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Abstract 
Solution concepts in social environments use either a direct or indirect dominance relationship, 
depending on whether it is assumed that agents are myopic or farsighted. Direct dominance implies 
indirect dominance, but not the reverse. Hence, the predicted outcomes when assuming myopic (direct) 
or farsighted (in- direct) agents could be very different. In this paper, we characterize dominance 
invariant one-to-one matching problems when preferences are strict. That is, we obtain the conditions 
on preference profiles such that indirect dominance implies direct dominance in these problems and 
give them an intuitive interpretation. Whenever some of the conditions are not satisfied, it is important 
to know the kind of agents that are being investigated in order to use the appropriate stability concept. 
Furthermore, we characterize dominance invariant one-to-one matching problems having a non-empty 
core. Finally, we show that, if the core of a dominance invariant one-to-one matching problem is not 
empty, it contains a unique matching, the dominance invariant stable matching, in which all agents who 
mutually top rank each other are matched to one another and all other agents remain unmatched. 
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1 Introduction

Solution concepts in social environments use either a direct or indirect dominance

relationship, depending on whether it is assumed that agents are myopic or far-

sighted. In solution concepts like the core and the von Neumann-Morgenstern stable

set agents are not farsighted in the sense that individual and coalitional deviations

cannot be countered by subsequent deviations. These concepts are based on the

direct dominance relation and neglect the destabilizing eect of indirect dominance

relations introduced by Harsanyi (1974) and formalized by Chwe (1994). Based on

the concept of indirect dominance, several solution concepts assume farsighted be-

havior of the agents in abstract social environments, coalition formation, network

formation or matching models.1 These solution concepts include, among others,

the largest consistent set and the von Neumann-Morgenstern farsightedly stable set

(Chwe, 1994), the farsighted core (Diamantoudi and Xue, 2003), the farsightedly

stable set (Herings et al., 2010 ), the pairwise farsightedly stable set (Herings et al.,

2009) and the path dominance core (Page and Wooders, 2009).

Direct dominance implies indirect dominance. However, indirect dominance does

not imply direct dominance. For this reason, any solution concept may give dier-

ent predictions when considering either myopic or farsighted agents. For instance,

in coalition formation games with positive spillovers (e.g. cartel formation with

Cournot competition and economies with pure public goods) Herings et al. (2010)

and Mauleon and Vannetelbosch (2004) showed that the grand coalition is a farsight-

edly stable set, a von Neumann-Morgenstern farsightedly stable set and it always

belongs to the largest consistent set. However, myopic stability concepts like the

-core, -core or von Neumann-Morgenstern stable set, do not select the grand

coalition as a stable outcome. Regarding the marriage problem, Ehlers (2007) char-

acterized von Neumann-Morgenstern stable sets using a direct dominance relation,

if such sets exist. He showed that these can be larger than the core. Mauleon et

al. (2011), using a dierent direct domination relation from the one used by Ehlers

(2007), and Chwe’s (1994) definition of indirect dominance, showed the existence

1See for instance Greenberg (1990), Chwe (1994) and Xue (1998) about abstract social envi-

ronments; Diamantoudi and Xue (2003), Mauleon and Vannetelbosch (2004), and Herings et al.

(2010) about coalition formation; Dutta et al. (2005), Page et al. (2005), Herings et al. (2009),

and Page and Wooders (2009) about network formation; and Mauleon et al. (2011) and Klaus et

al. (2011) about matching models.
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of and completely characterized the von Neumann-Morgenstern farsightedly stable

sets: a set of matchings is a von Neumann-Morgenstern farsightedly stable set if

and only if it is a singleton and belongs to the core. They also showed that the

farsighted core, defined as the set of matchings that are not indirectly dominated

by other matchings, can be empty.2 On the contrary, in the formation of free trade

networks, the global free trade network is a pairwise (myopically) stable network

and also a pairwise farsightedly stable set in the model of Goyal and Joshi (2006)

(see, Zhang et al., 2013).

Recently, some experimental evidence has been provided about the existence of

both myopic and farsighted agents.3 However, it is not obvious to know ex-ante

the type of agents that one is facing. Then, an interesting question to investigate is

whether there are situations in which one should not care about the kind of agents

that are being considered or, in other words, if there are situations where the pre-

dicted outcomes do not depend on the kind of agents (myopic or farsighted) that

are involved in the studied situation. In the present paper, we characterize domi-

nance invariant one-to-one matching problems, i.e., one-to-one matching problems

for which indirect dominance implies direct dominance when agents have strict pref-

erences. As a consequence, in these kinds of problems, any solution concept based

on direct or indirect dominance will give the same predictions. One-to-one match-

ing problems (Gale and Shapley, 1962) represent situations in which a finite set of

agents has to be partitioned into pairs and singletons. These problems are known

as roommate problems and they include, as a particular case, the well-known mar-

riage problems. Roommate problems are also a particular model of hedonic coalition

formation (in which coalitions are restricted to have at most two agents) and of net-

work formation (in which each agent is restricted to have at most one link).4 Hence,

roommate problems are a particularly interesting class of matching problems that

lie in the intersection of network and coalition formation models. For this reason, by

characterizing dominance invariant one-to-one matching problems, we provide the

2The farsighted core only exists when the core contains a unique matching and no other matching

indirectly dominates the matching in the core.
3Kirchsteiger et al. (2013) have tested whether subjects behave myopically or farsightedly when

forming a network. They have shown that behaviors consistent with farsightedness account for 75

percent of the individual observations, while only 6 percent of the individual observations are

consistent with myopic behavior.
4See Bogomolnaia and Jackson (2002) and Jackson and Watts (2002).

2



basis that could be used for characterizing dominance invariant coalition formation

problems and dominance invariant network formation problems. To the best of our

knowledge, no characterization of dominance invariance has been provided up to

now.

First, we characterize dominance invariant marriage problems (Theorem 1). A

marriage problem is dominance invariant if and only if two conditions are satisfied.

When two agents prefer to be matched to one another than being on their own,

we say that these two agents are mutually acceptable. The first condition then

states that mutually acceptable agents must prefer each other to any other agent

(we interpret this condition as ‘reciprocity’). The second condition states that if a

man m (a woman w, respectively) considers a mutually acceptable woman (man)

that is not his worst choice among the mutually acceptable ones, then this woman

(man) cannot like any other man (woman) more than m (w). We subsequently

give an alternative set of properties of agents’ preferences that are necessary and

sucient for the marriage problem being dominance invariant (Proposition 1).

