either b — 1 > ny + 1 orb > 2 is tight. In the latter case
we would haven; < 1, which contradictd = a < n; — 1. Thus, we have + b — 1 = ny + 1 in the optimum
which is equivalent td = n, + 1. Inserting this ands = n — n4 yields the target function
n—b+1
—2b+1

having the non-negative optimal solutiontof= 1-E1"=2n with target value

1 \/n3+1—2n—(n—1)< vn
2 n—1 -2

tending to@ asn approaches infinity. If the other inequalities are fulfilléien rounding up or down yields the
optimal integral solution (in this case; not in general)btith cases the conditioBs< b <ns; —2,1=a <n;—1
are fulfilled forn > 9. We produce a similar table as before:

n 9 10 11 12 13 14 15 16
fa2(n) 1.1667 1.2308 1.2857 1.3333 1.3750 1.4118 1.4444 1.6250
f2(n) 1.0588 1.1667 1.2632 1.3500 1.4286 1.5000 1.5652 1.5484
ce(n) 1.3333 1.4074 1.4667 1.5556 1.6500 1.7344 1.8088 1.8750

Conjecture 2.

cc(n) € ©(V/n) .

So far we do not know any examples of complete simple gamds avitritical threshold value larger than
max(l, \/TH) We will prove Conjecturg]2 for some special classes of cete@imple games. An important class,
used by many real-world voting systems, is given by the dle¢@ames with consensus, i.e. intersections of a
weighted voting game and a symmetric gdniel, . . ., 1], see e.g/[Carreras and Freixas, 2004, Peleg, 1992]. The
voting procedure for the council of the European Union basethe Treaty of Nice consists of such a consensus,
i.e. atleasti4 (or 18, if the proposal was not made by the commission) of the caswnust agree. (The two other
ingredients are a majority of the voting weights and a majarf the population.) Concerning the distribution of
power in the European Union we refer the interested readegtdAlgaba et al., 2007].

Lemma 11. The critical threshold value.(y) of a complete simple game € C,, with consensus, given as the
intersection ofq; w1, ..., w,] and[¢’; 1, ..., 1], is at most/n.
Proof. If ¢ > \/n we take weights of\/l—H for all voters so that each winning coalition has a weighttdéast one

and the grand coalition a weight gfn. In the other cases we take weiglél:qtsfor the voters so that each winning
coalition has a weight of at least W.l.0.g. we assume; < ¢ so that the new weights are at mastA losing
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coalition with weight larger than one must fail the criteriof the symmetric game so that it consists of less than
v/n members. Thus the weight of each losing coalition is less {/fa. O

For large consensug the critical threshold value is bounded from aboveg{bysince we can assign weights
of % to all voters. We remark that complete simple garfles, n2), (m1,ms2)) with two equivalence classes of
voters and one shift-minimal winning vector are games withsensus and thus have a dimension of at mo$t two
As representation we may use the intersectiomaf+ mo; 1,. .., 1] and[ming + ma;na, ..., no, 1,..., 1].

Lemma 12. The critical threshold valug:(x) of a complete simple game € C,, with two types of voters is at
mosty/n + 1.

Proof. If x has only one shift-minimal winning vector we can apply LenfiiaSince complete simple games with
less than four voters are weighted we can assuried. So letm; = (a, b) the shift-minimal winning vector with
maximala andmsy = (¢, d) the shift-minimal winning vector with minimal. Depending on the values afand

¢ we will provide suitable weights); andw- such that each winning coalition has a weight of at lgast 0 and
each losing coalition has a weight of at mgs{/n + 1), i.e. the proposed weights have to be normalized in order
to fit into the framework of a quota= 1.

If ¢ > 1we setw; = y/n andwy = 1. Every shift-minimal winning vectofe, f) # (a,b) mustfulfillc <e < a
due to the definition of, c ande + f > a + b + 1 since otherwiséa, b) would not be a shift-minimal winning
vector. With this we have

ewy + fwg >ewr +(a+b+1—ewy>cyn+(a+b+1—c).
Similarly, we obtain
awy +bwy =cyn+a—c+b+(a—c)-(vVn—1)>cy/n+(a+b+1-c).
M~ N
>1 >1

Thus it suffices to show that each losing coalition has a waifjat most
(evn+(a+b+1—0¢)) - (Vn+1)>n+avn+byn.

Let (g, k) be a losing coalition so thdy, k) % (a,b) and(g,h) % (c,d). If g < cthenh < ny < n —a and we
have

gwi + hws < ceyn+n—a<n+ayn.
If g > atheng + h < a+b— 1 since otherwiség, h) = (a,b). With this we have
gwi + hwy < (a+b—1)v/n < ay/n + by/n.
If c < g <atheng+ h < c+d— 1since otherwiség, h) = (c,d). With this we have
gwi + hwy < (a—1)vn+ (c+d—a) <n+ayn.

If ¢ = 0 we setw; = v/d, whered > a + b+ 1> 2, andw, = 1. Let(e, f) be a winning andg, ) be a losing
coalition. Similarly, as before we havet f > a + b so that

ewl—i—waZ\/E—i-a—i-b—l.

