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Abstract Hierarchical simple games - both disjunctive and conjunctive - are
natural generalizations of simple majority games. They take their origin in the
theory of secret sharing. Another important generalization of simple majority
games with origin in economics and politics are weighted and roughly weighted
majority games. In this paper we characterize roughly weighted hierarchical
games identifying where the two approaches coincide.

Keywords Simple game · Weighted majority game · Roughly weighted
game · Hierarchical game

1 Introduction

In both human and artificial societies sometimes cooperating agents have dif-
ferent status with respect to the activity and certain actions are only allowed
to coalitions that satisfy certain criteria, e.g., to sufficiently large coalitions or
coalitions with players of sufficient seniority. Consider, for example, the situa-
tion of a money transfer from one bank to another. If the sum to be transferred
is sufficiently large this transaction must be authorised by three senior tellers
or two vice-presidents. However, two senior tellers and a vice-president can
also authorise the transaction. Another example of a hierarchical game is the
United Nations Security Council, where for the passage of a resolution all five
permanent members must vote for it, and also at least nine members in total.

In the theory of secret sharing one of the key concepts is the access structure
of a secret sharing scheme which is the set of all coalitions that are authorized
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to know the secret. If a smaller coalition knows the secret, then any larger
coalition also knows it. So the mathematical concept that formalises access
structures of secret sharing schemes is that of a simple game introduced by
Neumann and Morgenstern (1944).

Simmons (1990) was the first to introduce hierarchical simple games (called
access structures in secret sharing) in context of secret sharing and recently
they have played a significant role in the theory (see, e.g., Beimel, Tassa, and
Weinreb (2008); Farràs and Padró (2010)). Hierarchical access structures in-
troduced by Simmons stipulate that agents are partitioned into m levels, and
a sequence of thresholds k1 < k2 < . . . < km is set such that, a coalition is au-
thorised if it has either k1 agents of the first level, or k2 agents of the first two
levels, or k3 agents of the first three levels etc. These hierarchical structures
are now called disjunctive, since only one of the m conditions must be satisfied
for a coalition to be authorized. Its natural counterpart is a conjunctive hi-
erarchical access structure (Tassa, 2007), which uses the same thresholds but
requires that all m conditions must be met for a coalition to be authorized.
The money transfer game above was disjunctive, while the United Nations
Security Council game was conjunctive.

Both types of hierarchical games are natural generalizations of simple ma-
jority games in which all players have the same status and, for some k, any
k of them form a winning coalition. The theory of simple games has devel-
oped several other natural generalizations of simple majority games such as
weighted majority games (Neumann & Morgenstern, 1944), roughly weighted
majority games (Taylor & Zwicker, 1999; Gvozdeva & Slinko, 2011), and com-
plete simple games (Carreras & Freixas, 1996). It is important to know how
the hierarchical games are related to these well-studied traditional classes of
games.

The classification of weighted disjunctive hierarchical games is given in
Beimel et al. (2008). Gvozdeva, Hameed, and Slinko (2011) gave a simple com-
binatorial proof of this classification and extended this result to conjunctive
hierarchical games. This paper has also established that the class of conjunc-
tive hierarchical games coincides with the class of complete games with mini-
mum (Freixas & Puente, 2008) which was introduced from purely theoretical
considerations.

This paper gives a complete characterization of both disjunctive and con-
junctive hierarchical roughly weighted simple games. We extensively use tech-
niques of the theory of simple games. The main tool in our characterization is
the structural theorem, which describes disjunctive hierarchical games as com-
plete games with a unique shift-maximal losing coalition (Gvozdeva, Hameed,
& Slinko, 2011). Another important result from that paper that will be used,
is the duality between disjunctive and conjunctive hierarchical games.
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2 Preliminaries

2.1 Simple Games and Multisets

A secret sharing scheme (Simmons, 1990; Stinson, 1992) stipulates that certain
coalitions of users are authorised to know the secret while others are not. It
is also required that if a coalition is authorised, then any larger coalition is
authorised too. This is formalized in the following definition.

Definition 1 Let P = [n] = {1, 2, . . . , n} be a finite set of players and a
collection of subsets W ⊆ 2P satisfying the following monotonicity condition:

if X ∈ W and X ⊆ Y , then Y ∈ W .

In such case, the pair G = (P,W ) is called a simple game, and the set W is
called the set of winning coalitions of G. Coalitions not in W are called losing.

The subset W is completely determined by the set Wmin of its minimal
winning coalitions. A player which does not belong to any minimal winning
coalitions is called dummy. He can be removed from any winning coalition
without making it losing.

Definition 2 A simple game G = (P,W ) is called weighted majority game if
there exist nonnegative weights w1, . . . , wn and a real number q, called quota,
such that

X ∈ W ⇐⇒
∑

i∈X

wi ≥ q. (1)

In secret sharing weighted threshold access structures were introduced by
(Shamir, 1979). A broader but still well-understood class of games is defined
below.

Definition 3 A simple game G is called roughly weighted if there exist non-
negative real numbers w1, . . . , wn and a real number q, called the quota, not
all equal to zero, such that for X ∈ 2P the condition

∑

i∈X wi < q implies X
is losing, and

∑

i∈X wi > q implies X is winning. We say that [q;w1, . . . , wn]
is a rough voting representation for G.

We note that in a roughly weighted game nothing can be said about coali-
tions whose weight is equal to the threshold. There can be both winning and
losing ones.

A distinctive feature of many structures is that the set of users is par-
titioned into subsets and users in each of the subsets have equal status. In
(Gvozdeva & Slinko, 2011; Gvozdeva, Hameed, & Slinko, 2011) we suggested
analyzing such structures with the help of multisets. Given a simple game G
we define a relation ∼G on P by setting i ∼G j if for every set X ⊆ P not
containing i and j

X ∪ {i} ∈ W ⇐⇒ X ∪ {j} ∈ W. (2)
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We showed that ∼G is an equivalence relation on P . Players in the equivalence
classes are indistinguishable so the set of players is better viewed in this case
as a multiset. Multiset has several types of players with several players in each
type.

Definition 4 A multiset on the set [m] is a mapping µ : [m] → Z+ of [m] into
the set of non-negative integers. It is often written in the form

µ = {1k1, 2k2 , . . . ,mkm},

where ki = µ(i) is called the multiplicity of i in µ.

A multiset ν = {1j1 , 2j2 , . . . ,mjm} is a submultiset of a multiset µ =
{1k1 , 2k2 , . . . ,mkm}, iff ji ≤ ki for all i = 1, 2, . . . ,m. This is denoted as ν ⊆ µ.

Given a game G we may also define a relation �G on P by setting i �G j
if X ∪ {j} ∈ W implies X ∪ {i} ∈ W for every set X ⊆ U not containing i
and j. It is known as Isbell’s desirability relation (Taylor & Zwicker, 1999).
The game is called complete if �G is a total order. We also define i ≻G j as
i �G j but not j �G i.

The existence of large equivalence classes relative to ∼G allows us to com-
press the information about the game. This is done by the following construc-
tion. Let now G = (P,W ) be a game and ∼G be its corresponding equivalence
relation. Then P can be partitioned into a finite number of equivalence classes
P = P1 ∪P2 ∪ . . .∪Pm and suppose |Pi| = ni. Then we put in correspondence
to the set of players P a multiset P̄ = {1n1, 2n2 , . . . ,mnm}. We carry over the
game structure to P̄ as well by defining the set of winning submultisets W̄
by assuming that a submultiset Q = {1ℓ1, 2ℓ2 , . . . ,mℓm} is winning in Ḡ if a
subset of P containing ℓi players from Pi for every i = 1, 2, . . . ,m, is winning
in G. This definition is correct since the sets Pi are defined in such a way that
it does not matter which ℓi users from Pi are involved. We call Ḡ = (P̄ , W̄ ) the
canonical representation of G. The relations�G, ∼G, ≻G induce the respective
relations �Ḡ, ∼Ḡ, ≻Ḡ. We also note that 1 ≻Ḡ 2 ≻Ḡ . . . ≻Ḡ m.

Definition 5 A pair G = (P,W ) where P = {1n1 , 2n2 , . . . ,mnm} and W is
a system of submultisets of the multiset P is said to be a simple game on a
multiset of players P if X ∈ W and X ⊆ Y implies Y ∈ W . Submultisets of
P we will call coalitions.

