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ON RANDOM STABLE PARTITIONS

BORIS PITTEL

Abstract. The stable roommates problem does not necessarily have

a solution, i.e. a stable matching. We had found that, for the uni-

formly random instance, the expected number of solutions converges

to e1/2 as n, the number of members, grows, and with Rob Irving we

proved that the limiting probability of solvability is e1/2/2, at most.

Stephan Mertens’s extensive numerics compelled him to conjecture that

this probability is of order n−1/4. Jimmy Tan introduced a notion of a

stable cyclic partition, and proved existence of such a partition for every

system of members’ preferences, discovering that presence of odd cycles

in a stable partition is equivalent to absence of a stable matching. In

this paper we show that the expected number of stable partitions with

odd cycles grows as n1/4. However the standard deviation of that num-

ber is of order n3/8
≫ n1/4, too large to conclude that the odd cycles

exist with high probability (whp). Still, as a byproduct, we show that

whp the fraction of members with more than one stable “predecessor”

is of order n−1/4. Furthermore, whp the average rank of a predeces-

sor in every stable partition is of order n1/2. The likely size of the

largest stable matching is n/2−O(n1/4+o(1)), and the likely number of

pairs of unmatched members blocking the optimal complete matching

is O(n3/4+o(1)).

1. Introduction and main results

A roommates problem instance is specified by an even integer n, num-

ber of members, and for each i (1 ≤ i ≤ n) a permutation σi of the set

[n] = {1, 2, . . . , n} in which i itself occupies position n, (σi(n) = i). The

permutation σi forms the preference list of person i: σi(k) = j if person

j occupies position k in the preference list of person i, and each person

i is a the end of their own preference list. Equivalently, the instance can

be specified by the ranking list Ri of each person i, defined as the inverse

permutation of σi: Ri(j) = k if the person j is the k-th best for person i.
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2 BORIS PITTEL

For a given roommates instance with n members, a stable permutation

(cyclic partition) is a permutation Π of [n] such that:

(1.1)
(1)∀ i ∈ [n] : Ri

(
Π(i)

)
≤ Ri

(
Π−1(i)

)
;

(2)∀ 1 ≤ i 6= j ≤ n : Ri(j) < Ri
(
Π−1(i)

)
=⇒ Rj(i) > Rj

(
Π−1(j)

)
.

Viewing Π in terms of its cyclic decomposition, we will refer to Π(i) and

Π−1(i) as the successor of i and the predecessor of i in the permutation Π.

Then condition (1) states no person prefers his predecessor to his successor,

and condition (2) states that no two mutually-unaligned members prefer

each other to their predecessors. Note that equality in condition (1) is

possible iff Π2(i) = i, i.e. either i is a fixed point of Π, or (i,Π(i)) is

a transposition in Π—in this case we say that (i,Π(i)) forms a pair in

the partition Π. Thus inequality (1) is not vacuous iff i is in a cycle of

length 3 or more, in which case it is strict. Also if i is a fixed point, then

Ri(Π
−1(i)) = Ri(i) = n; so condition (2) implies that there are no other

fixed points, and every j 6= i prefers his own predecessor to i. Intuitively,

each member i proposes to Π(i) and holds a proposal from Π−1(i).

Clearly, if a stable partition Π is such that it has cycles of length 2 only,

then Π is a stable matching. However, while for every even n ≥ 4 there are

instances without a stable matching, Tan [15], who introduced the notion of

a cyclic partition Π, proved that, for every instance of preferences, (1) there

is at least one stable permutation; (2) all stable permutations have the

same odd cycles (“parties”); (3) replacing each even cycle (i1, i2, . . . , i2m)

of a stable permutation by the transpositions (i1, i2), . . . , (i2m−1, i2m), or

by the transpositions (i2, i3), . . . , (i2m, i1) we get another stable, reduced ,

permutation; (4) thus a stable matching exists iff there are no odd cycles.

Suppose that the random problem instance, call it In, is chosen uniformly

at random among all [(n−1)!]n instances. We showed [14] that the expected

number of stable matchings is e1/2 in the limit, implying that the number of

stable matchings, if any exist, is bounded in probability. With Robert Irving

[7] we proved that the probability that a stable matching exists is at most

e1/2/2 < 1 in the limit. In a pleasing contrast, the stable partitions do not

have a fixed point (odd party of size 1) with surprisingly high probability

≥ 1−O
(
e−

√
n
)
. So while a stable matching may not exist, stable partitions

(that exist always) with high probability have no “pariahs”: every member

holds a proposal from another member, while his own proposal is accepted

by possibly a different member.

Our task is to analyze asymptotic behavior of a series of leading parame-

ters of the family of stable (reduced) partitions for In, and we focus on those

that have no fixed point. Among those parameters are Sn and On, the total

number of stable (reduced) partitions and the total number of “parties”, i.
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e. odd (common to all those partitions) cycles. We will prove, for instance,

that

E
[
Sn
]
= (1 + o(1))

Γ(1/4)√
πe 21/4

n1/4,(1.2)

E
[
On

]
≤ (1 + o(1))

Γ(1/4)

4
√
πe 21/4

n1/4 log n.(1.3)

The fact that E
[
Sn
]
→ ∞, but at a moderate rate, can be charitably viewed

as supporting the claim that, in probability, Sn → ∞; if this is the case

then with high probability In has no stable matching. Numerical experi-

ments conducted by Stephan Mertens [11] made him conjecture that solv-

ability probability goes to zero, as fast as n−1/4. For a rigorous transition

from E
[
Sn
]
→ ∞ to Sn → ∞, one would normally want to show that

Var(Sn) ≪ E2
[
Sn
]
. It turns out, however, that Var(Sn) is of order n3/4,

thus exceeding E2
[
Sn
]
by the factor n1/8, which invalidates this naive two-

moment approach. Can the approach be gainfully modified by narrowing

the pool of stable partitions?