It suffices to show that each losing coalition has a weight afi@st

(\/E+a+b—1)-(\/ﬁ+1) Vidn —vn+Vd+ (a+bvn+a+b—1

v

>d >0
> d+ (a+b)Vn.
If g > atheng +h < a+b— 1, since otherwiség, h) > (a,b), and we have
gwi + hwy < (a+b—1)Vd < (a+ b)y/n.
If c<g<atheng+ h <c+d—1,since otherwis¢g, h) > (¢, d), and we have
guwi + hwy < (a = 1)Vd+ (c+d—a) < ayn +d.
O

3Complete simple games with one shift-minimal winning veetod more than two equivalence classes of voters can hawendions larger
than two and as large g5 [Freixas and Puente, 2008].
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We remark that complete simple games with one type of votersvaighted and thus have a critical threshold
value of1.

Lemma 13. The critical threshold valug(x) of a complete simple gamee C,, with one shift-minimal winning
vectora is at most,/n.

Proof. By (n4,...,n;) we denote the numbers of voters in the> 2 equivalence classes of voters and by
(a1, - ..,at) the unique shift-minimal winning vectar.

t
If Zlai > /n we setw; = \/La forall 1 < i <t and havew(a) > 1. Since with these weights we have
i=
w(N) < /n, every losing coalition has a weight of at mqgt and we have a critical threshold value of at most

N

t
In the remaining cases we haY€ a; < +/n. Due to condition (a)(iii) of Theorefd 1 we hawe > 1. We
=1

setw; = 1 andwy = --- = wy = 0 and havew(a) > 1. For every losing vectol = (l1,...,1l:) we have

t ~
l; < Y a; < +/n since otherwise we would have< [. Thus each losing coalition has a weight of at mgst
1=1
and the critical threshold value is bounded from above/yin this case. O

So, we have an upper bound g% for the critical threshold value for complete simple gameswo/oters in
several subcases. For the general case of Conjédture 2 vipeamade only a first preliminary bound showing that
cc(n) asymptotically grows slower tharg(n) so that the maximum critical threshold value in some sersest
that complete simple games arearerto (roughly) weighted voting games than simple games.

Yy . . . 1 log
Theorem 2. The critical threshold valug(x) of a complete simple gamee C, is in O(%).
Proof. As weights we choose a slowly decreasing geometric serjes ¢*~! for all 1 < i < n whereq =
1 — —1%8" __ With this we have) < ¢ < 1 and 1, = nloglogn Now, let W be a winning coalition with the

n-loglogn" logn

minimum weight and. be a losing coalition with the maximum weight. In the follogiwe will show;”((vﬁ,)) <
nloglogn 14 deduce this bound we will compare the weights of a few stshsf consecutive voters. In order

logn
to keep the necessary number of such subsets small, W& set W\(W N L) andL := L\(W N L), i.e. we
technically remove common voters. We remark thaheeds not be a winning coalition. Due to the inequality
x > Tr—+c
y  y+tc

forz > y > 0 andc > 0 it suffices to provide an upper bound fﬁ%—)}.

At first, we consider the case whéfi is lexicographically larger tha. Letj be the voter with the minimal
index (and so the maximal weight) . With this we setW’ = {;}, L’ = {j + 1,...,n} and havew(W) >

w(W"), w(L) < w(L') so thatif(%/)) is upper bounded by

w(L) < w(L') _ q(1—q") < 1 n -loglogn

w(W) ~ w(W’) 1-¢q ~1—-¢q  logn

If W is lexicographically smaller thah then letj be an index with W n{1,...,j}| > | L N{1,...,5}. With
=:kq =:ko
thiswe setl’ := {1,...,ko} U{j +1,...,n}andW’ := {j — k; + 1,..., 7} fulfilling w(W) > w(W') and

w(L) < w(L'). Sinceky > ko > 1,

ko n .
w(L') = Zqi—l + Z ¢! = 11 _q
i=1

i=j+1

ko R n—j
_’_q.]iq
q I-q

andw(W') = ¢/ —k+1. % > ¢?~F1+1 we have

7 / Jj._1_
wil) w(L,) <qhii 2 e < i<
w(W) ~ wW’) gkt l—gq l—gq

IN
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To finish the proof we show™" € O(M). From - < log(l + 2) < z for z > —1 we conclude

logn

2z > 2= > —log(1 — x) > x for % < z < 1. Thus for large enough we have

1 21 21
log(q™) <n-—log(1- ——ol )} <p. 080 o 2087
n -loglogn n -loglogn ~ loglogn

andlj’glj’% §logn—loglogn—i—logloglognzlog(%). O

In the context of the conjectured upper boundxdf,/n) for cc(n) we find it remarkable that the cost of sta-
bility CoS(f) of any super-additive, see Definitibh 5, Boolean gafne B,, is upper bounded by/n — 1, see
[Bachrach et al., 2009]. If is additionally anonymous, then the authors have provetighéer bound”oS(f) <
2. This coincides with the situation for the critical threkhealue. Here we may consider the super-additive
anonymous Boolean ganfec 1,,, where coalitions of sizé”T“] are winning and the grand coalitig¥i is losing.

5. AN INTEGER LINEAR PROGRAMMING APPROACH TO DETERMINE THE MAXWAL CRITICAL THRESHOLD
VALUE

In principle it is possible to determine the maximal critidt@eshold value:s(n) for a given integen by simply
solving the stated linear program from Proposifibn 1 forsatiple games € S,,. Since forn < 8 there arel,
4,18, 166, 7579, 7828 352, 2414 682 040 996, and56 130437 228 687 557 907 786 simple games, an exhaustive
search seems to be hopeless even for moderébé course theoretical results may help to reduce the number
simple games which need to be checked).ker 9 only the lower bound 02 is known.