Definition 6 We say that G = (P,W ) on a multiset of players P is a weighted
majority game if there exist non-negative weights w1, . . . , wm and q ≥ 0 such
that a coalition Q = {1ℓ1, 2ℓ2 , . . . ,mℓm} is winning in G iff

∑m

i=1 ℓiwi ≥ q.

It is a well-known fact that any weighted game can be given a voting
representation in which players of equal Isbell’s desirability have equal weights
(Taylor & Zwicker, 1999). However we need a similar statement that would be
also applicable to roughly weighted games.

Lemma 1 A simple game G = (P,W ) is a roughly weighted majority game
if and only if the corresponding simple game Ḡ = (P̄ , W̄ ) is.
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Proof Suppose there are m equivalence classes P1, . . . , Pm of players and let us
denote [i] the equivalence class to which i belongs. The statement is nontrivial
only in one direction. The nontrivial part is to prove that if the game G on
P is roughly weighted, then the game Ḡ on P̄ is also roughly weighted. So
suppose that there exists a system of weights w1, . . . , wn and the quota q ≥ 0,
not all equal to zero, such that

∑

i∈X wi > q implies X ∈ W and
∑

i∈X wi < q
implies X ∈ L. Our statement will be proved if we can find another system of
weights u1, . . . , un for G which satisfy two conditions:

(i) ui = uj if [i] = [j],
(ii)

∑

i∈X ui > q implies X ∈ W .
(iii)

∑

i∈X ui < q implies X /∈ W .

We define this alternative system of weights by setting ui =
1

|[i]|

∑

j∈[i] wj ,

i.e., we replace the weight of ith user with the average weight of users in the
equivalence class to which i belongs. It obviously satisfies (i). Let us prove that
it satisfies (ii).

Let X ⊆ P and
∑

i∈X ui > q. Let ki = |X ∩ Pi|. Let X
+ be the subset of

P which results in replacing in X , for all i = 1, 2, . . . ,m, all ki elements of
Pi with the “heaviest” elements from the same class. Then the weight of X+

relative to the old system of weights is greater or equal to
∑

i∈X ui and hence
greater than q. So X+ is winning in G, and so is X , because we replaced all
elements with equivalent ones. (iii) is proved similarly.

Definition 7 (Hierarchical Games) Suppose the set of players P is parti-
tioned into m disjoint subsets P = ∪m

i=1Pi and let k1 < k2 < . . . < km be a
sequence of positive integers. Then we define the game H∃ = (P,W ) by setting

W = {X ∈ 2P | ∃i
(∣

∣X ∩
(

∪i
j=1Pi

)∣

∣ ≥ ki
)

}.

and call it a disjunctive hierarchical game. For a sequence of thresholds k1 <
. . . < km−1 ≤ km we may define

W = {X ∈ 2P | ∀i
(
∣

∣X ∩
(

∪i
j=1Pi

)
∣

∣ ≥ ki
)

}.

We call the resulting game a conjunctive hierarchical game H∀ = (P,W ).

From this definition it follows that any hierarchical game is complete with
p �H q iff p ∈ Pi, q ∈ Pj and i < j. However, for arbitrary values of pa-
rameters k1, . . . , km and n1, . . . , nm, where ni = |Pi|, we cannot guarantee
that the multiset representation H̄ of H will be the defined on the multiset
P̄ = {1n1, 2n2 , . . . ,mnm}, since it may be possible to have u ∼H v for some
u ∈ Pi and v ∈ Pj for i 6= j. So we can guarantee

1 �H 2 �H 3 �H . . . �H m (3)

but cannot guarantee that these inequalities are strict. Some distinct classes
of the partition may collapse into a single class. When this does not happen
the representation is called canonical.

The necessary and sufficient conditions for a representation to be canonical
are obtained in (Gvozdeva, Hameed, & Slinko, 2011). They are given in the
theorem below.
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Theorem 1 Let H be a disjunctive hierarchical game defined on the set of
players P partitioned into m disjoint subsets P = ∪m

i=1Pi, where ni = |Pi|,
by a sequence of positive thresholds k1 < k2 < . . . < km. Then the multiset
representation H̄ of H is defined on P̄ = {1n1 , 2n2 , . . . ,mnm} if and only if

(a) k1 ≤ n1, and
(b) ki < ki−1 + ni for every 1 < i < m.

When (a) and (b) hold the sequence (k1, . . . , km−1) is determined uniquely.
Moreover, H does not have dummies if and only if km < km−1 + nm; in this
case km is determined uniquely as well. When km ≥ km−1 + nm the last level
consists entirely of dummies and in this case we set km = km−1 + nm. H has
passers only in case k1 = 1, when all players of level 1 are passers.

Moreover, for each i ∈ {1, 2, . . . ,m − 1} there exists a minimal winning
coalition of size ki that is contained in {1n1, . . . , ini} but not in {1n1 , . . . , (i−
1)ni−1}. If H has no dummies, this is also true for i = m.

For a conjunctive hierarchical game there are also m thresholds k1 < . . . <
km−1 ≤ km (note the possibility of having an equality between km−1 and km).
The same conditions (a) and (b) are necessary and sufficient too. In this case
the last level consists entirely of dummies if and only if km−1 = km and the
first level consists of blockers if and only if k1 = n1.

By H∃(n,k) and H∀(n,k) we will denote the m-level hierarchical access
structure canonically represented by n = (n1, . . . , nm) and k = (k1, . . . , km)
for which the conditions (a) and (b) hold.

The following corollary from Theorem 1 proved by Gvozdeva, Hameed, and
Slinko (2011) will be also important later.

Corollary 1 Let G = H∃(n,k) be a hierarchical game with m levels in its
canonical representation. Then we have ni > 1 for every 1 < i < m.

2.2 Subgames, Reduced Games and Duality

Definition 8 Let G = (P,W ) be a simple game with A ⊆ P . Let us define
subsets Wsg ⊆ W and Wrg ⊆ W by

Wsg = {X ⊆ Ac | X ∈ W}, Wrg = {X ⊆ Ac | X ∪A ∈ W},

where Ac = P \ A. Then the game GA = (Ac,Wsg) is called a subgame of
G and GA = (Ac,Wrg) is called a reduced game of G. Any game H that is
obtained from G by a sequence of operations of taking subgame or a reduced
game is called a minor.

Let us now briefly recap the concept of duality in games. The dual game
of a game G = (P,W ) is defined as G∗ = (P,Lc). Equivalently, the winning
coalitions of the game G∗ dual to G are exactly the complements of losing
coalitions of G. We have G = G∗∗. We also note that if A ⊆ P , then (GA)

∗ =
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(G∗)A and (GA)∗ = (G∗)A. Moreover, the operation of taking the dual is
known to preserve weightedness and rough weightedness (Taylor and Zwicker
(1999), Proposition 4.10.1(i), p. 166). We need to be a bit more precise here.

Lemma 2 Let G = (P,W ) be a roughly weighted game with rough voting
representation [q;w1, . . . , wn]. Suppose that A ⊆ P such that w(b) > 0 for
some b ∈ Ac. Then the subgame GA and the reduced game GA are roughly
weighted. In rough voting representations of GA and GA the weights of players
are the same as in G and quotas are q and max(0, q − w(A)), respectively.

Proof The subgame GA is realised as a roughly weighted game by the restric-
tion w|Ac together with the original quota. The reduced game GA is realised
as a roughly weighted game by the restriction w|Ac together with the quota
q′ = max(0, q − w(A)).

We will also use the fact that Isbell’s desirability relation is self-dual, that
is x �G y if and only if x �G∗ y (Taylor & Zwicker, 1999). All these concepts
can be immediately reformulated for the games on multisets if we define the
complement Xc of a submultiset X = {1ℓ1 , . . . ,mℓm} in P = {1n1 , . . . ,mnm}
as the submultiset

Xc = {1n1−ℓ1 , . . . ,mnm−ℓm}.

Let us now introduce the following notation. Let n = (n1, . . . , nm) be
a fixed vector of positive integers. Then for any another such vector k =
(k1, . . . , km) such that conditions (a) and (b) of Theorem 1 are satisfied we
define the vector

k∗ = (n1 − k1 + 1, n1 + n2 − k2 + 1, . . . ,
∑

i∈[m]

ni − km + 1). (4)

Note that k∗∗ = k.