A key tool for estimating Var(Sn) is an asymptotic formula for the prob-

ability that each of two generic (reduced) partitions Π1 and Π2 (with the

same odd parties, of course) are stable. The symmetric difference of the

set of matched pairs in Π1 and the set of matched pairs in Π2 is the edge

set of the disjoint even cycles of length ≥ 4, whose edges are the matched

pairs in Π1 interlacing the matched pairs in Π2. Each such cycle can be

viewed as an even rotation in both partitions, so that the pair (Π1,Π2)

gives rise to 2µ of stable partitions, with µ being the total number of those

even cycles. Define a random graph Gn = (Vn, En), where Vn is the set of

all stable partitions Π, and En is the set of pairs (Π1,Π2), each giving rise

to a single even cycle. By (5.23), E[Vn] = E[Sn] is of order n1/4. It turns

out that E[En] is of order n1/4 as well. What, if anything, does this fact tell

about the likely range of Sn?
There are two positive results that stem from (5.23)–(5.24). Tan [15], [16]

defined a maximum stable matching for an instance I as a maximum-size

matching M = M(I) which is internally stable, i.e. not blocked by any

two members from the agent (vertex) set of M . He proved that |M(I)| =
(n−O(I))/2. It follows from (5.24) that

P

(

|M(In)| ≥
n− ω(n)n1/4 log n

2

)

≥ 1−O(ω(n)−1) → 1,

for ω(n) → ∞, however slowly. In short, the number of members not in the

maximum stable matching is Op(n
1/4 log n).
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Abraham, Biró and Manlove [1] introduced the alternative notion of a

“maximally stable” matching, i.e. a matching M on [n] that is blocked by

the smallest number of pairs, call it B(I), of agents unmatched in M . They

obtained a two-sided bound for B(I) in terms of preference lists lengths

and the odd cycles. A cruder version of the ABM upper bound states that

B(I) ≤ d(I)O(I), where d(I) is the length of the longest preference list.

Extending our approach, we will show that for the random instance In,

with probability ≥ 1 − exp(−c(log n)2(1+δ)), every member’s predecessor is

among their best n1/2(log n)1+δ choices. So we can apply the last bound with

d(In) = n1/2(log n)1+δ. Therefore the bound (5.24) together with the ABM

bound imply that with high probability there exists a complete matching

which is blocked by n3/4+o(1) pairs, a strikingly small number relative to the

total number (Θ(n2)) of potential blocking pairs.

We will also show that with high probability the sum of the ranks of

predecessors in every stable partition is asymptotic to n3/2; consequently

the worst predecessor’s rank in every stable partition is n1/2(1 − o(1)) at

least, nearly matching n1/2(log n)1+δ, the likely upper bound.

Here is an application. Suppose we shrink every member’s preference list

to their own best d choices. If the constrained instance has no fixed point

then neither does the full-lists instance. Consider an instance In,d of the

stable partition problem chosen uniformly at random among all instances

with some d acceptable choices for every member. Randomly, and indepen-

dently, ordering the remaining n − 1 − d members for every member, we

will get the uniformly random (full-lists) instance In. It follows then that if

d ≤ (1− ε)n1/2 (d ≥ n1/2(log n)1+δ resp.) then with high probability stable

partitions for In,d have (do not have resp.) a fixed point.

Finally, we use the analysis of Var(Sn) to show that the expected fraction

of members with multiple stable predecessors is of order n−1/4.

2. Integral formulas for stability probabilities

At the core of our proofs are two integral formulas, one for the probability

that a generic cyclic partition is stable, another for the probability that two

generic cyclic partitions are stable.

Lemma 2.1. Let Π be a permutation of [n] with even cycles of length 2

only, and possibly a single fixed point h∗, i. e. Π(h∗) = h∗. Let Odd (Π)

be the set of all elements from the odd cycles of Π with an exception of the

fixed point if it is present. Let D(Π) be the set of unordered pairs (i 6= j)
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such that i = Π(j) or, not exclusively, j = Π(i). Then

(2.1)

P(Π) := P
(
Π is stable

)
=

∫

· · ·
∫

x∈[0,1]n−1

F (x) dx,

F (x) :=
∏

h∈Odd (Π)

xh ·
∏

(i,j)/∈D(Π)

(1− xixj) ·
∏

k 6=h∗
(1− xk);

if there is no fixed point h∗, then the third product is replaced by 1, and

[0, 1]n−1 by [0, 1]n.

If Π is a matching, we get ([14])

(2.2) P
(
Π is stable

)
=

∫

· · ·
∫

x∈[0,1]n

∏

(i,j)/∈D(Π)

(1− xixj) dx.

Proof. To generate the random instance In, introduce an array of the inde-

pendent random variables Xi,j (1 ≤ i 6= j ≤ n), each distributed uniformly

on [0, 1]. Assume that each member i ∈ [n] ranks the members j 6= i in

increasing order of the variables Xi,j . Such an ordering is uniform for every

i, and the orderings by different members are independent. Then

(2.3) P
(
Π is stable |Xi,Π−1(i) = xi, i ∈ [n]

)

=
∏

h∈Odd(Π)

xh ·
∏

(i,j)/∈D(Π)

(1− xixj)
∏

k 6=h∗
(1− xk)

Indeed, by (1.1), Π is stable iff

(1) for every h ∈ Odd(Π) : Xh,Π(h) < Xh,Π−1(h),

(2) for every (i, j) /∈ D(Π), i, j 6= h∗ : Xi,j < Xi,Π−1(i) ⇒ Xj,i > Xj,Π−1(j),

(3) for every i 6= h : Xi,Π−1(i) < Xi,h∗.