Second, we generalize the previous results and characterize dominance invariant

roommate problems (Theorem 2). A roommate problem is dominance invariant if

and only if two conditions are satisfied. The first condition coincides with the ‘reci-

procity’ condition defined for the marriage problem. The second condition concerns

the position of agents in each individual ranking of the set of mutually acceptable

agents. Consider, for instance, agent i’s ranking of her mutually acceptable agents.

If agent k (in i’s ranking but not in the last position) prefers another agent l more

than i, then agent i must rank k and l in the last two positions of her ranking, with k

more preferred than l. Informally, agent i penalizes these two agents: she penalizes

agent k for not thinking highly of her and penalizes agent l out of jealousy. (We

interpret this condition as ‘extreme jealousy’.) Notice that, with this characteriza-

tion of dominance invariant roommate problems, and also with the characterization

of dominance invariant marriage problems, we provide two easy to verify conditions

that tell us when one should care or not about the kind of agents (myopic or far-

sighted) that are being investigated. Whenever one of the two conditions is not

satisfied, it is important to understand whether the agents under consideration are

myopic or farsighted in order to use the appropriate stability concept.

We subsequently give some properties of agents’ preferences in a roommate prob-

lem which is dominance invariant (Proposition 2) and we show (Proposition 3) that a
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roommate problem with three agents who prefer being matched to being unmatched

is always dominance invariant. Such a problem may have an empty core from which

we conclude that the notion of dominance invariance has nothing in common with

well-known restrictions on preferences guaranteeing existence and/or uniqueness of

the core in the roommate problem such as -reducibility (Alcalde, 1995) or more

generally, the weak top coalition property (Banerjee et al. 2001). As -reducibility

and weak top coalition property, dominance invariance is not a solution concept.

Instead dominance invariance aims at dierentiating roommate problems for which

farsightedness could matter from those for which it does not matter. It is a property

that guarantees the robustness of predictions of any solution concept.

Next, we focus on and characterize dominance invariant one-to-one matching

problems with a non-empty core, or solvable dominance invariant one-to-one match-

ing problems. We show (Proposition 4) that a dominance invariant one-to-one

matching problem is solvable when there does not exist a structure in the pref-

erence profile called ring, formed by three agents such that the members of this

ring prefer the other agents in the ring to any other agent outside the ring. It is

a well-known result that marriage problems belong to this class. This allows us to

state (Proposition 5) that, if it exists, the core of a dominance invariant one-to-

one matching problem contains a unique matching, the dominance invariant stable

matching, in which all agents who mutually top rank each other are matched to each

other and all other agents are single.

The rest of the paper is organized as follows. Section 2 introduces one-to-one

matching problems. Section 3 defines dominance invariant one-to-one matching

problems and contains our main results. Section 4 analyzes the existence of the core

in these problems and characterize it when it exists. Section 5 concludes.

2 One-to-one matching problems

A one-to-one matching problem, or roommate problem, is a pair (N,P ) where N is

a finite set of agents and P is a preference profile specifying for each agent i  N a

strict preference ordering overN . That is, P = {P (1), ..., P (i), ..., P (n)}, where P (i)

is agent i’s strict preference ordering over the agents in N including herself, which

can be interpreted as the prospect of being alone. For instance, P (i) = 1, 3, i, 2, ...

indicates that agent i prefers agent 1 to agent 3 and she prefers to remain alone
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rather than get matched to anyone else. We denote by R the weak orders associated

with P . We write j i k if agent i strictly prefers j to k, j i k if i is indierent

between j and k, and j i k if j i k or j i k. A marriage problem is a

roommate problem (N,P ) where N is the union of two disjoint finite sets: a set of

men M = {m1, . . . ,mr}, and a set of women, W = {w1, . . . , ws}, where possibly

r = s, and P is a preference profile specifying for each manm M a strict preference

ordering over W  {m} and for each woman w  W a strict preference ordering

over M  {w}: P = {P (m1), . . . , P (mr), P (w1), . . . , P (ws)}. That is, each man

(woman) prefers being unmatched to be matched with any other agent in M (W ,

respectively). Along the paper, we consider the two domains of one-to-one matching

problems: roommate and marriage problems. For the sake of notational simplicity,

we use the more general domain of roommate problems in the definitions below.

A matching µ is a function µ : N  N such that for all i  N , if µ(i) = j, then

µ(j) = i. Agent µ(i) is agent i’s mate at µ; i.e., the agent with whom she is matched

to (possibly herself). We denote by M the set of all matchings. A matching µ is

individually rational if each agent is acceptable to his or her partner, i.e. µ(i) i i
for all i  N . For a given matching µ, a pair {i, j} (possibly i = j) is said to form a

blocking pair if they are not matched to one another but prefer one another to their

partner at µ, i.e. j i µ(i) and i j µ(j). A matching µ is stable if it is not blocked

by any individual or any pair of agents. A roommate problem (N,P ) is solvable if it

has a stable matching. Otherwise, it is called unsolvable. Marriage problems belong

to the class of solvable roommate problems (Gale and Shapley, 1962).

We extend each agent’s preference over her potential partners to the set of

matchings in the following way. We say that agent i prefers µ to µ, if and only

if agent i prefers her partner at µ to her partner at µ, µ(i) i µ(i). Abusing

notation, we write this as µ i µ. A coalition S is a subset of N .5 For S  N ,

µ(S) = {µ(i) : i  S} denotes the set of mates of agents in S at µ. A matching µ

is blocked by a coalition S  N if there exists a matching µ such that µ(S) = S

and for all i  S, µ i µ. If S blocks µ, then S is called a blocking coalition for

µ. Note that if a coalition S  N blocks a matching µ, then there exists a pair

{i, j} (possibly i = j) that blocks µ. The core of a roommate problem, denoted

by C(N,P ), consists of all matchings which are not blocked by any coalition. Note

that for any roommate problem the set of stable matchings equals the core.