Theorem 2 (Gvozdeva, Hameed, and Slinko (2011)) Let H = H∃(n,k)
be an m-level hierarchical disjunctive game. Then the game dual to H will be
the conjunctive hierarchical game H∗ = H∀(n,k

∗). Similarly, if H = H∀(n,k)
is an m-level hierarchical conjunctive game, then H∗ = H∃(n,k

∗). In partic-
ular,

H∃(n,k)
∗ = H∀(n,k

∗), H∀(n,k)
∗ = H∃(n,k

∗).

2.3 Weighted Disjunctive and Conjunctive Hierarchical Games

Firstly, we will describe disjunctive hierarchical weighted games. Beimel, Tassa
and Weinreb (2008) characterized these without dummies as part of their char-
acterization of ideal weighted threshold secret sharing schemes. However, their
proof is indirect and heavily relies upon the connection between ideal secret
sharing schemes and matroids. The following slightly more general theorem is
proved by Gvozdeva, Hameed, and Slinko (2011) using a simple and purely
combinatorial argument.
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Theorem 3 Let G = H∃(n,k) be an m-level disjunctive hierarchical simple
game. For m > 1 we define the subgame H∃(n

′,k′) where n′ = (n1, . . . , nm−1)
and k′ = (k1, . . . , km−1). Then G is a weighted majority game iff one of the
following conditions is satisfied:

(1) m = 1;
(2) m = 2 and k2 = k1 + 1;
(3) m = 2 and n2 = k2 − k1 + 1;
(4) m ∈ {2, 3} and k1 = 1. When m = 3, G is weighted if and only if the

subgame H∃(n
′,k′) falls under (2) or (3);

(5) m ∈ {2, 3, 4}, km = km−1 + nm, and the subgame H∃(n
′,k′) falls under

one of the conditions (1) – (4).

We note that the only case when we can have four levels is when the top
level and the bottom one are both trivial, that is k1 = 1 and k4 = k3 + n4.
(Beimel et al., 2008) do not get four levels (only three) as they allow trivial
levels of one kind but not of another. By duality (Gvozdeva, Hameed, & Slinko,
2011), we obtain a similar characterization in the conjunctive case.

Theorem 4 Let G = H∀(n,k) be an m-level conjunctive hierarchical simple
game. Then G is a weighted majority game iff one of the following conditions
is satisfied:

(1) m = 1 and G is a simple majority game;
(2) m = 2 and k2 = k1 + 1;
(3) m = 2 and n2 = k2 − k1 + 1;
(4) m ∈ {2, 3} and k1 = n1, that is, the game has two or three levels and the

first one consists entirely of blockers. In case m = 3, the reduced game
H∀(n,k)

{1n1} = H∀(n
′,k′) of G, where n′ = (n2, n3) and k′ = (k2 −

k1, k3 − k1), falls under (2) or (3);
(5) m ∈ {2, 3, 4} with km = km−1, that is the game has up to four lev-

els but the last one consists entirely of dummies. Moreover, the reduced

game H
{mnm}
∀ (n,k) = H∀(n

′,k′), where n′ = (n1, . . . , nm−1) and k′ =
(k1, . . . , km−1), falls under one of the (1) – (4).

2.4 Complete Games and Structural Theorems

Suppose a game G is complete. By a shift we mean a replacement of a player
of a coalition by a less influential player which did not belong to it. Formally,
given a coalition X , player i ∈ X and another player j /∈ X such that j ≺G i
we say that the coalition (X \ {i}) ∪ {j} is obtained from X by a shift. A
winning coalition X is shift-minimal if every coalition contained in it and
every coalition obtained from it by a shift are losing. A losing coalition Y is
said to be shift-maximal if every coalition that contains it is winning and there
does not exist another losing coalition from which Y can be obtained by a shift.
These concepts can be immediately reformulated for games on multisets.
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Definition 9 LetG be a complete simple game on a multiset P = {1n1, . . . ,mnm}
with 1 ≻G 2 ≻G . . . ≻G m. Suppose a submultiset A′ = {. . . , iℓi, . . . , jℓj , . . .}
has ℓi ≥ 1 and ℓj < nj for some i < j. We say that the submultiset A′ =
{. . . , iℓi−1, . . . , jℓj+1, . . .} is obtained from A by a shift.

Shift-minimal winning and shift-maximal losing coalitions are then defined
straightforwardly. The following theorem (Gvozdeva, Hameed, & Slinko, 2011)
will play a crucial role in this paper.

Theorem 5 The class of disjunctive hierarchical simple games is exactly the
class of complete games with a unique shift-maximal losing coalition. The class
of conjunctive hierarchical simple games is exactly the class of complete games
with a unique shift-minimal winning coalition.

3 Roughly Weighted Disjunctive Hierarchical Games. First
Results

3.1 Minors of Disjunctive Hierarchical Games

In proving our classification we will work with hierarchical disjunctive games
and obtain the result for hierarchical conjunctive games by duality. Hence
in this section we restrict ourselves with disjunctive case only. The following
statements are easy to check.

Proposition 1 Let n′ = (n1, . . . , nm−1), k′ = (k1, . . . , km−1). Then H ′ =
H∃(n

′,k′) is a subgame of G = H∃(n,k). This subgame never has dummies
and it does not have passers if G did not.

Proof Indeed, H∃(n
′,k′) = GA for A = {mnm}. By Theorem 1 there al-

ways exists a minimal winning coalition which is contained in H ′ and has a
nonempty intersection with the (m−1)th level. Hence the players of (m−1)th
level are not dummies.

Proposition 2 Let n′ = (n2+k1−1, n3, . . . , nm) and k′ = (k2, . . . , km). Then
H∃(n

′,k′) is a subgame of G = H∃(n,k). This subgame does not have passers
and it has dummies if and only if G had.

Proof Indeed, H∃(n
′,k′) = GA for A = {1n1−k1+1}. If we make n1 − k1 + 1

elements of level one unavailable the first constraint loses any bite and the
first level collapses.

Lemma 3 For any i = 1, 2, . . . ,m − 1 there exists n′
i, such that for n′ =

(n′
i, ni+1) and k′ = (ki, ki+1) the game G′ = H∃(n

′,k′) is a subgame of G =
H∃(n,k).

Proof Follows directly from Propositions 1 and 2.
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Proposition 3 Let G = H∃(n,k), where n = (n1, . . . , nm), k = (k1, . . . , km).
Suppose that ki > ki−1 + 1 for some i ∈ {1, . . . ,m}. Then for

n′ = (n1, . . . , ni−1, ni − 1, ni+1, . . . , nm),

k′ = (k1, . . . , ki−1, ki − 1, ki+1 − 1, . . . , km − 1)

G′ = H∃(n
′,k′) is a reduced game of G. Moreover, if G did not have dummies,

then G′ would not have them.

Proof Since all representations are canonical, the condition ki > ki−1 + 1
implies that ni > ki − ki−1 ≥ 2, so ni ≥ 3. We note now that G′ = GA for
A = {i}. It is easy to check that all conditions (a) and (b) are satisfied for the
new values of parameters n′ and k′.

Let us now generalise Theorem 3 and classify roughly weighted disjunctive
hierarchical games. Considering roughly weighted hierarchicalm-level game H
it will be convenient to have the quota equal to 1. Also by Lemma 1 we may
consider that all players of level i have weight wi so that any rough voting
representation has the form [1;w1, . . . , wm]. If X is a coalition of H , by w(X)
we will denote the total weight of X .

We will use the geometric approach based on Theorem 5 and need the
following observation.

Proposition 4 Let H be a disjunctive hierarchical game and let M be its
unique shift-maximal losing coalition. Suppose H is roughly weighted with
rough voting representation [1;w1, . . . , wm]. Then w(M) ≥ w(L) for any losing
coalition L.

Proof Since any shift replaces a player with a less influential one, the weight of
the latter must be not greater than the weight of the former. This secures that
if a coalition S obtained from a coalition T by a shift, then w(T ) ≥ w(S). If
S is a subset of T , then also w(T ) ≥ w(S). Since M is a unique shift-maximal
losing coalition we will have w(M) ≥ w(L) for any losing coalition L.

This simple proposition has a useful corollary.

Corollary 2 Let H be a disjunctive hierarchical game and let M be its unique
shift-maximal losing coalition. Suppose H is roughly weighted with rough voting
representation [1;w1, . . . , wn] but not weighted. Then w(M) = 1.

Proof If w(M) < 1, then by Proposition 4 there is no losing coalitions on the
threshold. In this case the game is weighted.

The following will also be very useful.