And, conditioned on the event
{
Xi,Π−1(i) = xi, i ∈ [n]}, the events above

are independent, with (conditional) probabilities xh, 1 − xixj and 1 − xk
respectively. Using Fubini’s theorem, we have (2.1). �

Like analogous formulas in [13], [14] and [7], this is a non-bipartite coun-

terpart of Knuth’s formula for stable bipartite matchings, [8]. His deriva-

tion was based on the inclusion-exclusion method, coupled with ingenious

observation that the resulting sum equals the multidimensional integral of

a product-type integrand resembling our F (x). Of course, we could get a

sum-type formula for P
(
Π is stable

)
by expanding the product in (2.3) and

integrating the resulting sum term-wise. Moving in the opposite direction,

i.e. starting with an inclusion-exclusion formula for P
(
Π is stable

)
, find-

ing an integral-type representation of the generic summand, and discerning

that the sum of the attendant integrands happens to be an expansion of the
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“out-of-the blue” product in (2.3), would have been very problematic. The

identity (2.1) is indispensable for asymptotic estimates, thanks to a simple,

but powerful, bound

(2.4)
∏

{i,j}/∈D(Π)

(1− xixj) ≤ exp
(

−s
2

2
+ 4.5

)

, s :=
∑

i∈[n]
xi.

For instance, this bound and
∏

k(1−xk) ≤ e−s will almost immediately yield

that the stable partitions have no fixed point with probability≥ 1−e−Θ(n1/2).

We will prove a surprisingly simple, yet qualitatively sharp estimate: uni-

formly for a fixed-point free partitions Π,

(2.5) P(Π is stable) = O

(
1

(n+m− 1)!!

)

, m := |Odd(Π)|.

We note that Alcalde [2] defined an exchange stable matching as a match-

ing M that, to quote from [10], “admits no exchange-blocking pair , which

is a pair of members each of whom prefers the other’s partner in M to

their own”. Cechlárová and Manlove [4] proved that, in stark contrast with

the classic stable roommates model, the problem of determining whether

a given instance admits an exchange-stable matching is NP-complete. The

interested reader may wish to check that the formula (2.2) continues to

hold for P(Π is exchange-stable). Consequently the expected number of

exchange-stable matchings and the expected number of the classic stable

matchings are exactly the same, implying that the former is also asymptotic

to e1/2. Let us call a (fixed-point free) partition Π exchange stable if no

two members prefer each other predecessors to their own predecessors un-

der Π. What about the partitions that are “doubly-stable”, i.e. stable and

exchange stable? It turns out that

P(Π) := P
(
Π is doubly stable

)
=

∫

· · ·
∫

x∈[0,1]n
F2(x) dx,

F2(x) :=
∏

h∈Odd (Π)

xh ·
∏

(i,j)/∈D(Π)

(1− xixj)
2.

The counterpart of (2.5) is P(Π) = O
(
2−

n+m
2 /(n+m−1)!!

)
, implying that

the expected number of the doubly stable partitions is of order 2−n/2, way
down from n1/4 for the stable partitions.

Continuing, introduce R(Π), the sum of the ranks of all predecessors in

the preference lists of their successors in a partition Π. Let Pk(Π) :=

P(Π is stable and R(Π) = k).
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Lemma 2.2. Suppose Π is fixed-point free. Then, letting m := |Odd (Π)|,
and x̄ = 1− x,

(2.6)

Pk(Π) =

∫

· · ·
∫

x∈[0,1]n
[zk−n−m]F (x, z) dx,

F (x, z) :=
∏

h∈Odd (Π)

xh ·
∏

(i,j)/∈D(Π)

(
x̄ix̄j + zxix̄j + zx̄ixj

)
.

Proof. First of all, using χ(A) to denote the indicator of an even A, we have

Pk(Π) = [zk]E
[

zR(Π)χ(Π is stable)
]

.

Here

χ(Π is stable) =
∏

(i,j)/∈D(Π)

χ
(
Xi,j > Xi,Π−1(i) or Xj,i > Xj,Π−1(j)

)

×
∏

h∈Odd (Π)

χ
(
Xh,Π(h) < Xh,Π−1(h)

)
.

Furthermore

R(Π) =
∑

(i,j)/∈D(Π)

[
χ(Xi,j < Xi,Π−1(i)) + χ(Xj,i < Xj,Π−1(j))

]

+
∑

i∈[n]
1 +

∑

h∈Odd (Π)

χ(Xh,Π(h) < Xh,Π−1(h)),

where the second sum accounts for the pairs (i,Π−1(i)), i ∈ [n]. So

E
[

zR(Π)χ(Π is stable)
∣
∣
∣ Xi,Π−1(i) = xi, i ∈ [n]

]

= zn+|Odd (Π)| ∏

h∈Odd (Π)

xh

×
∏

(i,j)/∈D(Π)

E
[

zχ(Xi,j<xi)+χ(Xj,i<xj)χ(Xi,j > xi or Xj,i > xj)
]

= zn+m
∏

h∈Odd (Π)

xh ·
∏

(i,j)/∈D(Π)

(
x̄ix̄j + zxix̄j + zx̄ixj

)
.

