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Abstract

The present paper studies repeated Bertrand oligopoly with multiple markets. The
markets are subject to independent, stochastic fluctuations in demands. According
to the literature, the demand fluctuations generally hinder collusion, while the mul-
timarket contact sometimes facilitates it. We show that when only partial collusion
is sustainable under a single market, the per-market expected profit under the most
collusive equilibrium increases with the number of markets. Further, the difference be-
tween the total expected profit under full collusion and that under the most collusive
equilibrium vanishes, if the number of markets goes to infinity. Thus the collusion-
deterrence effects of fluctuated demands completely disappear in the limit.
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1 Introduction

The present paper studies a model of repeated Bertrand oligopoly, highlighting two typical
features colluding firms often confront. First, they simultaneously interact in two or more
markets (multimarket contact). Second, the demands in those markets are subject to
random shocks (demand fluctuations). For instance, large nationwide firms often compete
in many local markets simultaneously, and each local market is affected with idiosyncratic
demand shocks. Another example is conglomerates competing over several industries, each
of which has its own demand shocks.

In a framework of infinitely repeated games, existing results have clarified whether
each of the two features facilitates or hinders formation of cartels. First, Bernheim and
Whinston [1] point out that the multimarket contact never hinders collusion and sometimes
facilitates it. In contrast, demand fluctuations generally hinder collusion, as Rotemberg
and Saloner [5] show. The main purpose of the present paper is to examine how these two
conflicting forces interact and affect the firms’ ability to collude.

The present paper sets up a model of infinitely repeated games with symmetric and
stochastic stage payoffs. The stage payoffs are i.i.d. over time. At the beginning of each
period the players learn the stage payoffs of that period; all future payoffs are unknown
at that time. This formulation of payoff fluctuations follows Rotemberg and Saloner [5].
While our model includes first-price auctions and moral hazard in teams as examples, we
mainly apply it to Bertrand oligopoly and its multimarket version.

We focus on the most cooperative equilibrium (MCE); namely, the equilibrium which
attains the greatest expected payoff among all symmetric subgame perfect equilibria of
this repeated game. We start with a characterization of the MCE expected payoff, which
we call the most cooperative payoff (MCP), for any level of discounting, which we utilize
in examining the effects of multimarket contact under fluctuated demands.

Our main results are summarized as follows. Fix the probability distribution of stage
payoffs. Then two threshold discount factors exist, δ and δ with δ > δ, such that regardless
of the number of markets, (i) if δ < δ, the MCE is repeated play of a static equilibrium, and
(ii) if δ ≥ δ, the MCE attains full collusion. These are two polar cases where multimarket
contact is irrelevant. Next, fix δ ∈ (δ, δ). Then we show that for any M , the per-market
MCP under M markets is not greater than that under M +1 markets, and they are equal
only in rare cases to be explained later. That is, on this range of discount factors, adding
one more market almost always improves the per-market MCP.

Further, we show that the difference between the total expected profit under full collu-
sion and the MCP converges to zero, if the number of markets goes to infinity. Hence, for
relatively patient firms, the collusion-deterrence effects of fluctuated demands completely
vanish in the limit.1 Another interpretation is that if the firms compete in a large number
of markets, demand fluctuations do not much affect their ability to collude.

We are not the first to study the effect of multimarket contact under demand fluctu-
ations. Bernheim and Whinston [1] have already studied the case of two markets, and
show that the multimarket contact in general increases the per-market expected profit in
comparison with the case of one market. In contrast, we consider an arbitrary number of

1The result does not entirely deny the collusion-deterrence effects of demand fluctuations in the following
two senses. First, if δ ≤ δ < δ, full collusion cannot be sustained under any number of markets. Second,
the limit result does not hold at δ.
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markets and verify that any possible profit loss due to demand fluctuations goes to zero
when the number of markets goes to infinity.

An independent work by Li and Powell [3] is most closely related to the present paper.
[3] also considers repeated games where multiple identical games with fluctuating payoffs
are simultaneously played, and obtains a similar limit result. Both papers assume similar
payoff structure, but the one in [3] is more general. A major difference is that their limit
result is about equilibrium payoffs per component game, while ours examines equilibrium
total payoffs and it is therefore stronger as a limit result.2

One important assumption in our setup is perfect monitoring; the players can directly
observe their past actions. This assumption considerably simplifies analysis, enabling us
to fully characterize the MCP. A more realistic assumption would be that the players
only receive a noisy signal of their actions (imperfect monitoring). Matsushima [4] and
Kobayashi and Ohta [2] investigate the effect of multimarket contact under imperfect
monitoring, especially its role in promoting cooperation and/or collusion.3 [2] derives the
most cooperative symmetric equilibrium payoff for any number of markets, assuming that
the players are sufficiently patient. We rather consider the case of impatient players. [4]
deals with the case of heavy discounting and is concerned with a limit result for the per-
market profit. We instead consider any number of markets, and our limit result is for the
total profit.