Proposition 5 Let H∃(n,k) be the m-level disjunctive hierarchical game with
no passers and no dummies. Suppose it is roughly weighted with rough voting
representation [1;w1, . . . , wn]. Then
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(i) w1 ≥ w2 ≥ . . . ≥ wm.
(ii) wi > 0 for i = 1, 2, . . . ,m− 1.

Proof As there are no dummies, km − km−1 < nm is satisfied. We also have
k1 > 1 as no passers are present. By Theorem 5 we know that H∃(n,k) has a
unique shift-maximal losing coalition. This coalition then would be

M = {1k1−1, 2k2−k1 , . . . ,mkm−km−1}. (5)

By Corollary 2 we have

w(M) = (k1 − 1)w1 + (k2 − k1)w2 + . . .+ (km − km−1)wm = 1.

If only wi+1 > wi, then

w(M) ≥(k1 − 1)w1 + . . .+ (ki − ki−1)wi + (ki+1 − ki)wi+1 >

(k1 − 1)w1 + . . .+ (ki−1 − ki−2)wi−1 + (ki+1 − ki−1)wi ≥ 1,

since the latter is the weight of a winning coalition {1k1−1, 2k2−k1 , . . . , iki+1−ki−1}
(indeed the cardinality of this multiset is ki+1 − 1 ≥ ki). This contradiction
proves (i).

To prove (ii) we note that by Theorem 1 we have ki − ki−1 < ni, and
hence every level in multiset M is not completely filled and has some capacity.
Suppose first that km − km−1 ≤ nm − 2. Then the multiset

M ′ = {1k1−2, 2k2−k1 , . . . ,mkm−km−1+2}

is winning from which we see that wm > 0. If ki − ki−1 = ni − 1, then the
multiset

M ′′ = {1k1−2, 2k2−k1 , . . . , (m− 1)km−1−km−2+1,mkm−km−1+1}

is winning whence wm−1 > 0. This proves (ii).

The two following results will be very useful later on in characterising
roughly weighted hierarchical simple games with three levels and more.

Lemma 4 Suppose that an m-level disjunctive hierarchical game H = H∃(n,k)
without passers and without dummies is roughly weighted with rough voting rep-
resentation [1;w1, . . . , wm] but not weighted. If the subgame H ′ = H∃(n

′,k′),
where n′ = (n1, . . . , nm−1) and k′ = (k1, . . . , km−1), is also not weighted, then
wm = 0.

Proof By Proposition 1 H ′ is a subgame of H , hence it is roughly weighted
with rough voting representation [1;w1, . . . , wm−1]. By Proposition 5 all the
weights are nonzero. The shift-maximal losing coalition M for H will be (5)
and for H ′ it will be

M ′ = {1k1−1, 2k2−k1 , . . . , (m− 1)km−1−km−2}.

If the game H ′ is not weighted, then by Corollary 2 we have w(M ′) = 1. As
1 = w(M) = w(M ′) + (km − km−1)wm and km > km−1, this implies wm = 0.
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Corollary 3 Suppose that a four-level disjunctive hierarchical game H =
H∃(n,k) without passers and dummies is roughly weighted with rough voting
representation [1;w1, w2, w3, w4]. Then w4 = 0, and the subgame H∃(n

′,k′),
where n′ = (n1, n2, n3) and k′ = (k1, k2, k3), is roughly weighted with positive
coefficients in its rough voting representation.

Proof The game H∃(n
′,k′) is roughly weighted and it is not weighted by The-

orem 3. By Lemma 4 we get then w4 = 0. By Proposition 5 each of the weights
w1, w2, w3 is nonzero.

The reader might expect that wm = 0 implies that the mth level must
consist of dummies. In a roughly weighted game this may not be the case and
here is an example illustrating this.

Example 1 Let us consider disjunctive hierarchical game H = H∃(n,k) with
n = (3, 3, 3) and k = (2, 3, 5). It is roughly weighted relative to the weights
[1; 12 ,

1
2 , 0]. Indeed, the shift-minimal winning coalitions of H are {12}, {23},

{22, 33}. They all have weight at least 1. The unique shift-maximal losing
coalition {1, 2, 32} also has weight 1 but this is allowed. The players of the
third level are not dummies despite having weight 0. Moreover in any other
system of weights consistent with the game H , players of level three will have
weight 0.

Proof Let us prove the last statement about the game in this example. If
[1;w1, w2, w3] is any rough voting representation for H , then the following
system of inequalities must hold:

w1 ≥
1

2
, (6)

w2 ≥
1

3
, (7)

2w2 + 3w3 ≥ 1, (8)

w1 + w2 + 2w3 = 1. (9)

However (5) and (8) imply w2 +2w3 ≤ 1
2 , which implies 2w2+4w3 ≤ 1, which

together with (7) implies w3 = 0.

Now we can restrict the number of nontrivial levels to four.

Lemma 5 A roughly weighted m-level disjunctive hierarchical game H =
H∃(n,k) without passers and without dummies may have no more than four
levels, i.e., m ≤ 4.

Proof Suppose m ≥ 5. Consider the game H ′ = H∃(n
′,k′), where n′ =

(n1, . . . , nm−1) and k′ = (k1, . . . , km−1). By Proposition 1 H ′ is a subgame
of H and has no passers or dummies. By Lemma 2 it is roughly weighted. As
it has four or more levels, by Theorem 1 it is not weighted. By Proposition 5
we have wm−1 > 0, but we also have wm−1 = 0 by Lemma 4 applied to H ′.
This contradiction proves the lemma.

We will see in the following section that four nontrivial levels are also not
achievable.
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4 A Characterization of Roughly Weighted Disjunctive
Hierarchical Games

Now we can start our full characterisation of all roughly weighted hierarchical
games. Due to the results of the previous section our main focus will be on
2-level ones, then 3-level ones, and then showing that the fourth level may not
be added unless we allow dummies or passers.

4.1 Some general comments

Here is our general strategy to analyse if a particular disjunctive hierarchi-
cal game G = H∃(n,k) is roughly weighted but not weighted. Firstly we
list all shift-minimal winning coalitions and write a system of inequalities in
w1, . . . , wn that is equivalent to the fact that in the game with rough voting
representation [1;w1, . . . , wn] these coalitions are above or on the threshold.
Requiring that shift-minimal winning coalitions are on or above the threshold
is sufficient for ensuring that all winning coalitions are on or above the thresh-
old. This is due to the fact that every shift reduces the weight and adding
players does not decrease the weight. By Theorem 5 there is a unique shift-
maximal losing coalitionM . So then (assuming no dummies) we by Corollary 2
we have the following equation

(k1 − 1)w1 + (k2 − k1)w2 + . . .+ (kn − kn−1)wn = 1. (10)

M is exactly on the threshold. The so-composed system has a solution if and
only if the game is roughly weighted.

The possible shift-minimal winning coalitions in a two- or a three-level
disjunctive hierarchical game G = H∃(n,k) and the inequalities corresponding
to them are as follows:

– When ki ≤ ni, we have shift-minimal winning coalition {iki} and the cor-
responding inequality

kiwi ≥ 1. (11)

– In the case when k2 > n2 the coalition {1k2−n2 , 2n2} is a shift-minimal
winning coalition, then we have

(k2 − n2)w1 + n2w2 ≥ 1. (12)

– In the case when k3 > n3 there are two possibilities, either k2 ≤ n2, or
k2 > n2. Suppose k2 ≤ n2. Since {2k3−n3 , 3n3} is a shift-winning coalition,
then we have

(k3 − n3)w2 + n3w3 ≥ 1. (13)

(We note that k3 − n3 < k2 ≤ n2 in this case.) And if k2 > n2, then since
k3 − n3 < k2 < k1 + n2, and k1 ≤ n1, the coalition {1k3−n2−n3 , 2n2 , 3n3} is
a shift-minimal winning coalition, and we have

(k3 − n2 − n3)w1 + n2w2 + n3w3 ≥ 1. (14)
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4.2 Two-level games

Theorem 6 Let H = H∃(n,k) be a two-level disjunctive hierarchical game
with no passers and no dummies. Then H is roughly weighted but not weighted
iff one of the following conditions is satisfied:

(i) k = (2, 4) with n1 ≥ 2 and n2 ≥ 4;
(ii) k = (k, k + 2), where k > 2, with n1 ≥ k and n2 = 4.

If [1;w1, w2] is a rough voting representation for H, then w2 = w1/2. More-
over, in case (i) we have (w1, w2) = (12 ,

1
4 ).