So

E
[

zR(Π)χ(Π is stable)
]

= zn+m
∫

· · ·
∫

x∈[0,1]n
F (x, z) dx,

which proves (2.6). �

Finally, suppose we have a pair of distinct cyclic partitions, Π1 and

Π2. Let P(Π1,Π2) denote the probability that both Π1 and Π2 are sta-

ble. We assume the two partitions have the same odd cycles, since oth-

erwise the probability is zero. Suppose also there is no fixed point. Let
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Odd1,2 stand for the vertex set of the family of odd cycles, common to

both partitions; so Π1(h) = Π2(h) for all h ∈ Odd1,2. The cardinal-

ity |Odd1,2| is even, and Π1 and Π2 induce a pair of perfect matchings

(M1,M2) on Even1,2 := [n] \ Odd1,2. Together, M1 and M2 determine

a graph G(M1,M2) =
(

Even1,2, E
)

, with the edge set E formed by the

pairs (i, j) ∈ M1 ∪ M2. Each component of G(M1,M2) is either an edge

e ∈M1 ∩M2, or a circuit of even length at least 4, in which the edges from

M1 and M2 alternate. The edge set for all these (alternating) circuits is the

symmetric difference M1∆M2.

Lemma 2.3. Let P(Π1,Π2) denote the probability that both Π1 and Π2

are stable. For r = 1, 2, let Dr be the set of unordered pairs (i 6= j) such

i = Πr(j) or, not exclusively, j = Πr(i). Then

P(Π1,Π2) =

∫

· · ·
∫

x,y∈[0,1]n
F (x,y) dxdy,

F (x,y) =
∏

h∈Odd1,2

xh ·
∏

(i,j)∈Dc
1∪Dc

2

[1− xixj − yiyj + (xi ∧ yi)(xj ∧ yj)];

here

dx =
∏

i∈[n]
dxi, dy =

∏

i:Π1(i)6=Π2(i)

dyi,

and for every circuit {i1, . . . , iℓ} of G(M1,M2):

either xi1 > yi1 , xi2 < yi2 , . . . , xiℓ < yiℓ,

or xi1 < yi1 , xi2 > yi2 , . . . , xiℓ > yiℓ .

We omit the proof since it combines the elements of the proof for P(Π is

stable) and of the formula for P(Π1,Π2) in the case when Π1 and Π2 are

matchings, given in [14]. A counterpart of the bound (2.4) is

(2.7)

∏

(i,j)∈Dc
1∪Dc

2

[1− xixj − yiyj + (xi ∧ yi)(xj ∧ yj)]

≤ e2
8
exp
(

−s
2
1

2
− s22

2
+
s21,2
2

)

;

here s1 =
∑

i xi, s2 =
∑

i yi, s1,2 =
∑

i(xi ∧ yi) and i runs over [n]. Never

mind enormity of e2
8
; like (2.4), the bound (2.7) is both simple and in-

strumental in identifying a relatively small, eminently tractable, part of

the integration domain which is “in charge” of the asymptotic behavior of

P(Π1,Π2).

Note. The reader interested in our prior work on stable roommates

problem ([13], [14] and [7]) will not find the inequalities (2.4) and (2.7) there.

Working on this project, we detected a technical, estimational, glitch (see
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the next Section for details) in [13], equally consequential for analysis in [14]

and [7]. Luckily the new bounds (2.4)-(2.7) allow to repair this error and,

as an unexpected bonus, to simplify the arguments as well. The analysis in

this paper can be viewed, in part, as a close template for the correction of

that embarrassing oversight. We emphasize that, fortunately, this correction

leaves the ultimate asymptotic results in those references intact.

Proof. As in the proof of Lemma 2.1, we use the array {Xi,j : 1 ≤ i 6= j ≤ n}.
By the definition of stability, we have

{Π1, Π2 are both stable} =
⋂

h∈Odd(Π1,2)

Ah
⋂

(i,j)∈Dc
1∪Dc

2

(
B(i,j)

)c
.

Here Ah =
{
Xh,Π1,2(h) < Xh,Π−1

1,2(h)

}
. Furthermore: (1) if (i, j) ∈ Dc

1 ∩Dc
2,

then

B(i,j) =
{

Xi,j < Xi,Π−1
1 (i); Xj,i < Xj,Π−1

1 (j)}

∪ {Xi,j < Xi,Π−1
2 (i); Xj,i < Xj,Π−1

2 (j)

}

;

(2) if (i, j) ∈ Dc
1 ∩D2, then necessarily (i, j) ∈ M c

1 ∩M2, and, by stability

of Π1,

B(i,j) =
{

Xi,Π−1
2 (i) < Xi,Π−1

1 (i); Xj,Π−1
2 (j) < Xj,Π−1

1 (j)

}

;

(3) if (i, j) ∈ D1 ∩Dc
2, then necessarily (i, j) ∈ M1 ∩M c

2 and, by stability

of Π2,

B(i,j) =
{

Xi,Π−1
1 (i) < Xi,Π−1

2 (i); Xj,Π−1
1 (j) < Xj,Π−1

2 (j)

}

.

Conditioned on the values

Xi,Π−1
1 (i) = xi, (i ∈ [n]), Xi,Π−1

2 (i) = yi, (i ∈ [n] : Π1(i) 6= Π2(i)),

the events Ah, B(i,j) are all independent. And, denoting the characteristic

function of a set U ⊂ [0, 1]2n by χ(U), we have P(Ah|·) = xh,

P
(
(B(i,j))

c|·
)
=







1− xixj − yiyj + (xi ∧ yi)(xj ∧ yj), Case (1),

χ(yi ≥ xi or yj ≥ xj), Case (2),

χ(xi ≥ yi or xj ≥ yj), Case (3).