So, alternatively we will formulates(n) as the solution of an optimization problem in the followimgavoid
exhaustive enumeration. It is possible to describe the fsetamotone Boolean functions as integer points of
a polyhedron, see e.g. [Kurz, 2012b]: For each sulss&f N we introduce a binary variables and use the
constraintsey = 0, zy = 1, andzg\ ;3 < zs forall ) # S C N, i € S to model a simple game vig(S) = zs.
(We have to remark that this ILP formulation is vesymmetric) In this framework it is very easy to add additional
restrictions. Methods to restrict the underlying gamesdmglete simple games or weighted voting games are
outlined in [Kurz, 2012p]. The restriction to e jgropersimple games can be modeled via + x5 < 1 for all
S C N. Similarly, strongsimple games can be modeled by using the constrajnts x5 > 1 forall S C N.

So the problem of determinings(n) can be stated as the following optimization problem: Maxenover
all simple games witm voters the minimunmu of the linear prograni{1). Since this is a two-level optintiza
problem, we have to reformulate the problem in order to apyger linear programing techniques.

In order to determines(n) we cannot maximizev directly since we havey € Th, NS, forall A > 1 if
X € Ta NS, To specify the minimum value for a given simple gamg we can also maximize its corresponding
dual linear program of {1) whose optimal solutiomis

If we drop the restrictiony > 1 and assume; > 0, the dual program for a simple games given by

Max > ug
Sew
Z ug — Z v <0 VieN
SeW:ieS SeL:ieS
Z vs S 1
SeL
ug >0 VSeW
vg >0 VSelL,

whereW denotes the set of winning coalitions ahdlenotes the set of losing coalitions. As outlined in Sed#on

the optimal target valued |, us might take values smaller than(but being non-negative) which correspond to a
Sew

critical threshold value ofi(x) = 1.
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The next step is to replace the externally given $8tand L by variables such that the possible sets correspond
to simple games. Using our previously defined binary vaesb} this is rather easy:

Max Z TS us

SCN
Z rs-uUsg — Z (1—I5)~1)5S0 Vie N
{i}CSCN {i}CSCN
>, (I—wxs) vs <1
SCN
g =0
N = 1
ro\piy <ws YD #ASCN
ug >0 VSCN
vg >0 VSCN

zs € {0,1} VSCN,

The problem is a quadratically constrained quadratic @ogiQCQP) with binary variables or more generally a
mixed-integer quadratically constrained program (MIQQmMere are solvers, like e.gLOG CPLEX, that can deal
with these problems efficiently whenever the target fumctind the constraints are convex. Unfortunately, neither
our target function nor the feasibility set is convex. Thu®rider to solve this optimization problem directly, we
have to utilize a solver that can deal with non-convex mikgdger quadratically constrained programs like e.g.
SCIP, see e.g.[Berthold et al., 2011a, Berthold et al., Ztﬂlb]

This works in principle, but problems become computatilyrinfeasible very quickly. By disabling preprocess-
ing we can forcesCIP to use general MIQCP-techniques. Solving the problem Boofanctions withf () = 0
andn = 3 took 0.07 seconds and 43 b&b-nodes, for= 4 it took 8.45 seconds and 15770 b&b-nodes, and for
n = 5 we have aborted the solution process after 265 minutesl #&nd10° nodes, where more than 33 GB of
memory was used.

By enabling preprocessirgCIP is able to automatically find a reformulation as a binarydingrogram. This
way SCIP can solve the instance far = 8 in 2.9 seconds in the root node but will take more than 211 tesu
373000 nodes, and 1.8 GB of memory to solve the instance fo9.

Since often binary linear programs are easier to solve thrempquadratic problems, we want to reformulate our
binary quadratic optimization problem into a binary lineae. There are several papers dealing with reformulations
of MIQCPs into easier problems, see elg. [Letchford andiGAL1]. Here we want to present a custom-tailored
approach based on some techniques that are quite standhednmixed integer linear programing community (but
we will outline them nevertheless). Using this formulatieaIp needed only 18.72 seconds to solve the instance
for n = 15 without applying branch&bound. We would like to remark tik#®#L.EX was even faster using only
5.61 seconds of computation time.

A quite general technique to get rid of logical implicati@me so called Big-M constraints, see €.g. [Koch, 2004].
To explain the underlying concept we consider a binary Weia < {0, 1}, a real-valued variablg, and acondi-
tional inequalityy < ¢ for a constant, which only needs to be satisfiedhif= 1. The idea is to use this inequality,
but to modify its right-hand side with a constant tinjés— x):

y<c+(1—-2z) M.

For 2 = 1 this inequality is equivalent to the desirednditionalinequality. Otherwise the new inequality is
equivalent toy < ¢ + M, which is satisfied ifM is large enough. Given a known upper boun& «, where
possiblyu > ¢, it suffices to choosé&/ = u — c.