5Throughout the paper we use the notation  for weak inclusion and  for strict inclusion.
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Definition 1. Given a matching µ, a coalition S  N is said to be able to enforce

a matching µ over µ if the following conditions hold for any agent i  N : (i) µ(i) /

{µ(i), i} implies {i, µ(i)}  S and (ii) µ(i) = i = µ(i) implies {i, µ(i)}  S = .

In other words, this enforceability condition6 implies both that any new pair

in µ that does not exist in µ must be formed by agents in S, and that in order

to break an existing pair in µ, one of the two agents involved in that pair must

belong to coalition S. Notice that the concept of enforceability is independent of

preferences. Furthermore, the fact that coalition S  N can enforce a matching µ

over µ implies that there exists a sequence of matchings µ0, µ1, ..., µK (where µ0 = µ

and µK = µ) and a sequence of disjoint pairs {i0, j0}, ..., {iK1, jK1} (possibly

for some k  {0, 1, ..., K  1}, ik = jk) such that for any k  {1, ..., K}, the pair

{ik1, jk1}  S can enforce the matching µk over µk1.

Definition 2. A matching µ is directly dominated by µ, denoted by µ < µ, if there

exists a coalition S  N of agents such that µ i µ i  S and S can enforce µ

over µ.

An alternative way of defining the core of a roommate problem is by means of

the dominance relation. A matching µ is in the core if there is no subset of agents

who, by rearranging their partnerships only among themselves, possibly dissolving

some partnerships of µ, can all obtain a strictly preferred set of partners. Formally,

a matching µ is in the core if µ is not directly dominated by any other matching

µ  M. Gale and Shapley (1962) showed that the core of a roommate problem

may be empty.7

We now introduce the indirect dominance relation. A matching µ indirectly

dominates µ if µ can replace µ in a sequence of matchings, such that at each

matching along the sequence all deviators are strictly better o at the end matching

µ compared to the status-quo they face. Formally, indirect dominance is defined as

follows.

Definition 3. A matching µ is indirectly dominated by µ, denoted by µ  µ, if

there exists a sequence of matchings µ0, µ1, ..., µK (where µ0 = µ and µK = µ) and

a sequence of coalitions S0, S1, ..., SK1 such that for any k  {1, ..., K},
6This enforceability condition has also been used in Mauleon et al. (2011) and in Klaus et al.

(2011).
7Several papers are devoted to analyzing the core as solution for this matching problem. See

for instance Tan (1991), Chung (2000), Diamantoudi et al. (2004) and Iñarra et al. (2013).
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(i) µK i µk1 i  Sk1, and

(ii) coalition Sk1 can enforce the matching µk over µk1.

Direct dominance can be obtained directly from Definition 3 by setting K = 1.

Obviously, if µ < µ then µ µ; i.e., direct dominance implies indirect dominance.

Recently, Mauleon et al. (2011) have shown that, in marriage problems an individ-

ually rational matching µ indirectly dominates µ if and only if there does not exist

a pair {i, µ(i)} that blocks µ. Klaus et al. (2011) have generalized this result for

roommate problems, and they have proved that an individually rational matching

µ indirectly dominates another individually rational matching µ if and only if there

does not exist a pair {i, µ(i)} that blocks µ.

Diamantoudi and Xue (2003) have shown that if a matching belongs to the core,

then it indirectly dominates any other matching.

3 Dominance invariant one-to-one matching prob-

lems

We define a one-to-one matching problem to be dominance invariant if and only if

indirect dominance implies direct dominance.

Definition 4. A one-to-one matching problem (N,P ) is dominance invariant if the

following condition holds:

µ  µ µ > µ, µ, µ M.

Let (N,P ) be a one-to-one matching problem. Let i  N . We denote by t(i) the

most preferred partner for agent i. That is, t(i) i j for any j  N . Let T denote
the set of agents who are ranked first by her most preferred agent; i.e.,

T = {i  N : j  N such that j = t(i) and i = t(j)} .

Notice that if i  T , then t(t(i)) = i.

Given the problem (N,P ), the set Ai denotes the set of agents acceptable for

agent i, that is Ai = {j  N : j i i} and the set Mi denotes the set of mutually

acceptable agents for i, that is Mi = {j  Ai : i j j}. Let (i)  Mi denote the

least preferred partner for i in this set; i.e., k  Mi : k i (i). Let Mk
i denote
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the set of mutually acceptable agents of i who are less preferred than k, that is

Mk
i = {j  Mi : k i j}. Let R,Z  N and let i  N . If agent i strictly prefers

every agent in R to any agent in Z, then agent i strictly prefers the set R to the set

Z. This is denoted by R i Z.

3.1 Characterization of dominance invariant marriage prob-

lems

The following result characterizes the dominance invariant marriage problems.

Theorem 1. A marriage problem (N,P ) is dominance invariant if and only if

the preference relation P satisfies the following two conditions. For all mi  M

(wi  W , respectively)

(i) Mmi
mi

Ami
\Mmi

,

(ii) w Mmi
\ {(mi)} such that mj w mi for any mj Mw.

The proof of this result, as well as all other proofs, may be found in Appendix

B. The first condition can be seen as ‘reciprocity’, in the sense that man mi prefers

women that are mutually acceptable to him to women that do not accept him

although he accepts them. The second condition says that if a man and a woman

mi, w are mutually acceptable, with w = (mi), w cannot prefer another mutually

acceptable man mj more than mi. This condition may be interpreted as “extreme

jealousy”. If man mi likes woman w and vice versa, but woman w likes another

mutually acceptable man mj better (than man mi), then w is the worst mutually

acceptable woman for mi.

The next proposition describes some properties of agents’ preferences in a mar-

riage problem which is dominance invariant.8

Proposition 1. A marriage problem (N,P ) such that for all i  N , Mi i Ai \

Mi is dominance invariance if and only if for all man mi  M (for all wi  W ,

respectively) the following conditions on preferences are satisfied:

a. For all wj Mmi
\ {(mi)}, t(wj) = mi

b. If |M(mi)|  2, (mi)  T , otherwise t((mi)) = mi.

8From now on, |M | denotes the cardinality of the set M .