The rest of the present paper is organized as follows. Section 2 introduces the model.
Section 3 characterizes the MCP. Section 4 applies the result in the previous section and
studies effects of multimarket contact under demand fluctuations.

2 Model

Two players play a given normal-form game every period.4 Each player has an identical
set of stage actions, denoted by X. Their stage payoff depends not only on the action
pair selected in the period, denoted by (x1, x2) ∈ X × X, but also on the state of that
period. The set of possible states has M + 1 elements, and we call them state 0, state 1,
. . . , state M . ui(x1, x2, k) denotes player i’s stage payoff of the action pair (x1, x2) under
state k. We assume symmetry, so that for any x1, x2 and k, u1(x1, x2, k) = u2(x2, x1, k).
For x ∈ X and k, we define U(x, k) = ui(x, x, k).5

We make the following assumptions, which capture some features of Bertrand compe-
tition. The stage game may as well be called games with proportional temptations.

Assumption 1 The state of each period follows a common probability distribution, and it
is independent over time. For any given period, the state of that period is k with probability
pk ∈ (0, 1).

Assumption 2 For any k, Δk ≡ maxx∈X U(x, k) exists, and Δk > 0 holds.

2For example, suppose that the per-market expected profit under full collusion is 1. Then the limit
result in [3] is consistent with a conclusion that the MCP is M −√

M , when the number of markets is M .
Our limit result in terms of the total profits reveals that this conclusion is impossible.

3In [2] and [4], the stage game is a prisoners’ dilemma. Since our stage game is quite similar to their
games, the main difference among those models is attributed to the players’ monitoring ability.

4An extension to the case of three or more players is straightforward.
5Due to symmetry, U(x, k) does not depend on choice of i.
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Assumption 3 There exists K > 1 such that for any k and any u ∈ [0, Δk], x ∈ X exists
such that

U(x, k) = u, sup
y∈X

u1(y, x, k) = Ku. (1)

Moreover, for any k, any u ∈ (0, Δk], and any x′ ∈ X such that U(x′, k) = u, we have
supy u1(y, x′, k) ≥ Ku.

Assumption 4 For each k, minx∈X supy∈X u1(y, x, k) exists and equals zero. Moreover,
the normal form game whose payoff function is given by ui(x1, x2, k) for each player i has
a unique Nash equilibrium payoff pair.

Assumption 5 We have Δ0 ≤ Δ1 ≤ · · · ≤ ΔM , and Δ0 < ΔM .

Assumption 1 states that the states are i.i.d. over time. Assumption 2 guarantees
existence of a maximum symmetric action pair payoff under any state, which is the value
of full cooperation under that state. Together with Assumption 4, the maximum is greater
than each player’s minmax value given the state.6

Assumption 3 is the assumption of proportional temptations. It first states that given
a state k, any payoff between the maximum symmetric action pair payoff and the minmax
value is attained by some symmetric action pair (x, x). Further, each player finds x

suboptimal against x unless U(x, k) = 0, and he can obtain either exactly or approximately
K times of U(x, k).7 Note that the coefficient K is independent of k. For k and u ∈ [0, Δk],
let x(u; k) be an element of X satisfying (1). Assumption 3 also states that any other
symmetric action pair (x′, x′) with a payoff u ∈ (0, Δk] under state k does not give each
player a smaller temptation than x(u; k); we have supy u1(y, x′, k) ≥ Ku.

Evaluating (1) at u = 0, we see that
(
x(0; k), x(0; k)

)
is a Nash equilibrium of the game

whose payoff function is ui(x1, x2, k) for each player i, and each player’s equilibrium payoff
is 0. Assumption 4 states that it is the only Nash equilibrium payoff and the minmax value
of that game.8 Since we will exclude randomized actions, the minmax value is defined by
pure actions. Finally, Assumption 5 states that the states are ordered so that the values
of full cooperation are nondecreasing, and that the values are not constant.

Let us denote this stage game by G. G has a unique Nash equilibrium payoff pair
(0, 0), and it is an equilibrium for each player to play x(0; k) if the state is k.

We provide three examples of games satisfying Assumptions 2–5.

Example 1 (Bertrand oligopoly) Let X = [0, p] with p > 0. For each k, let

u1(x1, x2, k) =

⎧⎪⎪⎨
⎪⎪⎩

x1D(x1; k) if x1 < x2,
1
2x1D(x1; k) if x1 = x2,

0 if x1 > x2,

6Precisely speaking, the value is the minimum of suprema, but we abuse terminology and call it the
minmax value.