Now we want to apply this technique in a more sophisticateg weremove the non-linear termy - ug, where
xzg € {0,1} andug € [0, 8]. We replace the termg - ug by the variablez > 0 using the constraints < Sxg,
z < ug,andz > us — B (1 —zg). If xg = 1 these inequalities state that= x5 - us = ugs must hold and for
zg = 0theyimplyz = zg - us = 0. Thus one extra variable and three additional inequaléiesnecessary for
each term of the forms - us or zg - vg. The LP relaxation gets worser with increasjfigthe so-called Big-M
constant. Of course in general, it may be hard to come up wétinarete boung. In our case it is not too hard to

proveug,vs < 1: If zp = 0then fromvg > 0forall S € Nand > (1—xg)-vs < 1we concludevr < 1.
SCN

4We have to remark that currently SCIP is not capable of sgltfire stated problem without further information becausgettare some
problems if the intermediate LP relaxations are unboun8edne has to provide upper and lower bounds for the contsvariablesus and

vg.
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Otherwisevr does not occur anywhere in the optimization problemand 1 is a valid inequality. Similarly, if
z7 = 0 thenur does not appear anywhere and on the other hand;foe 1 we have

ur < > (1—wg) vs< > (I—wg) vs < 1.
{i}CSCN SCN

Due to the special structure of our problem we can reforreutatr problem without additional variables and
fewer additional constraints. The main idea is to use thm teg instead ofrs - ug and to ensure that we have
ugs = 0 for zg = 0. Similarly, we replace the product$ — zs) - vs by vs and ensure that we have = 0 if
rs = 1.

a7 max Z ug
SCN
(18) Ty = 0
(19) zxy = 1
(20) TS — Tg\{i} > 0 V@#SQN,zeS
(21) Y us— Y. vs < 0 VieN
{iycscn {iycscN
(22) g <1
SCN
(23) us < x5 VSCN
(24) vs < 1—xgVSCN
(25) xzg € {0,1} VSCN
(26) us > 0 VSCN
(27) vs > 0 VSCN
Inequalities[(2l1) and(22) capture the dual linear prograrhdunda: = Y wug from above. Inequality(23)
SCN
models the implication that is zero if z = 0. In the other case wherer = 1 the inequalityur < 1 is
redundant since we have for anc T (zy = 0) the inequality > ug— > < 0 from which we
{i}CsCN {i}CscN
concludexyr < 1 usingzg > 0and > wvs < 1. Inequalities of that type are called Big-M inequalities)ere
SCN

we have arBig-M of 1 in our two cases. (See Inequalify134) for an example wilfiggM constant larger thah))
Similarly, Inequality [2%) models the implication that is zero ifzr = 1. In the other case wherer = 0 we
have the redundant inequality: < 1.

The optimum target value of this ILP is the desired valgén) for each integer.. We have to remark that our
modeling of the set of simple games is highly symmetric arthaalution comes with at least isomorphic solu-
tions which is an undesirable feature for an ILP model. Whithgtated ILP model we were able to computationally
prove Conjecturkll for < 9 taking less than 37 seconds for= 7, less thar279 seconds forn = 8 but already
66224 seconds an@i61898779 branch&bound nodes far = 9. Forn = 10 we have computationally obtained the
bounds% < ¢s(10) < 3 from an aborted ILP solution process. (The LP relaxatiorgionly the relatively poor
upper bound of:;1.)

We would like to remark that we can enhance this ILP formatlat bit. Since we haves(n + 1) > cs(n) we
may apply Lemm&10 and requirg;; = 0 for all 1 <i < n, wheren > 2.

If we replace condition§ {20) by those for complete simplmgawe can determine the exact valugg:) for
n < 16: ce(1) = ce(2) = ce(3) = cc(4) = cc(5) = cc(6) = 1, cc(7) = §, cc(8) = 33, cc(9) = 5, cc(10) = 3,
ce(11) = 2, cc(12) = &, ce(13) = 23, co(14) = UL, ce(15) = L2, andce(16) = L2

We would like to remark that the LP relaxation gives only tio@pupper bound¢ (n) < ”7*1

6. THE SPECTRUM OF CRITICAL THRESHOLD VALUES

In section§ ¥ anf]5 we have considered the maximum criticabtold value for several classes of games. By
Specs(n) we denote the entire set of possible critical thresholdeslof simple games om voters. Similarly,
we defineSpeci(n) as the set of possible critical threshold values for Bookeaationsf : 2¥ — {0, 1} with
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f(0) = 0 andSpecc(n) as the set of possible critical threshold values for conepdenple games on voters. In
this section we will provide a superset for the spectrumgikimown information of the set of possible determinants
of 0/1 matrices. In order to compute the exact sets for snadlles ofn. we modify the presented integer linear
programming approach for the determination of the maximritical threshold value to that end.

By considering null voters we conclu@®ecs(n) C Specs(n+1), Specg(n) C Specs(n+1), andSpece(n) C
Spece(n+1). Due to the inclusion of the classes of games we obviouslg Bawce (n) C Specs(n) C Specg(n)
foralln € N.

Principally, it is possible to determine the s8tsecs(n) for small numbers of voters by exhaustive enumeration
of all simple games. As mentioned in the previous sectisapproach is very limited due to the quickly increasing
number of simple games. In [Gvozdeva et al., 2012] the asthave determinefpecs(n) for all n < 6 by some
theoretical reductions and exhaustive enumeration oret$teicted set of possible games.