Proof Let [1;w1, w2] be a rough voting representation for H and M be its
unique shift-maximal losing coalition. As we do not have passers we have
k1 > 1. We need to consider two cases: (i) k2 ≤ n2 and (ii) k2 > n2. In
the first case, due to (11), we have k1w1 ≥ 1, k2w2 ≥ 1 and by Corollary 2
w(M) = (k1 − 1)w1 + (k2 − k1)w2 = 1. If only we had k1w1 > 1 or k2w2 > 1
we could decrease w1 or w2 and make w(M) < 1 in which case the game
would be weighted. Hence k1w1 = k2w2 = (k1 − 1)w1 + (k2 − k1)w2 = 1. This
implies 1/k1 + k1/k2 = 1. Let k2 − k1 = d. Then 1

k1
+ k1

k1+d
= 1, which is

equivalent to k1 + d = k1d or d = k1

k1−1 . It implies 1 < d ≤ 2 whence d = 2
and k1 = 2. Thus we have only one solution: k1 = 2 and k2 = 4. This implies
w = (w1, w2) = (12 ,

1
4 ).

Let us consider the second case. Due to (10), (11) and (12) w satisfy the
inequalities k1w1 ≥ 1, (k2 − n2)w1 + n2w2 ≥ 1 and the equality (k1 − 1)w1 +
(k2 − k1)w2 = 1. The latter line must be a supporting line of the polyhedron
area given by

k1w1 ≥ 1, (k2 − n2)w1 + n2w2 ≥ 1, w2 ≥ 0.

Indeed, if it cuts across this area, then we will be able to find a point (w1, w2)
in this area with (k1−1)w1+(k2−k1)w2 < 1. The game then will be weighted
relative to [1;w1, w2]. This area has only two extreme points and the line
must pass through at least one of them. This is either when w2 = 0 or when
k1w1 = 1 and (k2 − n2)w1 + n2w2 = 1. Firstly, let us consider the case when
w2 = 0. In such a case (k2 − n2)w1 ≥ 1 and (k1 − 1)w1 = 1. This can only
happen when k2 − n2 ≥ k1 − 1 or n2 ≤ k2 − k1 + 1, but by Theorem 1 we
cannot have n2 < k2 − k1 +1, so it must be that n2 = k2 − k1 +1. But in this
case H is weighted by Theorem 3.

Suppose now k1w1 = (k2−n2)w1+n2w2 = 1 and (k1−1)w1+(k2−k1)w2 =
1. Expressing w1 and w2 from the first two equations and substituting into the
third we obtain (k2 − k1)(n2 − (k2 − k1)) = n2. Denoting d = k2 − k1 we can
rewrite this as n2 = d + 1 + 1

d−1 . As n2 must be an integer we get d = 2 and

n2 = 4. Now w2 = k1−k2+n2

n2k1
= 1

2k1
= w1

2 . It is easy to check that these weights
indeed make H roughly weighted and w(M) = (k − 1)w1 + 2 · w1

2 = kw1 = 1.
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4.3 Three-level games

We now focus our investigation on the three-level games. The first observation
that we are going to make is that if a three-level game disjunctive hierarchical
does not have passers and dummies, then it is not weighted. This follows from
Theorem 3. We will use this often.

Proposition 6 Let H = H∃(n,k) be a 3-level disjunctive hierarchical game
without passers and dummies. If H is roughly weighted with a rough voting
representation [1;w1, w2, w3], then the subgame H ′ = H∃(n

′,k′), where n′ =
(n1, n2) and k′ = (k1, k2), is weighted.

Proof Suppose H ′ is not weighted. Then by Lemma 4 w3 = 0 and w2 > 0 by
Proposition 5. By Theorem 6 we must consider the following two cases.

(i) k = (2, 4, a), where a ≥ 5. If a ≤ n3, we would have a winning coalition
{3a} of zero weight and any player of the first two levels will be a passer.
Thus a > n3. As H ′ falls under case (i) of Theorem 6 we have w1 = 1

2
and w2 = 1

4 and n2 ≥ 4. As no dummies present, by Theorem 1, we have
n3 ≥ k3 − k2 + 1 = a − 4 + 1 = a − 3. As a − n3 ≤ 3 < n2, the coalition
{2a−n3 , 3n3} is a winning coalition whose weight is at most 3

4 , a contradiction.
(ii) k = (k, k+2, a), where k ≥ 3 and a ≥ k+3. As H ′ now is under case (ii)

of Theorem 6 we know that n2 = 4 and w1 = 1
k
and w2 = 1

2k with k ≥ 3. As no
dummies present, by Theorem 1, we have n3 ≥ k3 − k2+1 = a− (k+2)+1 =
a − k − 1. As a − n3 ≤ k + 1 ≤ n1 + 1, then a − n3 ≤ n1 + 1. So either the
coalition {2a−n3 , 3n3} is a legitimate winning coalition (if a− n3 ≤ n2 = 4) or
alternatively {1a−n3−4, 24, 3n3} is a legitimate winning coalition. In the first
case the weight of such winning coalition will be a−n3

2k ≤ 2
3 . In the second, the

weight of the winning coalition would be

a− n3 − 4

k
+

4

2k
=

a− n3 − 2

k
≤

k − 1

k
< 1.

In both cases the weight of such minimal winning coalition is less than 1, a
contradiction.

We now know that when H = H∃(n,k) is a 3-level disjunctive hierarchical
game without passers and dummies, then the two-level game H ′ = H∃(n

′,k′),
where n′ = (n1, n2) and k′ = (k1, k2), is weighted. This restricts possible
values of k1 and k2. Essentially, according to Theorem 3, we have two cases.
In one case k2 = k1 + 1. Let us explore it.

Proposition 7 Let H = H∃(n,k) with no passers and no dummies, where
n = (n1, n2, n3) and k = (k, k + 1, k + a), where a ≥ 2 is a positive integer,
with ki ≤ ni for i = 1, 2, 3. Then H is not roughly weighted.

Proof The shift-minimal winning coalitions are {1k}, {2k+1} and {3k+a} and
the inequalities in this case will be kw1 ≥ 1, (k + 1)w2 ≥ 1 and (k + a)w3 ≥
1, respectively. The shift-maximal equation in this case will be (k − 1)w1 +
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w2 + (a − 1)w3 = 1. As in the proof of Theorem 6, we may assume that
all three aforementioned inequalities are in fact equalities, that is w1 = 1

k
,

w2 = 1
k+1 , and that w3 = 1

k+a
. Substituting these weights in the shift-maximal

equation we get a contradiction as (k − 1) 1
k
+ 1

k+1 + a−1
k+a

= 1 is equivalent to
1

k+1 + a−1
k+a

= 1
k
which never happens for k ≥ 2 and a ≥ 2 as this is equivalent

to (a− 1)k2 + (a− 2)k − a = 0 from which a = k2+2k
k2+k−1 < 2, a contradiction.

The most basic type of disjunctive hierarchical games that we will be re-
ferring to constantly is the one with k = (2, 3, 4), We will chracterise these in
Lemmata 6 and 7.

Lemma 6 Let k = (2, 3, 4). The 3-level game G = H∃(n,k) with no dummies
is roughly weighted if and only if n1 ≥ 2 and one of the following is true:

(i) n = (n1, 2, n3), where n3 ≥ 3 and w = (12 ,
1
4 ,

1
4 );

(ii) n = (n1, n2, 2), where n2 ≥ 3 and w = (12 ,
1
2 − α, α) with α ∈ [0, 16 ];

(iii) n = (n1, 2, 2) and w = (12 ,
1
2 − α, α) with α ∈ [0, 1

4 ].

Proof Firstly, we note that by Theorem 1 we have 2 = k1 ≤ n1. We also note
that the shift-maximal equation in this case by (10) is in this case

w1 + w2 + w3 = 1. (15)

Case (i). ki ≤ ni for i = 1, 2, 3 is considered in Proposition 7. There are no
solutions in this case.

Case (ii). Suppose k2 > n2, k3 ≤ n3, then n3 ≥ 4. As k2 = 3, by Corollary 1
it follows that n2 must be 2. The shift-minimal winning coalitions are {12},
{1, 22}, {34}. So the corresponding inequalities are w1 ≥ 1

2 , w1+2w2 ≥ 1, and
w3 ≥ 1

4 . As in the proof of Proposition 7, we may assume w3 = 1
4 . From (15)

we get w1+w2 = 3
4 . It follows that w1+2(34−w1) ≥ 1, whence w1 ≤ 1

2 , forcing
w1 = 1

2 , w2 = 1
4 , w3 = 1

4 . So it is roughly weighted only when n = (n1, 2, n3),
and w = (12 ,

1
4 ,

1
4 ), as required.