7While (1) is stated in terms of player 1, the counterpart for player 2 also holds by symmetry.
8This is consistent with multiple Nash equilibria, because more than one x may satisfy (1) at u = 0.
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where D(·; k) is continuous and nonincreasing. We also assume D(0; k) > D(p; k) = 0. u2

is derived from u1 by symmetry. This is a standard model of Bertrand duopoly, where the
costs are assumed to be zero for simplicity.

We have

U(x, k) =
1
2
xD(x; k).

By assumption, Δk = maxx∈X U(x, k) exists, and Δk > 0. Assumption 2 thus holds.
For u ∈ [0, Δk], let x(u; k) be the smallest x ∈ X such that U(x, k) = u. Since U(x, k) is

continuous in x, x(u; k) indeed exists. By the definition of x(u; k), we have xD(x; k) < 2u

for any x < x(u; k). Hence by continuity,

sup
y∈X

u1

(
y, x(u; k), k

)
= 2u. (2)

Furthermore, for any x such that U(x, k) = u, we have x ≥ x(u; k). Since u1(x1, x2, k) is
nondecreasing in x2, it holds that

sup
y∈X

u1(y, x, k) ≥ sup
y∈X

u1

(
y, x(u; k), k

)
= 2u. (3)

Since u ∈ [0, Δk] is arbitrary, (2) and (3) imply that Assumption 3 holds for K = 2.
In the normal-form game with player i’s payoff function being ui(x1, x2, k), its Bertrand

structure immediately means that each firm’s equilibrium profit is zero, and this equals
its minmax value. Thus Assumption 4 is satisfied.

Finally, Assumption 5 holds if we assume D(p; k) > D(p; k − 1) for any k ≥ 1 and
any p < p. However, it holds under much weaker assumptions. While it does not hold if
we just assume D(p; k) ≥ D(p; k − 1) for any k ≥ 1 and any p (then it is possible that
Δ0 = Δ1 = · · · = ΔM ), it will hold under suitable strengthening of it.

Example 2 (first-price auctions) Let X = [0,∞). For each k, let

u1(x1, x2, k) =

⎧⎪⎪⎨
⎪⎪⎩

vk − x1 if x1 > x2 and x1 ≥ rk,
1
2(vk − x1) if x1 = x2 ≥ rk,

0 if x1 < min{rk, x2},

where vk > rk ≥ 0. u2 is derived from u1 by symmetry. This is a first-price auction where
two buyers’ common valuation is vk and the reserve price is rk under state k.

We have

U(x, k) =

{
1
2(vk − x) if x ≥ rk,

0 if x < rk.

It is easy to see that Δk = (vk − rk)/2 > 0. Assumption 2 is therefore satisfied.
For any k and any u ∈ [0, Δk], a solution of U(x, k) = u is x = vk − 2u, and it is a

unique solution if u > 0. Since we also have

sup
y∈X

u1

(
y, vk − 2u, k

)
= 2u,
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Assumption 3 holds for K = 2.
For each k, the normal form game with player i’s payoff function being ui(x1, x2, k)

has Bertrand structure. Hence, any equilibrium payoff is zero, which equals each buyer’s
minmax value. Assumption 4 is therefore satisfied. Finally, Assumption 5 is satisfied if
we assume vk − rk is nondecreasing and v0 − r0 < vM − rM .

Example 3 (linear payoffs and multiplicative shocks) Let X = [0, 1], and let

u1(x1, x2, k) = θk(αx2 − x1), u2(x1, x2, k) = θk(αx1 − x2)

for each k, where θk > 0 and α > 1. Therefore we have U(x, k) = θk(α − 1)x, and
Δk = θk(α − 1) > 0. Hence Assumption 2 is satisfied.

For any u ∈ [0, Δk], the unique solution of U(x, k) = u is x = u/Δk. Since

sup
y

u1

(
y,

u

Δk
, k
)

= u1

(
0,

u

Δk
, k
)

=
αu

α − 1
,

(1) holds for K = α/(α − 1) > 1. Assumption 3 is therefore satisfied.
In the normal-form game with player i’s payoff function being ui(x1, x2, k), 0 is a

dominant action and minmaxes the other player. Hence 0 is indeed the Nash equilibrium
payoff and the minmax value, which guarantees Assumption 4. Finally, Assumption 5
holds if we assume θ0 ≤ θ1 ≤ · · · ≤ θM with θ0 < θM .

This is a game with very simple structure, but it includes moral hazard in teams and
public goods provision with linear technology as examples.

Note that in all these examples, Δk is the maximum of the stage payoff sum, even if we
take asymmetric action pairs into account under state k.