In this section we want to develop an approach based on infiegar programming to determine the spectrum
and to utilize results on Hadamard’s maximum determinaniblem to obtain a superset of the spectrum. For the
latter let us consider the linear progralmh (1) determinireyahitical threshold value of a Boolean function with
f(0) = 0. Each element of the spectrusipecs(n) appears as the optimal solution of this linear program for a
certain Boolean functiof. If inequality« > 1 is attained with equality in the optimal solution, the adti thresh-
old value isl. So we may drop this inequality and consider only those fanstf where the linear prograrl(1)
without the inequalityr > 1 has an optimal solution, which is then attained in a corndnusTthere are subsets
Wi,...,Wi,, C N,where0 < k <n+1,with > w; =1andn+ 1— ksubsetd,...,L,4+1—r C N with

JEW;
—a+ Y, w; = 0such that the entire linear equation system has a uniquésulfWe remark that = 0 and
JEL;
k = n + 1 lead to infeasible solutions.)
Writing this equation system in matrix notatieh- (wy, ..., w,,a)’ = b we can use Cramer’s rule to state
_ det(Aq)
~ det(A)’

whereA,, arises fromA by replacing the rightmost column by SinceA,, is a0/1-matrix we can use an improved
version of Hadamard’s bound and have

(n + 2)(n+2)/2

|det(Aq)| < T ,

see e.g./[Brenner and Cummings, 1972]. If we multiply thdtrigost column ofd by —1, which changes the
determinant by a factor ¢f-1)"*! then it becomes &/1-matrix too and we conclude

(n + 2)(n+2)/2

det(4)] <

. . (n+2)/ .
Lemma 14. For eacha € Specp(n) there are coprime integers< g < p < V"*?#J with o = 5.

For specificn the uppers bounds on the determinant 6f-matrices can be improved. The exact values for the
maximum determinant ofa x n binary matrix forn < 17 are givenbyi, 1,2, 3,5, 9, 32, 56, 144, 320, 1458, 3645,
9477,25515,131072, 327680,1114112, see e.g. sequence A003432 in the on-line encyclopediatedén se-
quences and the references therein.

Another restriction on the possible critical thresholdues is obviously given by the maximum values, i.e.
w(x) < ep(n) (oru(x) < cs(n) for simple gamesy(x) < ce(n) for complete simple games. Further restrictions
come from the possible spectrum of determinants of binarnyices. For binary. x n-matrices all determinants
between zero and the maximal value can be attainedn Bof7 gaps occur, see e.§. [Craigen, 1990]. The spectrum
of the determinants of binafyx 7-matrices was determined in [Metropolis, 1971] tofkie. . ., 18} U {20, 24, 32}.
Using this more detailed information we can conclude thatdenominatoy of the critical threshold value of a
Boolean function withf (#) = 0 on 6 voters is at most7. Thus, we are able to compute a finite superdet) of
Specp(n) for each numbern of voters.

Our next aim is to provide an ILP formulation in order to detere the entire spectrum for simple games and
complete simple games onvoters. Therefore, we consider the linear prograim (1) ferdatermination of the
critical threshold value. Dropping the constraint> 1 and assumingy; > 0 we abbreviate the emerging linear
program bymin ¢’ 2, Az > b,z > 0. If its optimal value is at least then it coincides with the critical threshold
value. Otherwise the game is weighted. By the strong dutidggrem its duainax b’y ATy < ¢,y > 0 has the
same optimal solution if both are feasible. This is indeedddise taking the dual solutign= 0 and primal weights



20 JOSEP FREIXAS AND SASCHA KURZ

of 1 with ana of n. Thus, we can read of the critical threshold valueas from each feasible solution of the
inequality systemiz > b, ATy < ¢, T2 =b"y, 2,y > 0.

As done in Sectiohl5 we model the underlying simple game bargimariablesc s for the subsets C N and
use Big-M constraints:

(29) zy = 1
(30) zs—xs\(ip = 0 W#SCN,ie§
(31) zs € {0,1}) VSCN
(32) w; < 1 VieN
(33) dwi > x5 VSCN
i€s
(34) Zwi < OZ+|S|'$5 VS CN
i€s
(35) w, > 0
(36) S us— Y ws < 0 VieN
{i}CSCN {i}CSCN
(37) Z vg < 1
SCN
(38) us < xg VSCN
(39) vg < 1—xzgVSCN
(40) ug > 0 VSCN
(41) vgs > 0 VSCN
(42) Z us =«
SCN

Inequalities[(2B)E(31) model the simple games. The primmabmm to determine the critical threshold value is
given as inequalitie$ (32)-(B5). W.l.0.g. we can restttigt weights to lie insidé0, 1]. Inequality [3B) states that
the weight of each winning coalition is at ledsand that the weight of each losing coalition is at least 2etoch

is a valid inequality. Similarly, Inequality (34) is fulféd forzs = 1 and translates ta(S) < « for each losing
coalition S. The formerly used dual linear program is stated in inedjeal{36){41). Finally the coupling of the
primal and the dual target value is enforced in Inequdlig) (4

We remark that in order to destroy a bit of the inherent synmyne¢. the group of all permutations erelements
acts on the set of simple games, we might requiye> - - - > w,,.

Having this inequality system at hand, one may prescribb efEment inA(n) as a possible value fer and
check whether it is feasible, thenis contained in the spectrum, or not.

Another possibility to determine the entire spectrum isdlves a sequence of ILPs, where we add the target
functionmin « and the constraint > . As starting value we choo$e= min{v € A(n) : v > 1}. If the optimal
target value is given by, we choosé = min{v € A(n) : v > '} until the set is empty. We remark that for
largern the values of\(n) might be relatively close to each other so that numericableras may occur.

Using the latter approach, we have verified the res$iltscs(1) = Specs(2) = Specs(3) = Specs(4) =

— 6 7 8 9 _ 3 4 5 9 10 11 11 12 13 13 13 14 14
{1}’ Specs(5) - {175767775}! andSpng(ﬁ) - Specs(5) U {57§7Zv77?7?7ﬁ7ﬁ7ﬁ7ﬁ7ﬁ7ﬁ7ﬁ7

15 15 16 16 17 17 17 17 ; H .
1 15 18 3 T 5 E} already given in[[Gvozdeva et al., 2012]. Foe= 7 we have newly determined the

smallest non-trivial critical threshold valuein Specs(7)\{1} = %.ﬁ Forn = 8 we conjecturenin Specs(8)\{1} =
105@
104="

5Since  the possible  spectrum of  determinants is  given byo, ...,40,42, 44, 45, 48,56}, see e.g.
http://www.indiana.edutmaxdet/spectrum.htrnl, onl%% had to be ruled out.