Therefore

P
(
Π1, Π2 are both stable|·

)

∏

h∈Odd1,2

xh ·
∏

(i,j)∈Dc
1∪Dc

2

[
1− xixj − yiyj + (xi ∧ yi)(xj ∧ yj)

]
,

provided that ∀ (i, j) ∈ M c
1 ∩M2, we have yi ≥ xi or yj ≥ xj and ∀ (i, j) ∈

M1 ∩ M c
2 , we have xi ≥ yi or xj ≥ yj . (The conditional probability is
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zero otherwise.) Since the edges from M1∆M2 form the disjoint alternat-

ing circuits of length ≥ 4, the condition means that for every such circuit

{i1, i2, . . . , iℓ, } [with (i1, i2) ∈ M1, (i2, i3) ∈ M2, . . . , (iℓ, i1) ∈ M2, say], we

have

yi1 ≤ xi1 or yi2 ≤ xi2 ,

yi2 ≥ xi2 or yi3 ≥ xi3 ,

:

yiℓ−1
≤ xiℓ−1

or yiℓ ≤ xiℓ ,

yiℓ ≥ xiℓ or yi1 ≥ xi1 .

We may, of course, assume that all these inequalities are strict. Thus there

are only two options on the circuit: either xi1 > yi1 , xi2 < yi2 , . . . , xiℓ < yiℓ ,

or xi1 < yi1 , xi2 > yi2 , . . . , xiℓ > yiℓ . (In both options, the inequalities

alternate.) Application of Fubini’s theorem completes the proof. �

3. Estimation tools

To estimate the integrals in Lemma 2.1 and Lemma 2.3 for n → ∞, we

will need the following claim, see [12], [14]:

Lemma 3.1. Let X1, . . . ,Xν be independent [0, 1]-Uniforms. Let S =
∑

i∈[ν]Xi and V = {Vi = Xi/S; i ∈ [ν]}, so that
∑

i∈[ν] Vi = 1. Let

L = {Li; i ∈ [ν]} be the set of lengths of the ν consecutive subintervals

of [0, 1] obtained by selecting, independently and uniformly at random, ν− 1

points in [0, 1]. Then (with χ(A) standing for the indicator of an event A)

the joint density fS,V(s,v), (v = (v1, . . . , vν−1)), of (S, V ) is given by

(3.1)

fS,V(s,v) = sν−1χ
(
max
i∈[ν]

vi ≤ s−1
)
χ(v1 + · · ·+ vν−1 ≤ 1)

≤ sν−1

(ν − 1)!
fL(v), vν := 1−

ν−1∑

i=1

vi;

here fL(v) = (ν− 1)!χ(v1 + · · ·+ vν−1 ≤ 1) is the density of (L1, . . . , Lν−1).
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We will also use the classic identities, Andrews, Askey and Roy [3], Section

1.8:

(3.2)

ν
︷ ︸︸ ︷∫

· · ·
∫

x≥0

x1+···+xν≤1

∏

i∈[ν]
xαi
i dx =

∏

i∈[ν] αi!

(ν + α)!
, α :=

∑

i∈[ν]
αi,

ν−1
︷ ︸︸ ︷∫

· · ·
∫

x≥0

x1+···+xν=1

∏

i∈[ν]
xαi
i dx1 · · · dxν−1 =

∏

i∈[ν] αi!

(ν − 1 + α)!
.

The identity/bound (3.1) is useful since the random vector L had been well

studied. It is known, for instance, that

(3.3) L
D≡
{

wi
∑

j∈[ν]wj

}

i∈[ν]
,

where wj are independent, exponentially distributed, with the same param-

eter, 1 say. Here is this property at work.

Lemma 3.2. (1) Let s ≥ 2. If εν → 0, εν ≫ ν
− 1
s+1 . Then

(3.4) P

(
∣
∣
∣
νs−1

s!

∑

j∈[ν]
Lsj − 1

∣
∣
∣ ≥ εν

)

= O
(

exp
(
−c ενν

1
s+1
))

.

(2) For ν even,

(3.5) P

(
∣
∣
∣2ν

∑

j∈[ν/2]
LjLj+ν/2 − 1

∣
∣
∣ ≥ ε2

)

= O
(

exp
(
−c ενν

1
s+1
))

.

Proof. Observe that E[W ] = 1, E[W s] = s!. Choose

a =
(

1 +
εν
3

)

s!, b = 1− εν
3s
,

so that a/bs < (1 + ε)s!, for ν sufficiently large. Then, denoting W(ℓ) =
∑

jW
ℓ
j ,

P
(

νs−1
∑

j∈[ν]
Lsj ≥ (1 + εν)s!

)

= P

(

W(s)

(
W (1)

)s ≥ (1 + εν)s!

ν

)

≤ P
(

W (s) ≥ aν or W(1) < bν)
)

≤ P
(

W(s) ≥ aν
)

+ P
(

W (1) < bν
)

.

Since E
[
e−zW

]
<∞ for every z ≥ 0, the standard application of Chernoff’s

method yields

(3.6) P
(
W (1) < bν

)
≤ exp(−νc(b)), c(b) = b− 1− log b = Θ

(
ε2ν
)
.
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Bounding P
(

W(s) ≥ aν
)

is more problematic since E
[
ezW

2]
= ∞ for z > 0.