The players play G in periods 0, 1, 2, . . . . Each player knows the state of each period
at the beginning of that period, but does not know the state of any future period until
that period arrives. We also assume perfect monitoring. Namely, the players can observe
the other players’ past actions, together with all past states. In the present paper, we
limit attention to pure strategies. Thus each player i’s strategy of this repeated game
is a function which maps a history at each period t, consisting of

(
x1(τ), x2(τ)

)t−1

τ=0
and(

k(τ)
)t
τ=0

, where xi(τ) is player i’s action in period τ and k(τ) is the realized state of
period τ , to an element of X. Note that a history at period t includes the state of
period t. Given a strategy pair, player i’s expected payoff of the repeated game is:

(1 − δ)E
[ ∞∑

t=0

δtui

(
x1(t), x2(t), k(t)

)]
,

where δ ∈ (0, 1) is a common discount factor, and the expectation is taken with respect
to the states of the entire periods.

Let us denote this infinitely repeated game by G(δ). A strategy pair is symmetric if
at no history the players’ actions are different. Our solution concept for G(δ) is the most
cooperative equilibrium (MCE), which we define as the equilibria attaining the largest ex-
pected payoff among all symmetric subgame perfect equilibria of G(δ). The MCE expected
payoff is called the most cooperative payoff (MCP).
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3 Characterization of the MCP

This section fully characterizes the MCP of G(δ) for any δ. The following function defined
on [0,∞) is useful.

g(b) = b −
M∑

k=0

pk min
{

Δk,
δb

(1 − δ)(K − 1)

}
.

The idea of this function is closely related to the following strategy pair with the payoff
target B.

(i) In period 0 with state k(0), each player plays x
(
min{Δk(0), B}; k(0)

)
.

(ii) In period t (t ≥ 1), given the corresponding history
(
a(τ)

)t−1

τ=0
and

(
k(τ)

)t
τ=0

,

(a) if x1(τ) = x2(τ) = x
(
min{Δk(τ), B}; k(τ)

)
for any τ ≤ t − 1, then each player

plays x
(
min{Δk(t), B}; k(t)

)
, and

(b) otherwise, each player plays x
(
0; k(t)

)
.

On the path of this strategy pair, the players fully cooperate under any state whose
payoff from full cooperation is below the target B, and they play actions achieving the
target under any state whose payoff from full cooperation exceeds it. At any history on
the path whose current state is k, the stage payoff under this strategy pair is min{Δk, B}.
From Assumption 3, the incremental stage payoff from a deviation at such a history is at
most (K − 1)B. Since the continuation payoff given a deviation is zero, this strategy pair
is an equilibrium if

(1 − δ)(K − 1)B ≤ δ
M∑

k=0

pk min{Δk, B}.

Hence, for any b such that g(b) ≤ 0, the corresponding strategy pair with the payoff target
B = δb/

{
(1 − δ)(K − 1)

}
is an equilibrium. Note that g(b) measures the gain from the

most profitable deviation.
Note that g is continuous and convex.9 Since g(0) = 0 and g(b) > 0 for any large

b, the set of all b’s with g(b) ≤ 0 has the form [0, b∗]. Note that b∗ depends on δ,
and we have g(b∗) = 0. Hence, the corresponding strategy pair with the payoff target
B∗ = δb∗/

{
(1 − δ)(K − 1)

}
is an equilibrium, and its payoff is b∗.

Proposition 1 For any δ, b∗ is the MCP of G(δ).

Proof. Fix an MCE of G(δ), and let b be its payoff. For each k, let Bk be the stage-game
payoff of the initial period when its state is k. Define b̂ =

∑M
k=0 pkBk. Since b is the MCP,

we have b ≤ b̂ (otherwise, the expected continuation equilibrium payoff is greater than b,
a contradiction).

From Assumption 3 and the definition of b, the equilibrium condition implies

(1 − δ)(K − 1)Bk ≤ δb ≤ δb̂ (4)

9It is piecewise linear, and its slope is nondecreasing.
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for any k. By the definition of Bk’s, we have Bk ≤ Δk for any k. Combining this with (4)
yields

Bk ≤ min
{

Δk,
δb̂

(1 − δ)(K − 1)

}
(5)

for any k. Taking expectations of (5), we obtain g(b̂) ≤ 0. By the definition of b̂ and b∗,
we have b ≤ b̂ ≤ b∗. Since we have seen that b∗ is an equilibrium payoff, we have b = b∗ as
desired. Q.E.D.

In order to examine the MCP more thoroughly, define δ and δ as follows.

δ =
K − 1

K
, δ ≡ (K − 1)ΔM

(K − 1)ΔM +
∑M

k=0 pkΔk

.