SHere the possible spectrum of determinants is givefigy . ., 102, 104, 105, 108, 110, 112, 116, 117, 120, 125, 128, 144} so that only

117 H H
116 Might be possible.
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By dropping the inequalitie (29], (B0) and permitting rtagaweights, i.ew; € R, we can principally deter-
mine the entire spectrum for Boolean functions wiilf)) = 0. For smalln, the explicit sets are given by

Specg(l) = {1}
Specg(2) = {1,2}

3
Specg(3) = {1,5,2,3}

5435 _5
Sp608(4) - {11115151572151374}

9876594738579 9758 _7
S 5 = 1,-,=,=,=,-,=, =, =, =, =, =, —, = 2,—-,=,—,—,3,=,4,5
pecB() { ’8’7’6’5747773’5’2’5737475’ 74737273’ 72’ b) }
S — {1,151 16 15 113 12 11 10,0 178 15 7 18 6 717 1
pecs o "17°16°157 147137 12°11°10° 9°8°15°7°13°6711°5°14° 9’

16 5 14 9 13 17 4 15 11 18 7 17 10 13 16 3 17 14 11

Eaiaﬁa?71_07Ea57ﬁa?aﬁa%aﬁa?a?aﬁa§aﬁa?a7a
8§ 13 18 5 17 12 7 16 9 11 13 15 17 17 15 13 11 9

ga§7ﬁ7§7E77717§757€777§737 a?a?a?a?aia
1 12 1 11 14 13 1 11
712508 1,130 T 9 )

For complete simple games we simply replace the condit@8s({31) by those for complete simples games.
As complete simple games with up Govoters are roughly weighted, we ha$gecc(n) = {1} forn < 6. For

n = 7 we have determineghin {Specc(7)\{1}} =3

7. CONCLUSION

In this paper we have considered the critical thresholdesfar several subclasses of binary voting structures. For
Boolean games an exact upper boungigfn) = n could be determined. The set of achievable values is styongl
related to the spectrum of determinants of binary matriseshat Hadamard’s bound comes into play.

We have strengthened the lower and upper bound on the maxaritioal threshold value of a simple game

onn voters to{"{J /n < cs(n) < %. Itremains to prove (or to disprove) the conjecture thatidieer bound is

tight. By introducing an integer linear programming aptoto determine the maximum critical threshold value
we could algorithmically verify this conjecture for all < 9. On the one hand, this seems to be a rather small
number. On the other hand, regarding the question of the auoflsimple games, not much more than a lower
bound of10%2 is known. Since the number of simple games grows doubly expigal, no huge improvements can
be expected from an algorithmic point of view.

For complete simple games the problem to determiife) is considerably harder. The large gap between the
stated upper boun@% and lower bound-+/n deserves to be closed or at least to be narrowed. In order
to facilitate the conjectured asymptotics®f./n) we have provided a class of examples achieving this bound and
have proven the respective upper bounds for several sgleslas complete simple games.

So far we have no structural insights on those complete siggorhes which achieve (n) as their critical thresh-
old value. The given integer linear programming formulatior cc(n) made it possible to determine exact values
for numbers of voters where even the number of complete siggaines is not known. To be more precise, there are
284 432730 174 complete simple games for nine voters, see €.g. [Kurz, A0dr2fkreixas and Molinero, 20210],
while exact numbers are unknown for> 10. The fact that the exact numbers for the critical threshalldies
cc(n) for complete simple games are known upite- 16, indicates the great potential of our introduced algorith-
mic approach. Similar integer linear programming formiolag can possibly be developed for other problems on
extremal voting schemes. Applications to related condégse.g., the nucleolus or the cost of stability seem to
be promising.

In this paper we leave the question for the complexity to mheitge the criticial threshold value within a given
class of games open, but expect it to be in NP in general.

Concerning the discriminability of the hierarchy@froughly weighted simple games, it would be nice to prove
(if true) that there is a complete simple gamewith critical threshold valug:(x) = % for all integersp > q.
Some first experiments let us conjecture that there evendamalete simple game with two types of voters and one
shift-minimal winning vector.



22 JOSEP FREIXAS AND SASCHA KURZ

As usual, the relation to other solution concepts from thaeéheory literature to the critical threshold value
should be studied. We have started this task by considehniagdost of stability. Is turns out that the critical
threshold value is upper bounded by the cost of stabilitpnfthat, we could deduce an upper bound 6f for
super-additive games. For Boolean games the asymptotiereat values coincide, while they can differ to a large
extent for concrete games.

The maximum critical threshold value can discriminate lestavthe classes of simple games, complete simple
games, and weighted voting games, while the cost of stalaifih not. The concept of a dimension of a simple
game is not directly related to the critical threshold value

The concept ofbv-weightedness seems very interesting. More researchagheutone in that direction. A
quite natural idea is to transfer the concept to ternaryngoiames, see e.q. [Felsenthal and Machover,|1997] and
[Freixas and Zwicker, 2003], or graph based games like etyark flow games. Also effectivity functions, see
e.g. [Storcken, 1997], might be candidates for a genetaizaf the basic concept. Last but not least, there are two
additional hierarchies of simple games described in [Gewackt al., 2012] which deserve to be analyzed in more
detail.
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APPENDIXA. FURTHER SIDE RESULTS

In this appendix we mention some additional results, whielodtained with the techniques described in the paper,
but are a bit to specific to be included in the main part.