8



According to the properties in preferences of the previous proposition, for any

man mi (woman wi, respectively), by (a.) mi  T . His least preferred mutually

acceptable woman, (mi), by (b.), either belongs to T if she has at least two mutu-

ally acceptable men or she considers mi her top choice. The restrictions imposed by

dominance invariances are indeed rather strict, but they allow for an intuitive inter-

pretation. We will now show that dominance invariant roommate problems allow

for some more leeway in terms of preferences: there can exist agents who mutually

accept each other and do not belong to T , the set of agents who top rank each other.

3.2 Characterization of dominance invariant roommate prob-

lems

First, we introduce some additional notation and definitions that we need for char-

acterizing dominance invariant roommate problems.

The notion of a ring is a key notion for the existence of stable matchings in

roommate problems. A ring S = {s1, ..., sk}  N is an ordered set of agents such

that k  3 and for all i  {1, ..., k}, si+1 si si1 si si (subscript modulo k).

The existence of odd rings in the preference profile is a necessary condition for

the emptiness of the core in a roommate problem. This is straightforward from the

necessary and sucient condition provided by Tan (1991) for the emptiness of the

core in a roommate problem. We refer the reader to Appendix A for a compilation

of definitions and results about the solvability of roommate problems.

Our main result characterizes the dominance invariant roommate problems.

Theorem 2. A roommate problem (N,P ) is dominance invariant if and only if the

preference relation P satisfies the following two conditions for all i  N :

(i) Mi i Ai \Mi,

(ii) if  k Mi \ {(i)} and  l Mk such that l k i then Mk
i = {l}.9

The first condition can be seen as ‘reciprocity’, as in the characterization of the

marriage problem. The second condition says that if two agents i, k are mutually

acceptable, with k = (i), but k prefers another mutually acceptable agent l more

than i, then, there cannot be any agent mutually acceptable for i less preferred than

9Notice that l equals (i).
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k, dierent from l. In other words, l is the least preferred potential partner for

i among her mutually acceptable agents. Moreover, there are no agents in agent

i’s preferences less preferred than k but more preferred than l. Notice that, if

k = (i), then condition (ii) holds by default. Condition (ii) only puts restrictions

on preferences whenever k Mi is dierent from (i) and k prefers some l Mk to i.

Therefore, if agent k Mi and l k i for some l Mk either k = (i) or Mk
i = {l}.

This condition may be interpreted as ‘extreme jealousy’. If agent i likes agent k and

vice versa, but agent k likes another mutually acceptable agent l better (than agent

i), then either k is the worst mutually acceptable agent for i (agent i penalizes k for

not considering her the best), or k and l are the worst ranked mutually acceptable

agents for i, with l less preferred that k (agent i is jealous of k and l).

The next proposition describes some properties of agents’ preferences in a room-

mate problem which is dominance invariant. They depend on the cardinality of the

sets of mutually acceptable agents in the problem.

Proposition 2. A roommate problem (N,P ) such that for all i  N , Mi i Ai \Mi

is dominance invariance if and only if the following conditions on preferences are

satisfied.

P1. For all agent i such that |Mi| > 2 let assume, without loss of generality,

that Mi = {j1, . . . , jk,(i)} such that jm i jm+1, m  {1, . . . , k  1} and

jk i (i). Then

a. j Mi \ {jk,(i)}, t(j) = i,

b. t(jk)  {i,(i)}

b.1 If t(jk) = i then either (i)  T or t((i))  {i, t(i)}, and

b.2 If t(jk) = (i) then (i)  T .

P2. For all agent i such that |Mi|  2. Then either t(i)  T with t(t(i))  {i,(i)}

or i  S where S is a ring in P such that |S| = 3 and si  S, si+1 si
si1 si j for any j  N \ {si+1, si1}.

Let us interpret all these properties. Consider any agent i with more than two

mutually acceptable agents. Then, by P1.a, i  T . The least preferred agent for

i, agent (i), by P1.b either belongs to T (ranking as top choice an agent k / Mi

(b.1) or jk (b.2)) or ranks as top choice either i or t(i) (b.1). The remaining agents
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in Mi rank i as their most preferred agent, except jk when t((i)) = jk. Consider

now any agent i with at most two mutually acceptable agents. By P2 either i  T

or her top ranked agent is j  T with t(j) = i or it belongs to a ring formed by 3

agents such that each player in the ring considers acceptable only the other agents

in the ring. Properties P1 and P2 allow us to determine which agents belong to set

T .

Corollary 1. For all i / T , there is no agent j / T such that i  Mj, except for

those belonging to a ring S in P such that |S| = 3 and si  S, si+1 si si1 si j

for any j  N \ {si+1, si1}.

The previous corollary states that those agents who do not belong to set T cannot

be mutually acceptable among them, except those belonging to a ring formed by

3 agents in which all agent in the ring prefer being matched among themselves to

being matched with any other agent. This is the main dierence with the marriage

problem studied above.

Example 1. The following example of a dominance invariant roommate problem

may be useful for clarifying the previous results. Agents that do not appear in the

other agent’s preferences are unacceptable.

P (1) P (2) P (3) P (4) P (5) P (6) P (7) P (8)

2 1 1 5 4 7 8 6

3 3 5 1 1 8 6 7

4 5 3 3 5 6 7 8

5 2 4

1
In this problem, the set of mutually acceptable agents are M1 = {2, 3, 4, 5},

M2 = M3 = {1}, M4 = {5, 1} and M5 = {4, 1}, M6 = {7, 8}, M7 = {6, 8} and

M8 = {6, 7}. Notice that the first condition in Theorem 2 is satisfied since these

agents are in the first rows of each agent’s preferences. Consider for instance agent

1’s preferences, P (1). Notice that agents 1 and 4 are mutually acceptable and 4 is

not the worse agent in M1, however, 5 4 1. Then, by condition (ii) of Theorem 2,

agent 5 must be the immediate less preferred agent than 4 for agent 1. Notice that

{6,7,8} form an odd ring in the preferences.

In this example, the only agent satisfying |Mi|  2 is agent 1 with M1 =

{2, 3, 4, 5} and 2 1 3 1 4 1 5. We can see that j  {2, 3}, t(j) = 1 (P1.a
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in Proposition 2). Moreover, it must happen that t(4)  {1, 5} (P1.b in Propo-

sition 2). In this case, t(4) = 5 and therefore t(5) = 4 (P1.b.2 in Proposition

2).