It is easy to see that δ < δ.
We have four cases to consider. First, if δ < δ, g(b) > 0 for any b > 0. Hence, the

MCP is zero. The discount factor is so small that any positive payoff cannot be sustained
as an equilibrium, and the repeated play of a symmetric stage equilibrium is an MCE.

Second, if δ = δ, g(Δ0) = 0 and g(b) > 0 for any b > Δ0. Hence, the MCP is Δ0. The
MCE attains a positive payoff, but it plays as if the current state was zero even under
other states. The players thus suffer from burden of payoff fluctuations.

Third, if δ ≥ δ, g(b) ≤ 0 if and only if b ≤ ∑M
k=0 pkΔk. Hence, the MCP is the

expected value of the payoffs from full cooperation, the best possible payoff of this game.
The discount factor is so large that the players can fully cooperate.

Finally, if δ ∈ (δ, δ), the MCP belongs to the interval (Δ0,
∑M

k=0 pkΔk). The players
partially cooperate, and due to the above observations, the MCP is continuous and strictly
increasing on the range [δ, δ]. Thus, more patience reduces the loss from fluctuated payoffs.

In all cases, the MCE has a payoff target B. Namely, in its cooperative phase, the
players play a symmetric action pair whose payoff is min{Δk, B} under state k. When the
MCE only attains partial cooperation, they must give up full cooperation under higher
states.10 This is an efficient way to provide incentives, because the incentive conditions
under higher states are duplicated.

If δ > δ, we have g(Δ0) < 0. Since g is convex, this implies that b > Δ0 such that
g(b) = 0 is unique. Hence, it suffices to solve g(b) = 0, as the following corollary shows.

Corollary 1 If δ > δ and g(b) = 0 for b > Δ0, then b is the MCP of G(δ).

4 Multimarket Contact

This section applies the results in the previous section to Bertrand price competition with
demand fluctuations, in order to examine effects of multimarket contact. We first describe
the environment and then set it up as a game satisfying all assumptions.

There are M ex ante identical markets, and in each market two identical firms compete
in price. Each market is subject to demand fluctuations, depending on which it is either

10If the discount factor is so small that no cooperation is possible, the target is zero. If it is so large that
full cooperation is possible, the target can be set so high that it never binds.
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in high demand or low demand. The demands are independent across the markets and
over time. The probability that a given market is in high demand is μ ∈ (0, 1). We assume
that each market is associated with the Bertrand price competition game we described in
Example 1, except that we now have only two states; ones corresponding to high and low
demands, respectively. Let πH (πL, respectively) be each firm’s profit under full collusion
(the value corresponding to Δk), when the demand is high (low). We assume πH > πL > 0.
Define π = μπH + (1 − μ)πL, which is the expected value of full collusion per market.

At the beginning of each period, the firms learn which of the M markets are in high
demand in that period. Given that, they decide prices in all markets. Formally, the
number of states is 2M , and the set of actions is X = [0, p]M . Since each market satisfies
all assumptions with K = 2, it is easy to see that this environment also satisfies all
assumptions with K = 2. Note that the maximum symmetric action pair profit for a given
state depends only on the number of high-demand markets. Thus, for l ∈ {0, 1, . . . , M},
let Δl be the maximum symmetric action pair profit when l markets are in high demand:

Δl = lπH + (M − l)πL > 0.

Let us denote the repeated game with this stage game by G(δ, M).
The results in the previous section directly apply to this model. Note that

δ =
1
2
, δ =

πH

πH + π
.

Let b∗M be the MCP of G(δ, M). Define β∗
M = b∗M/M as the per-market MCP of G(δ, M).

The following observations immediately follow from the analysis in the previous section.

(I) If δ < δ, b∗M = β∗
M = 0 for any M . Therefore any collusion is impossible, regardless

of the number of markets. In this case, multimarket contact does not help at all.

(II) If δ = δ, b∗M = MπL and β∗
M = πL for any M . That is, independent of the number

of markets, the MCP equals the value of full collusion when all markets are in low
demand. This is another case where multimarket contact does not help.

(III) If δ ≥ δ, b∗M = Mπ and β∗
M = π for any M . Namely, the firms can fully collude

regardless of the number of markets. In this case, multimarket contact does not
matter.

The remaining case is δ < δ < δ. Since the profit from full collusion given a state
depends only on the number of high-demand markets, the condition for the MCE (g(b∗M) =
0) can be rewritten as follows.

b∗M =
M∑

k=0

pk min
{

Δk,
δb∗M
1 − δ

}
, ∴ β∗

M =
M∑

k=0

pk min
{

Δk

M
,

δβ∗
M

1 − δ

}
, (6)

where pk is the probability that k markets are in high demand. In what follows, we
examine how the MCP and the per-market MCP vary with M .