Truncation to the rescue! Introduce V = min{W,nα}, (α < 1); then

(3.7) P(Wj 6≡ Vj , j ∈ [ν]) ≤ ν P(W ≥ να) = νe−ν
α
= e−Θ(να).

Further

E
[
en

−sαV s]
=

∫ nα

0
e(n

−αw)s e−w dw + e1−ν
α

≤ 1 + ν−sα
∫ ∞

0
wse−w dw +O

(
ν−2sα

)

= 1 + ν−sαs! +O
(
n−2sα

)
.

So

P

(
∑

j∈[ν]
V s
j ≥ aν

)

≤
(
1 + ν−sαs! +O

(
ν−2sα

))ν

exp
(
ν(an−sα)

)

= exp
(

−ν1−sα(a− s!) +O
(
ν1−2sα

))

.

Combining this bound with (3.7), we select the best α = 1/(s + 1) and

obtain

(3.8) P
(
W (s) ≥ aν

)
≤ exp

(
−ĉ ενν

1
s+1
)
, (ĉ > 0).

This bound combined with (3.6) prove that

P
(

νs−1
∑

j∈[ν]
Lsj ≥ (1 + εν)s!

)

= O
(

exp
(
−c ενν

1
s+1
))

.

Since E
[
e−zW

s]
< ∞ for all z > 0, there is no need for truncation, and we

get

P
(

νs−1
∑

j∈[ν]
Lsj ≤ (1− εν)s!

)

≤ e−Θ
(
νε2ν

)

,

So (3.4) follows. The proof of (3.5) is similar, and we omit it. �

Note. In [13] we claimed that the probabilities in Lemma 3.2, for ε

fixed, could be shown to be exponentially small, and used this claim also

in [14] and [7], hoping to apply it again in this study. We have realized

though that for the right tail of the sums’ distributions we could get only

a sub-exponential bound, see (3.8). Fortunately, with the new inequalities

(2.4)-(2.7) put to use, the sub-exponential bounds (3.4) and (3.5) are all we

need. The interested reader may see for themselves that the resulting proof

provides a clear recipe for local changes in [13], [14] and [7], which make the

thorny issue of exponential bounds go away completely.
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In addition to the bounds (3.4), we will need

(3.9) P

(

max
j∈[ν]

L
(ν)
j ≥ 1.01 log2 ν

ν

)

≤ e− log2 ν ,

which directly follows from

P

(

max
j∈[ν]

L
(ν)
j ≥ x

)

≤ ν(1− x)ν−1.

4. Estimates of E[Sn] and E[On], ramifications

We need to identify a part of the cube [0, 1]n that provides the domi-

nant contribution to the integral in (2.1). This will allow us to estimate,

sharply, the expected total length of the odd cycles in the random instance

In. Many of the intermediate estimates can be traced back to [13], [14]

and [7]. We begin with the pair of two new, instrumental, bounds for

the products in the integrands expressing P(Π) := P(Π is stable) and

P(Π1,Π2) := P(Π1 and Π2 are both stable).

In the statement below and elsewhere we will write An ≤b Bn as a short-

hand for “An = O(Bn), uniformly over parameters that determine An, Bn”,

when the expression for Bn is uncomfortably bulky for an argument of the

big O notation. We will also write An . Bn if lim supAn/Bn ≤ 1.

Lemma 4.1.
∏

{i,j}/∈D(Π)

(1 − xixj) ≤b exp
(

−s
2

2

)

, s :=
∑

i∈[n]
xi,

∏

(i,j)∈Dc
1∪Dc

2

[1− xixj − yiyj + (xi ∧ yi)(xj ∧ yj)]

≤b exp
(

−s
2
1

2
− s22

2
+
s21,2
2

)

;

here s1 =
∑

i xi, s2 =
∑

i yi, s1,2 =
∑

i(xi ∧ yi) and i runs through [n].

Proof. (1) Using 1− z ≤ e−z−z
2/2, we have

(4.1)
∏

(i,j)/∈D(Π)

(1− xixj) ≤ exp

(

−
∑

(i,j)/∈D(Π)

(

xixj +
x2i x

2
j

2

)
)

.

Here, using 2ab ≤ a2 + b2,

∑

(i,j)/∈D(Π)

xixj =
s2

2
− 1

2

∑

i∈[n]
x2i −

∑

i∈[n1/2]

xixi+n1/2 −
∑

h∈Odd(Π)

xhxΠ(h)(4.2)

≥ s2

2
− 3

2

∑

i∈[n]
x2i .
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Analogously, and using maxi xi ≤ 1,

∑

(i,j)/∈D(Π)

x2i x
2
j ≥

1

2

(
∑

i∈[n]
x2i

)2

− 3

2

∑

i∈[n]
x4i(4.3)

≥ 1

2

(
∑

i∈[n]
x2i

)2

− 3

2

∑

i∈[n]
x2i .(4.4)

Therefore

∑

(i,j)/∈D(Π)

(

xixj +
x2i x

2
j

2

)

≥ s2

2
+

1

2




∑

i∈[n]
x2i





2

− 3
∑

i∈[n]
x2i(4.5)

≥ s2

2
− 4.5,(4.6)

so that

∏

(i,j)/∈D(Π)

(1− xixj) ≤ exp

(

−s
2

2
+ 4.5

)

.

(2) Let Mi be the perfect matching on Even1,2 = [n] \ Odd1,2, induced by

Πi. Then M1 ∩M2 is the set of matched pairs common to Π1 and Π2, and

M1∆M2 is the edge set of the even circuits, of length 4 at least, formed (in

alternating fashion) by the matched pairs in M1 and M2. So D1 ∪D2 is the

disjoint union of M1 ∩M2, M1∆M2 the set of pairs (i, uΠ1,2).