A.1. Strong or proper simple games.In Sectior[b we have mentioned that one can easily modelatistrs
within the class of simple games, e.g. consider proper ongtsimple games. So, for each voting classc
{B,S,C} let ¢ (n) denote the maximum critical threshold value of a game ctingisf »n voters inX’, which is
strong. Similarly, we defin€’, (n) for games which are proper anf (n) for games which are proper and strong.
Numerical results for small numbers of voters are statechbiel].

n cc(n) cg(n) cé(n) cg”(n)
7 E~1.142857 11 ~1.076923 2=11 1
26 38 _17F 26

8 28 ~1.238095 B=1715 20 ~ 1.238095 1
9 3=13 g=12 3=13 13 =1.083

38 _ 1407 66 ~ 38 _ 1407 23 _
10 28 =1.407 98 ~1.245283 3 —1.407 B =115
11 2=146 1.290735 22 =146 B =1191
12 $=15 3=13 1.553571 29 =1.22916
13 =165  €[1.3620,1.4211] 2 =165 ~ 1.258772
14 L =1.734375 o = 1.734375  ~ 1.298361

TABLE 1. The maximum critical threshold value for complete singdenes restricted to strong
or proper games.

Obviously we have the inequalitieg’(n) < ci(n) < cc(n) andcg’(n) < c¢g(n) < ce(n). Since adding
an additional player to an arbitrary complete simple gantéclvis winning on its own, yields a strong complete
simple game with equal critical threshold value, we alsoehéyn) > c¢(n — 1), i.e. Conjectur&]2 would imply
c&é(n) € ©(y/n). Looking at the numerical values of Taljle 1 one might comjext?,(n) < c&(n) for all n. It
would be very nice to have a good lower bound constructior{fin), which then would imply lower bounds for
ch(n), ' (n), andc (n).

Lemma 15. For all k > 2 we havery(2k) > .

Proof. Consider the: coalitionsS; := {2i — 1,2i} for 1 < i < k and the2* coalitions{ay, ..., ax} with a; € S;.
Let us denote the latter set of coalitions.Hdy We can easily check that those coalitions form an anticbaithat
we can arbitrarily prescribe for each coalition whethesitinning or losing and there exist at least one simple
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n cs(n) cEm) cz(m) c&Fm)
5 $=12 1 1 1
3 4 _ 193 3 _
6 3=15 =13 3=15 L
7 2x~1714286 =14 2=16 3=13
8 2 3=15 I=14
20 _ 99 5 _ 1@ 1L _ 3 _
9 T=22 2=16 L=22 =15

TABLE 2. The maximum critical threshold value for simple gamegieed to strong or proper games.

gamey meeting those conditions. Here we require that the coastiy are winning the coalition$a,, . .., ax}
are winning if and only ifu; = 1, as = 3 0ora; = 2, as = 4. Since the coalitions; are winning we have
k n

=1
Since the coalitionsitd N L, whereL denotes the set of losing coalitions, contain each votér equal frequency,

we have

AeANL :
Combining both inequalities gives > % O

We remark that we have; (n) < cs(n) so that the bound from Lemrhall5 is tight if Conjecfure 1 is.true

s k(k
Lemma 16. For all £ > 2 we haver§(2k +5) > 1+ 2(,6—]:)

Proof. We will construct a class of examples by prescribing for soo®ditions whether they are winning or losing.
For1l < i < 2k we require that the coalitiong, i + 1} are winning. LetB := {2i — 1|1 < i < k+ 1} and
R :={2i|1<1i<k}. Nextwe require
{2k +2,2k+4}UB€L {2k +3,2k+5} UR e W,
{2k+3,2k+5}UB€L {2k+2,2k+4}UR e W,
{2k+2,2k+5}UBeW {2k +3,2k+4}UR € L,
{2k +3,2k+4}UBeW {2k +2,2k+5}UR€EL,
where L denotes the set of losing coalitions aid denotes the set of losing coalitions. The linear program for

the computation of the critical threshold value restriocbedthe mentioned coalitions has an optimal solution of

k(k+1)
1+ ST ]

We remark that the lower bound from Lemma 16 misses the vature €onjectur€]l only bm. Since the
computed exact values fog (n) from Tabld2 coincide with the lower bounds from Lenmmaé 15 asthimd 16, we
conjecture that they are tight.

Unfortunately we can not use duality to obtain upper boumdgpfoper simple games from those for strong
simple games. To this end let us consider the class of exarfipl@ the proof of Lemma15. We observe that all
coalitions of cardinality at leagt+ 1 are winning so that each winning coalition of the dual gam@ctvis strong,
has a cardinality of at least Thus we may choose weighig = % for all voters so that the weight of each losing
coalition is at mose while the original game has a critical threshold valuemaix (1, g).

Lemma 17. For n > 3 we haverj;(n) = n.

Proof. Of course we havey;(n) < c¢g(n) = n. A proper example achieving this bound is given by the Bavlea
game whose winning coalitions coincide with the coalitiohsize one. O

Lemma 18. We have:j(n) = max(1l,n — 1) forall n € N.