Proposition 2 Let δ ∈ (δ, δ). For any M ≥ 1, we have β∗
M ≤ β∗

M+1, and the equality
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holds if and only if there exists k̂ ∈ {1, 2, . . . , M − 1} such that

δb∗M
1 − δ

= Δk̂. (7)

Proof. See Appendix A.

Proposition 2 reveals that for relatively patient firms which can only partially collude,
adding one more market never reduces the per-market MCP and increases it except when
the condition (7) holds. For a fixed M , we have seen that the MCP is increasing on the
range (δ, δ). Therefore, (7) holds only at M − 1 discount factors. In other words, adding
one more market facilitates collusion for almost all discount factors on the range.

If M = 1, the condition (7) is vacuous. Further, suppose (7) holds under some M and
k̂ ∈ {1, 2, . . . , M − 1}, and therefore we have β∗

M = β∗
M+1. Then it follows that

k̂πH + (M + 1 − k̂)πL <
δb∗M+1

1 − δ
< (k̂ + 1)πH + (M − k̂)πL.

From these observations we have the following corollary.

Corollary 2 Let δ ∈ (δ, δ). Then we have (i) β∗
1 < β∗

2 , and (ii) for any M ≥ 1 and any
M ′ ≥ M + 2, β∗

M < β∗
M ′.

Why do these results hold? Recall that the MCE has a profit target, and let B be
that of the MCE under M markets. In the proof, we show that under M + 1 markets, a
strategy pair whose profit target is (M +1)B/M has a per-market profit not smaller than
the per-market MCP under M markets. Since the per-market profit target remains the
same (and equals B/M), this strategy pair gives the firms the same per-market temptation
to deviate. Hence, this strategy pair is an equilibrium, and adding one more market is
shown to (weakly) improve the per-market MCP.

Suppose k out of the M + 1 markets are in high demand. If we ignore the (M + 1)-
th market, we can compare with the case of M markets. Conditional on this event, the
incremental per-market profit of having one more market is

min
{

kπH + (M + 1 − k)πL

M + 1
,

B

M

}
− k min

{Δk−1

M , B
M

}
+ (M + 1 − k) min

{
Δk
M , B

M

}
M + 1

.

This is because the (M + 1)-th market is in high demand with probability k/(M + 1),
conditional on that there are k high-demand markets.

If the new strategy pair prescribes full collusion given k high-demand markets, the
MCE under M markets also prescribes full collusion given k − 1 high-demand markets.
Hence, the incremental profit is zero if it also prescribes full collusion given k high-demand
markets. However, this is not always the case. The MCE under M markets may prescribe
partial collusion (to the profit target level) given k high-demand markets. The incremental
profit is positive in this case. Note that this happens at most one k; the smallest k at
which the MCE prescribes partial collusion.

Instead, if k prescribes partial collusion given k high-demand markets, the MCE under
M markets also prescribes partial collusion given k high-demand markets. Hence, the
incremental profit is zero if it also prescribes partial collusion given k − 1 high-demand
markets. However, this is not always the case. The MCE under M markets may prescribe

9



full collusion given k − 1 high-demand markets. The incremental profit is positive in this
case. Note that this happens at most one k; again, the smallest k at which the MCE
prescribes partial collusion.

To sum up, the incremental profit can be positive only at one k, and is zero at all other
k’s. A special case is where the condition (7) holds. In this special case, the incremental
profit is zero even at that k, so that adding one market does not improve the per-market
MCP. In all other cases, the per-market MCP increases.

The next result is about the MCP in the limit, showing that for relatively patient firms,
the difference between the expected profit under full collusion and the MCP converges to
zero if the number of markets goes to infinity. Namely, the collusion-deterrence effects of
demand fluctuations completely vanish in the limit.

Proposition 3 Let δ ∈ (δ, δ), and fix ε > 0 arbitrarily. Then there exists M such that
for any M ≥ M , b∗M > πM − ε. In other words, limM→∞(πM − b∗M ) = 0.

Proof. See Appendix B.

From the proof of Proposition 3, we see that the MCE when M is large enough sets
a profit target greater than M

{
μ̂πH + (1 − μ̂)πL

}
, where μ̂ > μ. That is, the per-market

target exceeds the average profit from full collusion. By the law of large numbers, the
probability that the fraction of high-demand markets is greater than μ̂ converges to zero,
if the number of markets goes to infinity. In fact, the convergence is so fast that it converges
to zero even if it is multiplied by M . This implies that the firms can fully collude except
upon an event with a negligible probability, and that the expected efficiency loss due to
demand fluctuations is also negligible. Hence, full collusion is approximately attained.