On the other hand, all the other agents satisfy |Mi|  2. For i  {2, 3, 4, 5},

we can check that t(i)  T . Agents in the set {6, 7, 8} form a ring satisfying that

si  {6, 7, 8}, si+1 si si1 si k for all k  N \ {si+1, si1}.

Notice also that for i  {1, 2, 3, 4, 5}, there is no pair of agents who do not belong

to T such that they are mutually acceptable. In our example, the only agent who

is not in T is agent 3, and there is no agent j in P (3) (j / T ) such that j 3 3 and

j M3. 

The following result shows that all roommate problems such that |N | = 3 in

which all agents prefer to be matched to being unmatched are dominance invariant.

Proposition 3. Let (N,P ) be a roommate problem such that |N | = 3 and i  N :

j i i for any j = i. Then (N,P ) is dominance invariant.

Note that this class of roommate problems can have an empty core when the

three agents form an odd ring in P . This then implies that the notion of dominance

invariance has little in common with restrictions on preferences which guarantee

the existence and/or uniqueness of stable matchings (e.g. -reducibility (Alcalde,

1995) or more generally, the weak top coalition property (Banerjee et al., 2001)).

Dominance invariance is a property that dierentiates roommate problems for which

farsightedness matter from those for which it does not matter. It then guarantees

the robustness of predictions of any solution concept.

4 Dominance invariance and the core

The following proposition characterizes the dominance invariant one-to-one match-

ing problems with a non-empty core.

Proposition 4. Let (N,P ) be a dominance invariant one-to-one matching problem.

C(N,P ) =  if and only if there is no ring S in P such that |S| = 3 and si  S,

si+1 si si1 si j for any j  N \ {si+1, si1}.

Marriage problems are one-to-one matching problems with a non-empty core.

This was already shown by Gale and Shapley (1962), however, it can be also deduced
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immediately from the previous proposition, given that in marriage problems there

is no odd ring in preferences.

The following result, derived from the previous one, states that if a one-to-one

matching problem is dominance invariant and the core is non-empty, it has a unique

stable matching. In this stable matching, all agents who mutually top rank each

other are matched to one another and all other agents remain unmatched.

Proposition 5. Let (N,P ) be a solvable dominance invariant one-to-one matching

problem. Then, C(N,P ) = {µC}, where µC is such that µC(i) = t(i) for all i  T ,

and µC(j) = j for all j / T .

Example 1 (cont.) In this example, we have already seen that there is a ring

S = {6, 7, 8} in P such that |S| = 3 and si  S, si+1 si si1 si j for any

j  N \ {si+1, si1}. Therefore this roommate problem is unsolvable and there is no

stable matching.

Consider the problem derived from the previous one such that N = {1, 2, 3, 4, 5}

and P = {P (1), P (2), P (3), P (4), P (5)}. In this case, there is no ring in preferences

satisfying the conditions above and therefore the problem is solvable. The core, in

this case, is formed by the matching µC = {{1, 2}, {3}, {4, 5}}. 

Finally notice that, when the dominance invariant one-to-one matching prob-

lem is solvable, the core and the farsighted core (as well as the von Neumann-

Morgenstern stable set defined by the direct domination and the von Neumann-

Morgenstern farsightedly stable set) coincide.

5 Conclusion

We have characterized dominance invariant one-to-one matching problems when

preferences are strict. That is, we have obtained under which conditions on prefer-

ence profiles indirect dominance implies direct dominance in such problems. Hence,

we have concluded that, whenever some of the conditions are not satisfied, one

should try to know the kind of agents under consideration in order to use the ap-

propriate stability concept. Furthermore, we have characterized solvable dominance

invariant one-to-one matching problems. This characterization has allowed us to

state that the core of such a problem contains a unique matching in which all agents
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who mutually top rank each other are matched to one another and all other agents

remain unmatched.
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Appendix A

Tan (1991) establishes a necessary and sucient condition for the solvability of

roommate problems with strict preferences in terms of stable partitions. This notion,

which is crucial in the investigation of the core for these problems, can be formally

defined as follows.

Let A = {a1, ..., ak}  N be an ordered set of agents. The set A is a ring if

k  3 and for all i  {1, ..., k}, ai+1 ai ai1 ai ai (subscript modulo k). The set

A is a pair of mutually acceptable agents if k = 2 and for all i  {1, 2}, ai1 ai ai
(subscript modulo 2).10 The set A is a singleton if k = 1.

Definition 5. A stable partition is a partition P of N such that:

(i) for all A  P , the set A is a ring, a mutually acceptable pair of agents or a

singleton, and

(ii) for any sets A = {a1, ..., ak} and B = {b1, ..., bl} of P (possibly A = B), the

following condition holds:

if bj ai ai1 then bj1 bj ai,

for all i  {1, ..., k} and j  {1, ..., l} such that bj = ai+1.

10Hereafter we omit subscript modulo k.
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Condition (i) specifies the sets contained in a stable partition, and condition (ii)

contains the notion of stability to be applied between these sets (and also inside

each set).

Note that a stable partition is a generalization of a stable matching. To see this,

consider a matching µ and a partition P formed by pairs of agents and/or singletons.

Let A = {a1, a2 = µ(a1)} and B = {b1, b2 = µ(b1)} be sets of P . If P is a stable

partition then Condition (ii) implies that if b1 a2 a1 then b2 b1 a2, which is the

usual notion of stability. Hence µ is a stable matching.

Remark 1 (Iñarra et al., 2010). (i) A roommate problem (N,P ) has no stable match-

ings if and only if there exists a stable partition with an odd ring.11 (ii) Any two

stable partitions have exactly the same odd rings. (iii) Every even ring in a stable

partition can be broken into pairs of mutually acceptable agents preserving stability.

Appendix B

Proof. [Proof of Theorem 1]

() By contradiction, we will show that if one of the conditions (i) or (ii) is not

satisfied, then µ µ  µ > µ.

• Suppose that condition (i) is not satisfied and there exists a man mi M such

that wk mi
wj for some wk  Ami

\Mmi
and some wj  Mmi

. Let µ2 be a

matching such that µ2(mi) = wk and µ2(s) = s for every s = mi, wk, and let

µ1 be a matching such that µ1(mi) = wj and µ1(s) = s for every s = mi, wj.