So, given ui, i ∈ [n],

(4.7)

∑

(i 6=j)∈Dc
1∩Dc

2

uiuj =
∑

(i 6=j)
uiuj −

∑

(i 6=j)∈D1∪D2

uiuj

=
∑

(i 6=j)
uiuj −

∑

(i,j)∈M1∩M2

uiuj −
∑

(i,j)∈M1∆M2

uiuj −
∑

i∈Odd1,2

uiuΠ1,2(i)

=
1

2

(∑

i∈[n]
ui

)2
− 1

2

∑

i∈[n]
u2i −

∑

(i,j)∈M1∩M2

uiuj −
∑

(i,j)∈E1,2

uiuj ;

here E1,2 is the edge set of the odd cycles and the even circuits, formed by

Π1 and Π2. This exact formula certainly implies that

1

2

(∑

i∈[n]
ui

)2
− 3

∑

i∈[n]
u2i ≤

∑

(i 6=j)∈Dc
1∩Dc

2

uiuj ≤ 1

2

(∑

i∈[n]
ui

)2
.
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Therefore we bound
∑

(i 6=j)∈Dc
1∩Dc

2

[
xixj + yiyj − (xi ∧ yi)(xj ∧ yj)

]

≥
∑

(i 6=j)

[
xixj + yiyj − (xi ∧ yi)(xj ∧ yj)

]
− 3

∑

i∈[n]
(x2i + y2i )

≥ s21
2

+
s22
2

− s21.2
2

− 3
∑

i∈[n]
(x2i + y2i ).

Furthermore

[
xixj + yiyj − (xi ∧ yi)(xj ∧ yj)

]2 ≥
[
xixj + yiyj − (xixj ∧ yiyj)

]2

≥
(
xixj + yiyj

2

)2

≥ 1

8
(x2ix

2
j + y2i y

2
j ).

So
∑

(i 6=j)∈Dc
1∩Dc

2

[
xixj + yiyj − (xi ∧ yi)(xj ∧ yj)

]2

≥ 1

8

∑

(i 6=j)∈Dc
1∩Dc

2

(x2ix
2
j + y2i y

2
j )

≥ 1

16

(
∑

i∈[n]
x2i

)2

+
1

16

(
∑

i∈[n]
y2i

)2

−
∑

i∈[n]

(
x4i + y4i

)
.

As
∑

i∈[n]
(x4i + y4i ) ≤

∑

i∈[n]
(x2i + y2i ),

we obtain
∏

(i 6=j)∈Dc
1∩Dc

2

[
1− xixj − yiyj + (xi ∧ yi)(xj ∧ yj)

]

≤ exp

(

−s
2
1

2
− s22

2
+
s21,2
2

)

× exp

[

− 1

32

(
∑

i∈[n]
x2i

)2

− 1

32

(
∑

i∈[n]
y2i

)2

+ 4
∑

i∈[n]
(x2i + y2i )

]

.

It remains to observe that − z2

32 + 4z ≤ 128. �

4.1. Bounds for P(Π), probability of a fixed point, and the likely

|Odd (Π)|. Here are our first applications of Lemma 4.1.
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Lemma 4.2. Denoting m = |Odd (Π)|,

P(Π) ≤b







e−n
1/2

(n+m− 2)!!
, Π has a fixed point,

1

(n+m− 1)!!
, Π has no fixed point.

Proof. For the second case, by (2.1) and Lemma 4.1,

P(Π) ≤b Int(m) :=

n
︷ ︸︸ ︷∫

· · ·
∫

x∈[0,1]n
e−

s2

2

n∏

h=n−m+1

xh dx.

Disregarding the constraint maxi xi ≤ 1, and using (3.2),we obtain

(4.8)

Int(m) ≤ 1

(n+m− 1)!

∫ ∞

0
e−

s2

2 sn+m−1 ds

=
(n+m− 2)!!

(n+m− 1)!
=

1

(n+m− 1)!!
.

If Π has a fixed point h∗, then using
∏

k 6=h∗
(1− xk) ≤ e−s, s :=

∑

k 6=h∗
xk,

we obtain that

P(Π) ≤b
1

(n+m− 2)!

∫ ∞

0
e−s−

s2

2 sn+m−2 ds.

A quick glance at the integrand shows that the dominant contribution to

the integral comes from s within, say, log n distance from the integrand’s

maximum point

s∗ = (n +m− 2)1/2 − 1

2
+O

(
n−1/2

)
,

(n + m − 2)1/2 being the maximum point of e−s
2/2sn+m−2. So the above

integral is of order

e−n
1/2

∫ ∞

0
e−

s2

2 sn+m−2 ds = e−n
1/2

(n+m− 3)!!,

whence

P(Π is stable) ≤b
e−n

1/2

(n+m− 2)!!
.

�

Now the total number of permutations Π of [n] with a fixed point and

|Odd(Π) = m is at most

n

(
n− 1

m

)

m!(n−m− 2)!! =
n!

(n−m− 1)!!
.
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Corollary 4.3.

P(stable Π’s have a fixed point) = O
(
n2e−

√
n
)
→ 0.

Proof. By Lemma 4.1 and the union bound, the probability in question is

of order

e−n
1/2
∑

m≥3

n!

(n−m− 1)!! (n +m− 2)!!

≤ e−n
1/2
n

n!

(n−m− 1)!! (n +m− 2)!!

∣
∣
∣
∣
m=3

= O
(
n2e−n

1/2)
.