Proof. Since the empty set is a losing coalition, its complemerd,grand coalition, has to be winning. Thus
every losing coalition consists of at most- 1 members. Choosing weights = 1 for all voters gives a feasible
weighting witha: < n — 1. For the other direction consider the stroggmein B,, with n > 3, whose losing
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n csm) Bm) cpn) <r(m)
1 1 1 1 1
2 2 1 1 1
3 3 3 2 2
4 4 4 3 3
5 5 5 4 4
6 6 6 5 5
7 7 7 6 6
8 8 8 7 7
9 9 9 8 8

TABLE 3. The maximum critical threshold value for Boolean gametriected to strong or proper games.

coalitions are the empty set and the coalitions of size 1. Since all coalitions of sizé are winning, the weights
of the players have to be at least one so that the losing immadibf cardinalityn — 1 have a weight of at least
n— 1. ]

Lemma 19. We have?}’ (n) = max(1,n — 1) forall n € N.

Proof. Sincecly’(n) < c¢(n) = max(1,n — 1) it suffice to construct an example whose critical threshalitie
reaches the upper bound. To this end we define the strong apdrmBoolean gamg for n > 3 as follows: The
empty coalition is loosing, the grand coalition is winnimgalitions with sizes between one aﬁgl, coalitions
with sizes betweer—’f;—1 andn — 1 are winning, and coalitions of cardinality are winning if and only if they
contain voterl. O

A.2. Restrictions on the number of shift-minimal winning vectors. Using the described ILP approach we may
also exactly determine the maximal alpha-valug®:, 1) of complete simple games with players and a single
shift-minimal winning coalition. As all complete simple mas with at most six voters are roughly weighted we
haves(n,1) = 1 for n = 6. The next exact values are given by

o cc(7,1) = 2 ~ 1.111111: (2, 5); (1, 2); (2, 0), (0, 5)

e cc(8,1)=%=12:(2,6);(1,2);(2,0),(0,6)

o cc(9,1) = 8 ~ 1.272727: (2, 7); (1, 2); (2, 0), (0, 7)

e cc(10,1) = % ~ 1.333333: (2, 8); (1, 2); (2, 0), (0, 8)

e cc(11,1) =~ 1.41176470588: (3, 8); (1, 3); (3, 0), (0, 8)

e cc(12,1) =3 =1.5:(3,9); (1,3);(3,0), (0, 9)

o cc(13,1) =~ 1.57894736842: (3, 10); (1, 3); (3, 0), (0, 10)
o cc(14,1) = 2 =1.65: (3, 11); (1, 3); (3, 0), (0, 11)

Here we also state the cardinality vector, the list of shiftimal winning vectors, and the list of shift-maximal
losing vectors of an example reaching the upper baui(d, 1), respectively.

We can enhance our ILP formulations to additionally treatditions on the shift-minimal winning coalitions
easily. ForS C N we introduce a binary variabkg; with the meaning thats = 1 iff coalition S is a shift minimal
winning coalition. As conditions we have

ss < xs
ss<l—zg VS <S:P5":8 <85"<8
_xS+ Z xS =+ SSZO.

5'<S:H8":51<8"<S

> s

SCN
we can easily formulate exact values, lower or upper bounidh& number of shift-minimal winning coalitions.
To be able to express the numbesf equivalence classes of voters we introduce the functigns2¥ — {0,1}

By setting
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forall1 <i <n —1wherep;(S) = 1 iff a shift-minimal winning coalitionS implies that votei and voter: 4 1
have to be in different equivalence classes. We use binaigblasp; for 1 < ¢ < n — 1 and the constraints

p;i >ss-pi(S) VSCN,1<i<n-1

pi < Zss-goi(S) Vi<i<n-—1
SCN

n—1
Zpi =t.
=1

Let us denote by (n,r,t) the maximum criticah-value of a complete simple game withshift-minimal win-
ning coalitions consisting of. voters being partitioned into equivalence classes. We hawg(7,1,2) = %,
cc(7,2,2) = 1, ¢c(7,3,2) = &, cc(7,4,2) = 12, cc(7,5,2) = 12, and there are no such gamesfor 6. Ex-
amples of the corresponding sets of the shift-minimal wigrdgoalitions are given b{35}, {41, 70}, {44, 49,67},
{43,44,49,67},and{31, 60, 86, 88, 96}, respectively.

APPENDIXB. COMPARISION OF DIFFERENTILP SOLVERS

We give some running time information for different ILP sets in Tablé 4.

CPLEX CPLEX Gurobi 4.0.0 Gurobi 4.5.0

n nodes seconds nodes seconds nodes seconds nodes seconds
7 459 0.4 1113 0.7 975 0.5 582 0.4
8 3721 10 2271 3.7 1900 1.7 1715 1.8
9 3594 25 3297 14 3153 15 3724 12
10 11799 154 8974 94 12008 123 20988 83
11 33312 2052 42340 2131 29049 349 102306 979
12 55180 32379 45752 1301 215336 5403
13 94982 304255 64962 4318 83393 20408
14 97532 22230

15 152047 134118

16 308240 230964

TABLE 4. Comparing different ILP solvers (using 4 available késhe

The solvers CPLEX 12.1.0 and Gurobi 4.0.0 are used with Hredstrd parameter settings. Using the tuning op-
tion of CPLEX we find out that the parameter setting® strategy heuristicfeq -1,mip strategy
probe -1, andmip strategy variableselect 4 might be better suited. The results are summarized

under column CPLEXof Table€4. We may say that these parameter settings mighade:fgr small instances but
can not be generalized to larger instances easily.
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