Then µ1  µ2 (since wk wk mi, woman wk enforces the matching in which

every agent is alone, and this matching is blocked by {mi, wj} enforcing µ1).

However, µ1  µ2 since µ2 mi
µ1. A similar argument can be followed to

show that there cannot be a woman wi  W such that mk wi mj for some

mk  Awi \Mwi and some mj Mwi

• Suppose that condition (ii) is not satisfied and there exists a woman w 

Mmi
\ {(mi)} such that mj w mi for some mj Mw. Let µ2 be a matching

such that µ2(mi) = w and µ2(s) = s for every s = mi, w, and let µ1 be a

matching such that µ1(w) = mj, µ1(mi) = (mi) and where µ1(s) = s for

11A ring is odd (even) if its cardinality is odd (even).
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every s = mi,mj, w,(mi). Then µ1  µ2 (since {mj, w} block µ2 enforcing

a matching in which mi and (mi) are alone, and this matching is blocked by

{mi,(mi)} enforcing µ1). However, µ1  µ2 since µ2 mi
µ1. In a similar

way, we can show that there cannot be a man m  Mwi \ {(wi)} such that

wj m wi for some wj Mm

() Now we will prove that if µ1  µ2 and conditions (i) and (ii) are satisfied,

then µ1 > µ2.

Let D = {i  M W : µ1 i µ2}. First, we prove that for any man mi  M

(wi  W , respectively) such that µ1(mi) = µ2(mi) and µ1(mi) = mi, we have that

mi  D . By contradiction, let µ1(mi) = wj and let µ2(mi) = wk and assume that

wk mi
wj (which implies that wk = wj). Notice that this implies that manmi must

have been left alone first and then matched to wj, so wj  Mmi
because otherwise

{mi, wj} would never be formed contradicting µ1  µ2. Then, by condition (i),

wk Mmi
. Since µ1  µ2 and mi prefers µ2 to µ1, wk must prefer µ1 to µ2 because,

otherwise, {mi, wk} would be a blocking pair of µ1 contradicting that µ1  µ2 [see

Lemma 1 in Mauleon et al. (2011)].12 Then, the partner of wk at µ1, say for instance

µ1(wk) = ml, by condition (i), also belongs to the set Mwk given that ml wk mi,

that isml Mwk . But this contradicts condition (ii), which says if wk Mmi
\(mi),

there is no man ml  Mwk such that ml wk mi. Hence, man mi should prefer µ1
to µ2, and, by the same reasoning, µ1 wj µ2. Therefore {mi, µ1(mi)}  D.

Consider now any man mi  M such that µ1(mi) = mi = µ2(mi) = wk. Since

µ1  µ2, then either µ1(wk) wk mi and wk deviates leaving agent mi unmatched

(with µ1(wk) also preferring µ1 to µ2) and then {wk, µ1(wk)}  D, or mi mi
wk

(and man mi individually deviates) and therefore mi  D.

Then the coalition D deviates from µ2 enforcing µ1 and µ1 > µ2 as we wanted

to prove.

Proof. [Proof of Proposition 1]

Proof. () It is easy to see that if properties (a.) and (b.) are satisfied for every

m M and every w  W , then condition (ii) of Theorem 1 is also satisfied and the

problem (N,P ) is dominance invariant. If condition (a.) holds for man mi  M ,
12Although Lemma 1 in Mauleon et al. (2011) is stated requiring µ1 to be individually rational,

the “”-part of the lemma, which is the one used in this proof, holds for any two dierent matchings
(individually rational or not). See proof in Mauleon et al. (2011) (p. 515).
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there is no woman wj  Mmi
\ {(mi)} such that mj wj mi for any mj  Mwj . If

|M(mi)|  2 and condition (b.) holds, condition (ii) of Theorem 1 is satisfied by

(mi). Otherwise, M(mi) = {mi} and condition (ii) of Theorem 1 is satisfied by

default.

() Now we show that if the problem is dominance invariant, that is, it satisfies

conditions (i) and (ii) of Theorem 1, then properties (a.), and (b.) hold.

Suppose that condition (a.) is not satisfied. Then there is a woman wj 

Mmi
\ {(mi)} such that t(wj) = mi. Let t(wj) = mj. By condition (i) of Theorem

1 sincemi Mwj andmj wj mi, we have thatmj Mwj . However, this contradicts

condition (ii) of Theorem 1.

Now we prove that property (b.) is also satisfied. Suppose first that (mi) /

T , that is t(t((mi))) = (mi). If t((mi)) = mi we are done, so assume that

t((mi)) = mj and t(mj) = wk. Then there is a man mj  M(mi) \ {((mi))}

who prefers wk to (mi), contradicting that (mi) satisfies condition (ii) of Theorem

1. Hence, if (mi) / T , the most prefer man for (mi) is mi. Suppose now that

t((mi)) = mi, say t((mi)) = mj. By condition (i) of Theorem 1, sincemi M(mi)

and mj (mi) mi, we have that mj M(mi). By condition (ii) of Theorem 1 there

cannot be any woman wk such that wk mj
(mi) and therefore t(mj) = (mi) and

(mi)  T as we wanted to prove.

Proof. [Proof of Theorem 2]

() By contradiction, we will show that if one of the conditions (i) or (ii) is not

satisfied, then µ µ  µ > µ.

• Suppose that condition (i) is not satisfied. Then there exists an agent i  N

such that k i j for some k  Ai \Mi and some j Mi. Let µ2 be a matching

such that µ2(i) = k and µ2(s) = s for every s = i, k, and let µ1 be a matching

such that µ1(i) = j and µ1(s) = s for every s = i, j. Then µ1  µ2 (since

k k i, agent k enforces the matching in which every agent is alone, and this

matching is blocked by {i, j} enforcing µ1). However, µ1  µ2 since µ2 i µ1.

• Suppose that condition (ii) is not satisfied. Then there exists an agent k 

Mi \ {(i)} and an agent l  Mk such that l k i and {l} = Mk
i . Then it

must exist an agent j = l such that j  Mk
i . Let µ2 be a matching such that

µ2(i) = k and µ2(s) = s for every s = i, k, and let µ1 be a matching such that

µ1(k) = l, µ1(i) = j and where µ1(s) = s for every s = i, k, l, j. Then µ1  µ2
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(since {k, l} block µ2 enforcing a matching in which i and j are alone, and this

matching is blocked by {i, j} enforcing µ1). However, µ1  µ2 since µ2 i µ1.