Case (iii). Suppose k2 ≤ n2, k3 > n3. Then n3 ≤ 3 and n2 ≥ 3. Then the
shift-minimal winning coalitions are {12}, {23}, {24−n3 , 3n3}. To justify this we
have to note that by Theorem 1 k3−n3 < k2 ≤ n2 whence 4−n3 ≤ n2 and the
last coalition is legitimate. The inequalities then will be w1 ≥ 1

2 , w2 ≥ 1
3 and

(4−n3)w2+n3w3 ≥ 1. As above we may assumew1 = 1
2 . Substituting this value

of w1 into (15) in this case we get w2+w3 = 1
2 . So (4−n3)w2+n3(

1
2 −w2) ≥ 1.

Now by Corollary 1 n3 is either 2 or 3. If it is 3, then we get w2+3(12 −w2) ≥ 1
giving w2 ≤ 1

4 , but we know that w2 ≥ 1
3 , contradiction. If it is 2, then the

system has solutions for any w2 ≥ 1
3 and the game is roughly weighted with

w = (12 ,
1
2 − α, α), where α ∈ [0, 1

6 ]. In this case, n = (n1, n2, 2).

Case (iv). Suppose k2 > n2 and k3 > n3. Then n3 ≤ 3 and n2 = 2. Since by
Theorem 1 and Corollary 1 we have 4 = k3 < k2 + n3, then 4 − n3 ≤ 2 = n2

and the shift-minimal winning coalitions are {12}, {1, 22}, {24−n3 , 3n3}. Then
the inequalities will be: w1 ≥ 1

2 , w1 + 2w2 ≥ 1, (4 − n3)w2 + n3w3 ≥ 1. If
n3 = 2, then the latter becomes 2w2 + 2w3 ≥ 1 or w2 + w3 ≥ 1

2 which, in
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particular, imply w1 = 1 − w2 − w3 ≤ 1
2 , whence w1 = 1

2 and w2 + w3 = 1
2 .

Now from w1+2w2 ≥ 1 we get w2 ≥ 1
4 . So this gives the solution n = (n1, 2, 2)

with w = (12 ,
1
2 − α, α), where α ∈ [0, 14 ], as required. Now if n3 = 3, then the

inequalities will be w1 ≥ 1
2 , w1 + 2w2 ≥ 1, w2 + 3w3 ≥ 1. Again substituting

w3 = 1−w1−w2 into the latter inequality gives 3w1+2w2 ≤ 2. As 2w2 ≥ 1−w1

we get 1+2w1 ≤ 2 and w1 ≤ 1
2 . Hence w1 = 1

2 and w2+w3 = 1
2 . This together

with w2 + 3w3 ≥ 1 gives w3 ≥ 1
4 . But since w1 = 1

2 , then w1 + 2w2 ≥ 1
gives w2 ≥ 1

4 , and so w3 ≤ 1
4 . Thus we have the weights w = (12 ,

1
4 ,

1
4 ), with

n = (n1, 2, 3). This works.

Lemma 7 Let H = H∃(n,k), where k = (2, 3, k) and k ≥ 5, be a 3-level
disjunctive hierarchical game with no dummies. Then n1 ≥ 2 and it is roughly
weighted if and only if n3 = k − 2, and w = (12 ,

1
2 , 0).

Proof We note that the absence of dummies means that k2 + n3 > k3 or
n3 > k − 3. The shift-maximal equation is now

w1 + w2 + (k − 3)w3 = 1. (16)

Case (i). The case when ki ≤ ni for all i is treated in Proposition 7. There
are no solutions in this case.

Case (ii). As k1 ≤ n1, suppose k2 > n2 and k3 ≤ n3. It follows that n2 must
be 2. The shift-minimal winning coalitions then are {12}, {1, 22}, {3k}. So the
corresponding inequalities are w1 ≥ 1

2 , w1+2w2 ≥ 1 and w3 ≥ 1
k
. By the usual

trick we may assume that w3 = 1
k
. Then from the shift-maximal equation (16)

we get w1 + w2 = 3
k
. It follows that w1 + 2( 3

k
− w1) ≥ 1, so w1 ≤ 6−k

k
≤ 1

k
,

but w1 ≥ 1
2 , contradiction.

Case (iii). Suppose k2 ≤ n2, and n3 < k3 = k. Then k3 − k2 + 1 = k − 2 ≤
n3 ≤ k− 1 and, in particular, by Corollary 1 k−n3 ≤ 2 ≤ n2. Then the shift-
minimal winning coalitions are {12}, {23}, {2k−n3 , 3n3}, giving the inequalities
w1 ≥ 1

2 , w2 ≥ 1
3 and (k−n3)w2+n3w3 ≥ 1. We may set w1 = 1

2 which implies
w2+(k−3)w3 = 1

2 . Let us consider two cases: (a) n3 = k−1 and (b) n3 = k−2.
(a) In this case the two inequalities become w2 + (k − 3)w3 = 1

2 and

w2+(k−1)w3 ≥ 1. These imply w3 ≥ 1
4 . But then w2+(k−3)w3 ≥ 1

3+
k−3
4 > 1

2 ,
contradiction.

(b) In this case the two inequalities become w2 + (k − 3)w3 = 1
2 and

2w2 + (k− 2)w3 ≥ 1. This implies that either w3 = 0 or 2(k− 3) ≤ k− 2. The
latter implies k ≤ 4, hence the only solution in this case is w = (12 ,

1
2 , 0).

Case (iv). Suppose k2 > n2, n3 < k3 = k, so n2 = 2 and, as in case (iii),
k−2 ≤ n3 ≤ k−1. Then the shift-minimal winning coalitions are {12}, {1, 22},
{2k−n3 , 3n3}, giving the inequalities w1 ≥ 1

2 , w1 + 2w2 ≥ 1 and (k − n3)w2 +
n3w3 ≥ 1. We have either (a) n3 = k − 2 or n3 = k − 1.

(a) Suppose n3 = k−2. Then the last inequality becomes 2w2+(k−2)w3 ≥
1. From the shift-maximal equation (16) we get w2 + (k − 3)w3 ≤ 1

2 , which
together with the previous inequality implies either w3 = 0 or 2(k−3) ≤ k−2.
As the latter implies k ≤ 4, we again have the solution w = (12 ,

1
2 , 0).



18 Ali Hameed, Arkadii Slinko

(b) Suppose n3 = k−1. Then the last inequality becomes w2+(k−1)w3 ≥ 1.
From the shift-maximal equation (16) we get w2 + (k − 3)w3 ≤ 1

2 from which

w3 ≥ 1
4 . But this contradicts to (16) since w1+w2+(k−3)w3 ≥ 1

2+w2+
k−3
4 > 1

for any k ≥ 5.

If the disjunctive hierarchical gameH = H∃(n,k) is roughly weighted, then
all its reduced games will be also roughly weighted by Lemma 2 and Proposi-
tion 5. Let us now make an important observation about the weights in those
reduced games. Suppose H has a rough voting representation [1;w1, w2, w3]
and let A = {1s1 , 2s2 , 3s3} be a submultiset with the total weight w(A) =
s1w1 + s2w2 + s3w3. Then by Lemma 2, the reduced game HA has rough
voting representation [1− w(A);w1, w2, w3] or after normalisation

[

1;
w1

1− w(A)
,

w2

1− w(A)
,

w3

1− w(A)

]

. (17)

Lemma 8 Suppose that a 3-level hierarchical game H = H∃(n,k), where
k = (2, k2, k3), has no dummies and is roughly weighted with rough voting
representation [1;w1, w2, w3]. Then either w3 = 0 or k = (2, 3, 4).

Proof Suppose w3 > 0. If k2 > 3, then n2 ≥ k2−k1+1 = k2− 1 so the second
level contains at least k2 − 1 elements and, in particular, A = {2k2−3} is a
submultiset of the multiset of players. Let us consider the reduced game HA.
Then by Proposition 3, HA = H(n′,k′) with n′ = (n1, n2 − k2 + 3, n3) and
k′ = (2, 3, k3 − k2 + 3). Since n2 − k2 + 3 ≥ 2 the reduced game still has three
levels. By Proposition 2 the game HA is also roughly weighted and, due to
(17) the last weight of it will still be nonzero. Having k3 − k2 + 3 > 4 would
imply by Lemma 7 that the last weight is zero. Since that is not the case, then
we have k3 − k2 + 3 = 4 so k′ = (2, 3, 4).