While Proposition 3 shows that πM − b∗M converges to zero as M → ∞, it is not
monotone. A good example is when (7) holds. Then we have β∗

M = β∗
M+1, and therefore

π(M + 1) − b∗M+1 − (πM − b∗M ) = π − b∗M+1

M + 1
> 0,

where the last inequality follows because full collusion is not sustainable for any δ ∈ (δ, δ).
We present some numerical analysis. Let us suppose πH = 15, πL = 10, and μ = 0.6,

which imply that π = 13 and δ = 15/28 	 0.5357. Table 1 exhibits the per-market MCP
under various numbers of markets and the minimum number of markets which makes b∗M
differ from the expected profit under full collusion (Mπ) by less than one, for various
discount factors. For instance, if δ = 0.52, the case where the firms are relatively patient,
having three markets allows them to obtain more than 38, while the expected profit under
full collusion is 13 × 3 = 39. If they become less patient, the MCP decreases given the
number of markets, and they need a much greater number of markets in order to sustain
outcomes very close to full collusion. The case of δ = 125/246 is interesting in the sense
that the condition (7) holds when M = 2. Note that β∗

2 = β∗
3 in this case.

We conclude by emphasizing importance of the assumption that the demands are
independent across all markets.11 Namely, all demand shocks are idiosyncratic to each
market. To the extent that common macro shocks are present, the Rotemberg-Saloner
effect (or collusion-deterrence due to fluctuated demands) would not be “averaged out.”

11We are thankful to an anonymous referee for suggesting the arguments in this paragraph.
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Table 1: Numerical Analysis for πH = 15, πL = 10, and μ = 0.6
δ = 0.52 δ = 0.51 δ = 125

246 δ = 0.505 δ = 0.501
β∗

2 12.459 12.154 12.1 11.188 10.212
β∗

3 12.742 12.287 12.1 11.802 10.615
β∗

5 12.922 12.636 12.586 12.223 11.360
min{M : Mπ − b∗M < 1} 3 26 49 201 11566

This observation casts some doubts about validity of our limit result when the number of
markets goes to infinity (Proposition 3). Imagine a process of adding new markets from
a pool of potential markets. As long as the number of markets is small, it may not be
difficult to choose them so that all demand shocks are independent. As more and more
markets are added, however. such independence may be hard to maintain. Consequently,
our model might be most relevant when there are not so many markets. In this case, our
result on the effect of adding one more market (Proposition 2) is most important.12

A Appendix: Proof of Proposition 2

Fix δ ∈ (δ, δ) and M ≥ 1. Let pl (l ∈ {0, 1, . . . , M}) be the probability that l out of M

markets are in high demand, and let ql (l ∈ {0, 1, . . . , M + 1}) be the probability that l

out of M + 1 markets are in high demand. Formally,

pl =
M !

l!(M − l)!
μl(1 − μ)M−l, ql =

(M + 1)!
l!(M + 1 − l)!

μl(1 − μ)M+1−l.

Note that from these, the following equations hold for any l ∈ {0, . . . , M};

pl−1μΔl−1 + pl(1 − μ)Δl

M
= ql

lπH + (M + 1 − l)πL

M + 1
, plμ + pl+1(1 − μ) = ql+1. (8)

Here, the convention is that p−1 = pM+1 = 0.
Since δ < δ < δ, we have πL < δβ∗

M/(1− δ) < πH . Thus there exists k̂ ∈ {0, 1, . . . , M}
such that

k̂πH + (M + 1 − k̂)πL

M + 1
<

δβ∗
M

1 − δ
≤ (k̂ + 1)πH + (M − k̂)πL

M + 1
. (9)

Recall that Δl = lπH + (M − l)πL. Thus, (9) implies

Δk̂−1

M
<

δβ∗
M

1 − δ
<

Δk̂+1

M
. (10)

12Further, the firms may want to divide existing markets into “submarkets,” in order to exploit the
effects of multimarket contact. Of course, the performance of this strategy crucially depends on the nature
of demand shocks across the submarkets. They may even want to design the length of a period, in an
effort to control the flow of demand shocks.
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Let us rearrange (6) by using (10):

β∗
M =

(
k̂−1∑
l=0

plΔl

M

)
+ pk̂ min

{
Δk̂

M
,

δβ∗
M

1 − δ

}
+

(
M∑

l=k̂+1

pl

)
δβ∗

M

1 − δ

≤
(

k̂−1∑
l=0

plΔl

M

)
+

pk̂(1 − μ)Δk̂

M
+

(
pk̂μ +

M∑
l=k̂+1

pl

)
δβ∗

M

1 − δ
. (11)

Substituting (8) into (11) and using (9), we obtain

β∗
M ≤

M+1∑
l=0

ql min
{

lπH + (M + 1 − l)πL

M + 1
,

δβ∗
M

1 − δ

}
. (12)