() Now we will prove that if µ1  µ2 and conditions (i) and (ii) are satisfied,

then µ1 > µ2.

Let D = {i  N : µ1 i µ2}. First, we prove that for any agent i  N such that

µ1(i) = µ2(i) and µ1(i) = i, we have that i  D . By contradiction, let µ1(i) = j

and let µ2(i) = k and assume that k i j (which implies that k = j). Notice that

this implies that agent i must have been left alone first and then matched to j,

so j  Mi because otherwise {i, j} would never be formed contradicting µ1  µ2.

Then, by condition (i), k Mi. Since µ1  µ2 and i prefers µ2 to µ1, k must prefer

µ1 to µ2 because, otherwise, {i, k} would be a blocking pair of µ1 contradicting that

µ1  µ2 [see Proposition 1 in Klaus et al. (2011)].
13 Then, the partner of k at µ1,

say for instance µ1(k) = l (with l = k, j), by condition (i), also belongs to the set

of mutually acceptable agents of agent k given that l k i, that is l  Mk. But

then, according to (ii), it must be that Mk
i = {l}. But this is a contradiction, since

j  Mk
i . Hence, agent i should prefer µ1(i) to µ2(i), and, by the same reasoning,

µ1 j µ2. Therefore {i, µ1(i)}  D.

Consider now any agent i  N such that µ1(i) = i = µ2(i) = k. Since µ1  µ2,

then either µ1(k) k i and k deviates leaving agent i unmatched (with µ1(k) also

preferring µ1 to µ2) and then {k, µ1(k)}  D, or i i k and agent i individually

deviates and therefore i  D.

Then the coalition D deviates from µ2 enforcing µ1 and µ1 > µ2 as we wanted

to prove.

Proof. [Proof of Proposition 2]

Proof. () It is easy to see that if properties [P1.], [P2.] are satisfied, then condi-

tion (ii) of Theorem 2 is also satisfied and the problem (N,P ) is dominance invariant.

P1. If (a) and (b.1) are satisfied then there is no agent k Mi \ {(i)} such that

l k i for any l Mk. If (b.2) is satisfied then jk Mi\{(i)}, (i) jk i, and

M jk
i = {(i)}. Hence, when agent i holds property [P1.] in her preferences,

condition (ii) of Theorem 2 is satisfied.

13Although Proposition 1 in Klaus et al. (2011) is stated requiring µ and µ to be individually

rational, the “”-part of the proposition, which is the one used in this proof, holds for any two
dierent matchings (individually rational or not). See proof in Klaus et al. (2011) (pp. 926-927).
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P2. If Mi = {j}, then Mi \ {(i)} =  and condition (ii) of Theorem 2 is satisfied

by agent i by default. Let Mi = {j,(i)}. If t(t(i)) = i there is no agent

k  Mi \ {(i)} such that l k i for any l  Mk. If t(t(i)) = (i), then

t(i)  Mi \ {(i)}, (i) t(i) i, and M
t(i)
i = {(i)}. In both cases, condition

(ii) of Theorem 2 is satisfied by agent i. If i  S where S is a ring in P such

that |S| = 3 and for all si  S, si+1 si si1 si j for any j  N \ {si+1, si1},

then it is easy to see that condition (ii) of Theorem 2 is also satisfied by agent

i. (Notice that if t(t(i)) / {i,(i)}, condition (ii) is not satisfied and the

problem is not dominance invariant)

() We will show that if the problem is dominance invariant and satisfies con-

ditions (i) and (ii) of Theorem 2, then properties [P1.], [P2.] hold.

P1. Assume that (a) is not satisfied. That is, there exists an agent j  Mi \

{jk,(i)} such that t(j) = i. This implies that k  N such that t(j) = k and

k j i. By condition (i) of Theorem 2, k  Mj and then by condition (ii) of

Theorem 2, M j
i = {k}. However, this contradicts that {jk,(i)} M

j
i .

Now we will show that (b) must be satisfied as well. The fact that t(jk) 

{i,(i)} is straightforward from condition (ii) of Theorem 2.

In order to prove (b.1), let t(jk) = i. First, we will show that if (i) / T then

either t((i)) = i or t((i)) = t(i). Let (i) / T . Then, there exists an agent

k such that t((i)) = k. If k = i we are done, so assume that k = i. Since

k (i) i and i  M(i), by condition (i) of Theorem 2, k  M(i). Moreover,

t(k) = l = (i) so l k (i) and by condition (i) of Theorem 2, l  Mk.

Thus,  k  M(i) \ {((i))} and  l  Mk such that l k (i). Then, by

condition (ii) of Theorem 2, it holds that {l} = Mk
(i). Since i  M

k
(i), we

have that l = i. Given that l  Mk and l = i, it holds that k  Mi. Let

k = t(i), otherwise we are done. Then since i  Mk \ {(k)} and there exists

an agent k  Mi such that k i k (remember that k = t(i)), by condition

(ii) of Theorem 2, {k} = M i
k. But this implies that k

 = (i) and this is a

contradiction since (i) i k. So we have proved that when (i) / T either

t((i)) = i or t((i)) = t(i).

Now we will show that if t((i)) / {i, t(i)}, then (i)  T . Let t((i)) = k

with k = i, t(i). If t(k) = (i) we are done, so assume that t(k) = l = (i).

Thus, there exists an agent l  Mk such that l k (i) and by condition (ii)
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of Theorem 2 {l} = Mk
(i), which implies that l = i. Notice that we are in

the same situation as in the previous paragraph. Then, following the same

reasoning, we achieve the same contradiction ((i) i k) and this proves that

(i)  T as desired.

Next, we proceed to prove (b.2). Let t(jk) = (i). We will prove that in

this case t((i)) = jk. Since i  Mjk , we have that (i)  Mjk \ {(jk)}. If

t((i)) = jk we are done, so assume that t((i)) = k. By condition (i) of

Theorem 2 k  M(i), and by condition (ii) of Theorem 2, since k (i) jk,

{k} = M
(i)
jk
. Then, k = i, with i  M(i) \ {((i))}. Hence, by condition

(ii) of Theorem 2 again, we have that for any j Mi \ {(i)}, j i (i), then

{j} =M i
(i). But |Mi \{(i)}| > 1, and then j M i

(i) for all j Mi \{(i)},

contradicting the uniqueness of M i
(i).