Let w = w(A) = (k2−3)w2. Then by Lemma 6 and (17) we have w1

1−w
= 1

2 .

This means that 2w1 = 1 − w < 1 which contradicts the fact that {12} is a
wining coalition in H . Hence k2 = 3 and k = (2, 3, 4).

Corollary 4 There does not exist a roughly weighted 3-level disjunctive hier-
archical game H = H∃(n,k) with k = (2, 4, k3) and no dummies.

Proof Suppose on the contrary that H is roughly weighted with rough voting
representation [1;w1, w2, w3]. Then by Lemma 8 we must have w3 = 0. Con-
sider H ′ = H∃(n

′,k′), where n′ = (n1, n2) and k′ = (k1, k2). If it is weighted,
then by Theorem 3 n2 = k2 − k1 + 1 = 3. And if it is not, then n2 ≥ 4 by
Theorem 6. In either case we have shift-minimal winning coalitions {12} and
{1, 23}, hence w1 ≥ 1

2 and w1 + 3w2 ≥ 1. By Theorem 1 we have k3 − n3 ≤ 3
so the third shift-minimal winning coalition is of the type {2k3−n3 , 3n3}. The
weight of such coalition is not greater than 3w2. So we must have w2 ≥ 1

3 . At
the same time from the shift-maximal equation w1 + 2w2 = 1 and w1 ≥ 1

2 we
have w2 ≤ 1

4 . This is a contradiction.

Lemma 9 Suppose that a 3-level disjunctive hierarchical game H = H∃(n,k)
with no passers and no dummies is roughly weighted. Then k2 − k1 = 1.
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Proof Let [1;w1, w2, w3] be a rough voting representation of G. As there is
no passers, k1 ≥ 2. Suppose k2 − k1 ≥ 2. Observe that all 3-level games
with k2 − k1 ≥ 2 can be reduced to a 3-level game where k1 = 2, k2 = 4 as
follows. First, take the reduced game H1 = HA with A = {1k1−2}, which will
result in a game H1 = H∃(n

′,k′), with n′ = (n′
1, n2, n3) and k′ = (2, k′2, k

′
3),

where k′2 = k2 − k1 + 2, k′3 = k3 − k1 + 2 and n′
1 = n1 − k1 + 2. Since

H1 is roughly weighted, then by Corollary 4 we have k′2 ≥ 5. By Theorem 1
n2 ≥ k2 − k1 = k′2 − 2 and n2 − (k′2 − 4) ≥ 2. This shows that n2 has
enough players for a further reduction to HA′

1 , where A′ = {2k
′

2−4}, without
collapsing the second level. The resulting game with k′′ = (2, 4, k′3 − (k′2 − 4))
is not roughly weighted by Corollary 4 which proves the lemma.

By combining Lemmata 7 and 9 we get the following

Corollary 5 If a 3-level disjunctive hierarchical game H = H∃(n,k) does not
have passers and dummies and is roughly weighted, then it belongs to one of
the following two categories:

(i) k = (k, k + 1, k + 2);
(ii) k = (k, k + 1, k3), such that n3 = k3 − k ≥ 3.

Proof By Lemma 9 we have k2 = k1 + 1. To prove the other claims we make
a reduction of H and consider H ′ = GA with A = {1k1−2}. Then H ′ has
parameters n′ = (n1 − k1 + 2, n2, n3) and k′ = (2, k2 − k1 + 2, k3 − k1 + 2) =
(2, 3, k3 − k1 + 2). Now either k′3 = 4, and in this case k3 = k + 2, or by
Lemma 7 n3 = k′3 − 2 = k3 − k1. Since in the latter case we have k′3 ≥ 5, then
we get k3 − k ≥ 3.

So it is these two categories of games that we need to analyse. They will
be analysed in the following two lemmas. We refer in their study to Lemmas 6
and 7.

Lemma 10 A 3-level game H = H∃(n,k) with k = (k, k+1, k+2) and k ≥ 3
is roughly weighted if and only if n1 ≥ k and one of the following conditions
is satisfied:

(a) n = (n1, 2, 2), w =
(

1
k
, 1−2α

k
, 2α

k

)

, where α ∈
[

0, 14
]

;

(b) n = (n1, n2, 2), n2 ≥ 3, and w =
(

1
k
, 1
k
, 0
)

.

Proof Firstly, it is easy to check that the games in (a) and (b) are indeed,
roughly weighted with the specified set of weights.

If H is roughly weighted, then upon reducing it to HA = H∃(n
′,k′), where

A = {1k−2}, we get k′ = (2, 3, 4). Also, n′ must fall into one of the three cases
given in Lemma 6. Let us analyze them one by one.

Case (i). n′ = (n′
1, 2, n3), where n′

1 ≥ 2, n3 ≥ 3, and w = (12 ,
1
4 ,

1
4 ). As

mentioned earlier, the voting representation of HA will then be
[

1;
w1

1− w1(k − 2)
,

w2

1− w1(k − 2)
,

w3

1− w1(k − 2)

]
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and it has to match the voting representation of the reduced game at hand,
namely [1; 1

2 ,
1
4 ,

1
4 ]. It follows that

w1

1−w1(k−2) = 1
2 , so w1 = 1

k
. Also, w2

1−w1(k−2) =
w3

1−w1(k−2) = 1
4 , giving w2 = w3 = 1

2k . Now we test to see if these weights

indeed define the original hierarchical game H . Now since (k + 2)w3 = k+2
2k is

never greater than or equal to 1 for k ≥ 3 coalition {3k3} does not exist in H
(otherwise it would be winning), that is, n3 ≤ k + 1. Also w2 + (k + 1)w3 =
2w2 + kw3 = k+2

2k , and a shift-minimal winning coalition {2i, 3k+2−i}, for
i = 1, 2, also does not exist in H for k ≥ 3.

So the coalition {1(k+2)−n2−n3 , 2n2 , 3n3} must be a shift-minimal winning
coalition in H . So its weight should be at least the threshold, which is 1, i.e.,
k+2−2−n3

k
+ 2

2k+
n3

2k = 2k−n3+2
2k ≥ 1. But this is never true for n3 ≥ 3. Therefore

H is not roughly weighted in this case.

Case (ii). n′ = (n′
1, n2, 2), where n′

1 ≥ 2, n2 ≥ 3, and w = (12 ,
1
2 − α, α)

for some α ∈ [0, 16 ]. Here w1 is still 1
k
. But w2

1−w1(k−2) = 1
2 − α. It follows that

kw2

2 = 1
2 − α, so that w2 = 1−2α

k
. Also, w3

1−w1(k−2) = α, implying w3 = 2α
k
. As

we do not have dummies there must be a winning coalition consisting of k+2
players. This would be either {2k, 32} or {1k−n2 , 2n2 , 32} depending on what
is greater n2 or k. But w({2k, 32}) = k 1−2α

k
+ 2 2α

k
= 1− 2α+ 4α

k
. For this to

be winning we need 1− 2α+ 4α
k

≥ 1, giving 4α
k

≥ 2α. So either we have 2
k
≥ 1

or α = 0. As k > 2 we have the latter. Thus {2k, 32} can be winning only for
α = 0 in which case w = ( 1

k
, 1
k
, 0).

Suppose now that the winning coalition consisting of k + 2 players is

{1k−n2 , 2n2 , 32}. Its weight then is k−n2

k
+ n2(1−2α)

k
+ 4α

k
≥ 1. It follows that

2α ≥ αn2, whence α = 0. In both cases we have (b).

Case (iii). n′ = (n′
1, 2, 2), where w = (12 ,

1
2 − α, α), and α ∈ [0, 1

4 ]. This
gives us case (a).

Now to the remaining case.

Lemma 11 Any 3-level game G = H(n,k), where k = (k, k+1, k3) such that
k3 − (k+1) ≥ 2 and G has no passers and no dummies, is roughly weighted if
and only if the following is true.

(i) n = (n1, n2, n3), where n3 = k3 − k ≥ 3, and w = ( 1
k
, 1
k
, 0).