Let us consider the counterpart of (6) for the case of M + 1 markets:

β∗
M+1 =

M+1∑
l=0

ql min
{

lπH + (M + 1 − l)πL

M + 1
,
δβ∗

M+1

1 − δ

}
. (13)

If (7) does not hold, (11) holds with strict inequality and so does (12). Comparing this
with (13), we obtain β∗

M < β∗
M+1 as desired. If (7) holds, note that this occurs only if

1 ≤ k̂ ≤ M − 1 because of MπL < δb∗M/(1 − δ) < MπH . Now (12) holds with equality.
Comparing this with (13) and applying Corollary 1, we obtain β∗

M+1 = β∗
M as desired.

B Appendix: Proof of Proposition 3

In what follows, let pM
k be the probability that k out of M markets are in high demand.

Fix δ ∈ (δ, δ) and ε > 0. Since δ > δ, a rational number μ̂ ∈ (μ, 1) exists such that

δ

1 − δ
π =

δ

1 − δ

{
μπH + (1 − μ)πL

}
> μ̂πH + (1 − μ̂)πL.

It then follows that

δ

1 − δ
(πM − ε) > M

{
μ̂πH + (1 − μ̂)πL

}
for all large M . Therefore, for all large M we have

M∑
l=0

pM
l min

{
Δl,

δ(πM − ε)
1 − δ

}
≥

M∑
l=0

pM
l min

[
Δl, M

{
μ̂πH + (1 − μ̂)πL

}]

=
M∑
l=0

pM
l

[
Δl + min

{
0, (Mμ̂ − l)(πH − πL)

}]

= πM − (πH − πL)
M∑
l=0

pM
l max

{
0, l − Mμ̂

}
.
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The proof is complete if we show that

lim
M→∞

M∑
l=0

pM
l max

{
0, l − Mμ̂

}
= 0. (14)

This is because we then obtain

πM − ε <
M∑
l=0

pM
l min

{
Δl,

δ(πM − ε)
1 − δ

}

for all large M . Hence, the equilibrium condition at πM − ε (namely, b(πM − ε) ≤ 0)
holds with strict inequality, so that Proposition 1 implies that b∗M > πM − ε for all large
M .

To prove (14), note that

M∑
l=0

pM
l max

{
0, l − Mμ̂

}
=

M∑
l=�Mμ̂�

pM
l (l − Mμ̂) < (1 − μ̂)M

M∑
l=�Mμ̂�

pM
l ,

where 
k� is the smallest integer not less than k. Note also that

pM
l+1

pM
l

=
(M − l)μ

(l + 1)(1 − μ)
<

(1 − μ̂)μ
μ̂(1 − μ)

≡ κ

for any l ≥ 
Mμ̂�. Since κ < 1 from μ̂ > μ, we have

(1 − μ̂)M
M∑

l=�Mμ̂�
pM

l <
1 − μ̂

1 − κ
MpM

�Mμ̂�.

Therefore, it suffices to prove that MpM
�Mμ̂� goes to zero as M → ∞.

Since μ̂ is rational, two natural numbers y and Y exist such that μ̂ = y/Y . Let us
consider the function f(z) = zy(1 − z)Y −y. Note that f is positive only when z ∈ (0, 1),
and that the first-order condition on the range (0, 1) reduces to

y(1 − z) − (Y − y)z = 0.

Therefore, f is uniquely maximized at z = y/Y = μ̂. Hence there exists η > 0 such that

(
μ

μ̂

)y(1 − μ

1 − μ̂

)Y −y

< 1 − η. (15)

We also have

(M + Y )pM+Y
�(M+Y )μ̂�

MpM
�Mμ̂�

=
M + Y

M
·

[∏Y
k=1(M + k)

]
μy(1 − μ)Y −y[∏y

k=1

(
Mμ̂� + k
)][∏Y −y

k=1

(
M − 
Mμ̂� + k

)] (16)

for each M , because
⌈
(M + Y )μ̂

⌉
= 
Mμ̂� + y.

Since Mμ̂ ≤ 
Mμ̂� < Mμ̂ + 1 for any M , 
Mμ̂�/M goes to μ̂ as M → ∞. Applying
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this to (16) and using (15), we have

lim
M→∞

(M + Y )pM+Y
�(M+Y )μ̂�

MpM
�Mμ̂�

=
(

μ

μ̂

)y(1 − μ

1 − μ̂

)Y −y

< 1 − η.

Therefore, for any z = 1, 2, . . . , Y , (KY + z)pKY +z
�(KY +z)μ̂� goes to zero as K → ∞. This

proves that MpM
�Mμ̂� goes to zero as M → ∞.
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