P2. Let i be an agent such that |Mi|  2. We will prove that either t(i)  T with

t(t(i))  {i,(i)} or agent i belongs to a ring S such that |S| = 3 and si  S,

si+1 si si1 si r for any r  N \ {si+1, si1}.

Consider first that Mi = , then we have i i j for all j  N , and so t(i)  T
with t(t(i)) = {i}.

Consider now that Mi = {j}. If t(j) = i we are done, so assume that t(j) = k

with k = i. By the reasoning in [P1.], if |Mj| > 2, then t(k) = j and we are

done. So let |Mj|  2. Since k Mj \ {(j)}, by condition (ii) of Theorem 2,

either t(k) = j or there exists an agent l Mk such that l k j and {l} =Mk
j .

However, this implies l = i (since i  Mk
j ), which contradicts condition (i)

of Theorem 2 since this implies that i k j when by the initial assumption

k /Mi. Hence, if Mi = {j}, then either t(j) = i or t(j) = k with t(k) = j.

Consider now the case thatMi has two elements. Without loss of generality, let

Mi = {j, k} with j i k. Since j Mi \ {(i)} from condition (ii) of Theorem

2, we deduce that either t(j) = i or t(j) = k. Let assume that t(j) = k,

otherwise we are done. We will show that either t(k) = j or there exists a ring

S = {i, j, k} such that si  S, si+1 si si1 si r for all r  N \ {si+1, si1}.

(Until now, we have assumed that j i k and k j i.) Assume that there exists

an agent s  Mj \ {i, k} such that s j i. Since j  Mi \ (i), by condition

(ii) of Theorem 2, {s} =M j
i , which implies s = k. Therefore, there cannot be

any agent dierent from k more preferred than i in agent j’s preferences.
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Consider now that there exists an agent s Mj \{i, k} such that i j s. Then

|Mj| > 2 and by the reasoning of [P1.], t(j) = k implies t(k) = j as desired.

Finally, suppose that there is no s  Mj \ {i, k}. (That is, Mj = {k, i}

with k j i.) If t(k) = j we are done, so assume that t(k) = l = j. Since

k  Mj \ {(j)} and there exists l  Mk such that l k j, by condition

(ii) of Theorem 2 {l} = Mk
j , which implies that l = i and then i k j.

Now we prove that there cannot be any agent between i and j in agent k’s

preferences. Suppose there is an agent s Mk \ {i, j} such that s k j. Since

k  Mj \ {(j)} and s k j, then by condition (ii) of Theorem 2 Mk
j = {s}

and then s = i. Therefore, we have that S = {i, j, k} form a ring in P such

that si  S, si+1 si si1 si r for any r  N \ {si+1, si1} as we wanted to

prove.

Proof. [Proof of Corollary 1]

According to Proposition 2, by properties [P1.] and [P2.], if i / T , then |Mi| 

2. IfMi = {j}, by property [P2.] j  T . IfMi = {j, k} and i / S, then by property

[P2.] j, k  T .

Proof. [Proof of Proposition 3]

We will show that (N,P ) satisfies conditions (i) and (ii) of Theorem 2. Condition

(i) is trivially satisfied since all agents of N are mutually acceptable between them,

that is i  N,Ai \ Mi = . Now let N = {i, k, l} and assume w.l.o.g. that

k  Mi \ {(i)}. If i k l, for agent i condition (ii) is satisfied by default. So let

l k i. Since l = {(i)} =Mk
i , condition (ii) is thus also satisfied.

Proof. [Proof of Proposition 4]

() The existence of a ring S in the preferences with |S| = 3 and si  S,

si+1 si si1 si j, for any j  N \ {si+1, si1} is a sucient condition for non-

existence of stable matchings in any one-to-one matching problem (dominance in-

variant or not). Let µ be a matching such that µ(si) = j for some si  S and some

j / S. This matching is blocked by the pair {si, si1}. Therefore any matching

containing a pair formed by an agent in the ring and an agent outside the ring is not

stable. Consider then a matching µ satisfying that µ(si) = si+1 and µ(si1) = si1
This matching is blocked by the pair {si1, si+1}. Therefore any matching in which

agents in S are matched among themselves is not stable. Hence, there is no matching

stable as we wanted to prove.
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()We will show that if a one-to-one matching problem is dominance invariant

and unsolvable then there exists a ring S in P satisfying that |S| = 3 and si  S,

si+1 si si1 si j for any j  N \ {si+1, si1}.

First, we show that if a problem (N,P ) is dominance invariant, there cannot

be a ring S in P with |S| > 3. By contradiction, suppose there is a ring S with

|S| > 3 and take agent si  S. By definition of ring, si+1 si si1 si si and

si+2 si+1 si si+1 si+1. Then si+1  Msi \ {(si)} and si+2 si+1 si. By condition

(ii) of Theorem 2M si+1
si = si+2. That implies that si+2 = si1, which is only possible

if |S| = 3.

Now we show that for any agent si  S there cannot be an agent j / S such that

j si si1. By contradiction, suppose there exists an agent j / S and j si si1.

By condition (i) of Theorem 2, j Msi. By definition of ring, si si1 si+1 and then

si  Msi1 \ {(si1)}. By condition (ii) of Theorem 2, M si
si1

= j, which implies

that j = si+1. But this contradicts that j / S.

Proof. [Proof of Proposition 5]

For all i  T , it is easy to see that µC(i) = t(i). Otherwise µC is blocked by the

pair {i, t(i)} and it is not stable. (This holds for all one-to-one matching problems

dominant invariant or not.) Consider now an agent j / T such that µC(j) = j.

Then either t(µC(j)) = j or t(j) = µC(j). W.l.o.g. assume that t(j) = µC(j). By

condition (i) of Theorem 2, t(j) Mj. Let µC(t(j)) = l. Since matching µC is stable,

then l t(j) j. By condition (ii) of Theorem 2, M t(j)
j = l, which implies µC(j) = l.

But this is not possible, given that agent l cannot be matched in matching µC to

agent j and agent t(j) at the same time.
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