Proof Upon reducing G to GA = H ′(n′,k′), where A = {1k−2}, we get k′ =
(2, 3, k′3), where k

′
3 ≥ 5. If the game GA is roughly weighted, then by Lemma 7

it has to have n = (n1, n2, k
′
3 − 2), where n2 ≥ 2, and n1 ≥ 2, and the weights

consistent with w = (12 ,
1
2 , 0). So we get w1

1−w1(k−2) = 1
2 , so w1 = 1

k
. Also,

w2

1−w1(k−2) = 1
2 , meaning w2

1−w1k+2w1
= 1

2 , so
w2

1−1+2 1
k

= 1
2 . Therefore w2 = 1

k
,

and w3 = 0. It can be easily checked that these weights give a valid hierarchical
game where n = (n1, n2, k3 − k), w = ( 1

k
, 1
k
, 0).
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4.4 Main Results

Finally we are ready to collect all facts together and give a full characterisa-
tion of roughly weighted disjunctive hierarchical games. As the classification
of weighted hierarchical games is already given in Theorem 3 we will charac-
terize only nonweighted ones. Then by duality we will derive similar results
for conjunctive hierarchical games.

Theorem 7 If H = H∃(n, k) is an m-level nonweighted hierarchical game,
then it is roughly weighted if and only if one of the following is true:

(i) k1 = 1 and m is arbitrary;
(ii) k = (2, 4) with n1 ≥ 2 and n2 ≥ 4;
(iii) k = (k, k + 2), with n1 ≥ k > 2 and n2 = 4;
(iv) k = (2, 3, 4) and n = (n1, 2, n3) with n1 ≥ 2, n3 ≥ 3;
(v) k = (k, k+1, k+2), and n = (n1, 2, 2), where 2 < k ≤ n1 or n = (n1, n2, 2)

with 2 < k ≤ n1 and n2 ≥ 3;
(vi) k = (k, k+1, k3), n = (n1, n2, n3) such that 2 ≤ k ≤ n1, and n3 = k3−k ≥

3.
(vii) km = km−1 + nm and the subgame H∃(n

′,k′), where n′ = (n1, . . . , nm−1)
and k′ = (k1, . . . , km−1), falls under one of the types (i)–(vi).

Proof Firstly, we note that if km ≥ km−1 + nm, then the mth level of players
consists of dummies. This game will be roughly weighted if and only if the
game H∃(n

′,k′) is. This situation is described in (vii). So we consider that
km < km−1 + nm. If k1 = 1, then we can set w1 = 1 and wi = 0 for i > 1.
Suppose k1 > 1. Then H does not have passers and dummies so by Lemma 5
m ≤ 4.

If m = 2 the result follows from Theorem 6. If m = 3 the result follows
from Lemmata of the previous section. We will now show that the fourth
level cannot be added without introducing dummies. Suppose that H has the
fourth level whose players are not dummies. We know from Corollary 3 and
Proposition 5 that w3 6= 0 and w4 = 0.

By letting A = {1k1−2} and considering the reduced game H ′ = HA we
obtain a 4-level game H ′ = H∃(n

′,k′) which is roughly weighted by Lemma 2
and Proposition 5. We can now consider the subgame H ′′ = H∃(n

′′,k′′) of
H ′, where n′′ = (n′

1, n
′
2, n

′
3) and k′′ = (k′1, k

′
2, k

′
3). It will be again roughly

weighted by Lemma 2 and we may apply Lemma 8 to this 3-level game. By
Lemma 2 all weights of this game will be nonzero. By Lemma 8 we will then
have k′′ = (2, 3, 4) and thus k′ = (2, 3, 4, k4), n′ = (n′

1, n2, n3, n4), where
n′
1 = n1 − k1 + 2. As there are no dummies in H , by Theorem 1 we have

n4 ≥ k4− 4+1 = k4− 3. Thus either {33, 4k4−3} or {2, 32, 4k4−3} is a winning
coalition as total number of players in each is k4. By Lemma 6, in all cases
when H ′ is roughly weighted we have w2 +w3 = 1

2 and w3 ≤ 1
4 . However, the

weight of the coalition {2, 32, 4k4−3} is w2 + 2w3 = 1
2 + w3 ≤ 3

4 . The same is
true for the coalition {33, 4k4−3}, giving a contradiction.

And the following gives the full characterisation of roughly weighted con-
junctive simple games.
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Theorem 8 If H = H∀(n, k) is an m-level nonweighted conjunctive hierar-
chical game. Then it is roughly weighted if and only if one of the following is
true:

(i) k1 = n1 and m is arbitrary;
(ii) k = (n1 − 1, n1 + n2 − 3), where n1 ≥ 2, n2 ≥ 4;
(iii) k = (k, k + 2), with 1 ≤ k < n1 − 1, and n2 = 4;
(iv) k = (n1 − 1, n1, n1 + n3 − 1) and n = (n1, 2, n3) such that n1 ≥ 2, n3 ≥ 3;
(va) k = (k, k + 1, k + 2), where 1 ≤ k < n1 − 1 and n = (n1, 2, 2);
(vb) k = (k1, k2, k2 + 1) with n = (n1, n2, 2), where k2 − k1 = n2 − 1, 1 ≤ k1 <

n1 − 1 and n3 ≥ 3;
(vi) k = (k1, k2, k2 + 1), with 1 ≤ k ≤ n1 − 1 and n2 ≥ 3;
(vii) km−1 = km, and the subgame H∀(n

′,k′), where n′ = (n1, . . . , nm−1) and
k′ = (k1, . . . , km−1), falls under one of the types (i)–(vi).

Proof The proof will consists of calculating the duals for the games listed in
Theorem 7.

(i) In the dual game by Theorem 7 we have k1 = 1, so in this game we
have n1 − k1 + 1 = k∗1 , meaning k∗1 = n1.

(ii) Here we have k∗1 = n1 − k1 + 1 where k1 = 2, so k∗1 = n1 − 1. Also
k∗2 = n1 + n2 − k2 + 1 = n1 + n2 − 3.

(iii) In the dual game k∗1 = n1 − k + 1 and k∗2 = n1 + n2 − (k + 2) + 1 =
n1 − k + 3 = k∗1 + 2. As n1 ≥ k > 2, we have n1 − 1 > k∗1 ≥ 1.

(iv) Since k = (2, 3, 4) in the dual game, then this gives n1 − k1 + 1 = k∗1 ,
so that k∗1 = n1 − 1. Also, n1 +n2 − k2 +1 = k∗2 , giving k∗2 = n1 +n2 − 2 = n1

since n2 = 2. We also get k∗3 = n1 + n2 + n3 − k3 + 1 = n1 + n3 − 1.

(v) We have two cases here so we treat them separately.

(a) k∗1 = n1 − k + 1, k∗2 = n1 + n2 − (k + 1) + 1 = n1 − k + 2 = k∗1 + 1, and
k∗3 = n1 + n2 + n3 − (k + 2) + 1 = n1 − k + 3 = k∗1 + 2.

(b) k∗1 = n1 − k + 1, k∗2 = n1 + n2 − (k + 1) + 1 = n1 + n2 − k, and k∗3 =
n1 + n2 + n3 − (k + 2) + 1 = n1 + n2 − k + 1 = k∗2 + 1.

(vi) k∗1 = n1−k1+1, k∗2 = n1+n2−(k1+1)+1 = n1+n2−k1 = k∗1+n2−1,
k∗3 = n1 + n2 + n3 − k3 + 1 = n1 + n2 − k1 + 1 = k∗2 + 1.

(vii) We have nm − km = km−1 and this implies k∗m = k∗m−1.

5 Conclusion and Further Research

This paper provides a complete characterization of roughly weighted hierar-
chical gams both disjunctive and conjunctive. As we have seen weighted hier-
archical games can have only up to two nontrivial levels and roughly weighted
only up to three levels. So in general, hierarchical games are rather far from
weighted ones. Gvozdeva, Hemaspaandra, and Slinko (2011) introduced three
hierarchies of simple games, each depend on a single parameter and for each
hierarchy the union of all classes is the whole class of simple games. One idea
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that was suggested is to generalize roughly weighted games as follows. Rough
weightedness allows just one value of the threshold q = 1 (after normaliza-
tion), where coalitions of weight 1 can be both losing and winning. Instead of
just single threshold value we may allow values of thresholds from a certain
interval [1, a] to possess this property, that is, coalitions whose weight is be-
tween 1 and a can be both winning or losing. They denote this class of games
Ca. The question which deserves further study is how big should be a so that
all hierarchical n-level games are in Ca.
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