�

Our original proof in [14] was considerably more involved, and reliant on

the problematic existence of the exponential bounds, the issue we touched

upon in the previous sections, and will stop bringing up in the sequel.

From now on we focus on stable partitions without a fixed point. Here is

another low hanging fruit.

Corollary 4.4. Denoting by Odd (Π) the set of members in the odd cycles

of stable partitions,

P
(
|Odd (Π)| ≥ n1/2 log n

)
≤b exp(− log2 n/3),

i.e. with super-polynomially high probability (quite surely in terminology of

[9]) the total length of all odd cycles is below n1/2 log n.

Proof. Denote mn = ⌈n1/2 log n⌉. The total number of potential stable

partitions with an even |Odd (Π)| = m ≥ 4 is at most
(
n

m

)

m!(n−m− 1)!! =
n!

(n−m)!!
.

So, by Lemma 4.1, Stirling formula, and the inequality

(1 + x) log(1 + x) + (1− x) log(1− x) ≥ x2,

the probability in question is of order

n∑

m=mn

n!

(n−m)!! (n +m− 1)!!
≤b

n∑

m=mn

nn

(n−m)
n−m

2 (n+m)
n+m

2

≤
n∑

m=mn

exp
(

−m
2

2n

)
≤b n

1/2

∫

x≥mn/n1/2

e−
x2

2 dx≪ e− log2 n/3.

�

Focusing on the likely stable partitions, we may and will consider only

the permutations Π without a fixed point and with |Odd (Π)| ≤ mn.
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4.2. Sharp estimate of P(Π). In steps, we will chop off the peripheral

parts of the integration cube [0, 1]n till we get to its part narrow enough to

allow us to approximate the integrand in the formula (2.1) within 1 + o(1)

factor, so that the accumulative error cost is of order e−Θ(log2 n).

Step 1. For the first reduction, we set sn = n1/2 + 3 log n, and define

(4.9) P1(Π) :=

n
︷ ︸︸ ︷∫

· · ·
∫

x∈C1

F (x) dx, C1 := {x ∈ [0, 1]n : s ≤ sn},

Lemma 4.5.

(4.10) P(Π)− P1(Π) ≤b
e−3 log2 n

(n +m− 1)!!
.

Proof. By Lemma 4.1,

(4.11) P(Π)− P1(Π) ≤b
1

(n+m− 1)!

∫

s≥sn

exp

(

−s
2

2

)

sn+m−1 ds.

The integrand, write it as eh(s), attains its maximum at sn,m = (n+m−1)1/2,

and

eh(s(n,m)) = exp

(

−n+m− 1

2

)

(n+m− 1)
n+m−1

2

≤b n
1/2(n+m− 2)!!.

Further

h(sn) = h(s(n,m)) + (1 + o(1))
h′′(s(n,m))

2
(sn − s(n,m))2

≤ h(s(n,m)) − 4 log2 n,

h′(sn) = −sn +
n+m− 1

sn
≤ −5 log n.

Now, since h(s) is concave, we have
∫

s≥sn
eh(s) ds ≤ eh(sn)

∫

s≥sn
exp
(
h′(sn)(s− sn)

)
=

eh(sn)

−h′(sn)
.

Therefore

P(Π)− P1(Π) ≤b
n1/2e−4 log2 n

log n

(n+m− 2)!!

(n+m− 1)!
≤ e−3 log2 n

(n+m− 1)!!
.

�

Next, motivated by the inequalities (4.2) and (4.3), we will derive sharp

asymptotics, on progressively smaller Cj ⊂ C1, for the leading sums
∑

i∈[n1]
x2i ,

∑

i∈[n1/2]
xixi+n1/2, (n1 := n−m), and obtain sufficiently strong
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upper bounds for the secondary sums
∑

h∈Odd (Π) x
2
h,
∑

i∈[n] x
4
i and

∑

i∈[n] x
6
i .

We will end up with a rather sharp asymptotic formula for
∏

(i,j)(1− xixj)

on the terminal dominant subset of C1.

Step 2. With s :=
∑

i∈[n] xi, define u = {ui = xi/s : i ∈ [n]}. Introduce

t1(u) = maxi∈[n] ui. Define C2 =
{

x ∈ C1 : t1(u) ≤ 1.01 log2 n
n

}

, and let

Pj(Π) be the integral of F (x) over Cj . Introduce L1, . . . , Ln, the lengths

of the n consecutive subintervals of [0, 1] obtained by choosing, at random,

n − 1 points in [0, 1]. Applying Lemma 3.1, the identity (3.2) and Lemma

3.2 (1) with ν = n, we have

P1(Π)− P2(Π) ≤

n
︷ ︸︸ ︷∫

· · ·
∫

x≥0

sme−
s2

2 χ

{

t1(u) ≥ 1.01
log2 n

n

}
∏

h∈Odd(Π)

uh dx

≤
E
[

χ
{

maxi∈[n] Li ≥ 1.01 log2 n
n

}
∏m
h=1 Lh

]

(n − 1)!

∫ ∞

0
e−

s2

2 sm+n−1 ds.

By the union bound, the expected value is below

(4.12) nE

[

χ

{

Ln ≥ 1.01
log2 n

n

}m−1∏

h=1

Lh

]

≤ n!

n−1
︷ ︸︸ ︷∫

· · ·
∫

z1+···+zn−1

≤1−1.01
log2 n

n

m−1∏

h=1

zh dz

= n!

(

1− 1.01
log2 n

n

)n+m−2

n−1
︷ ︸︸ ︷∫

· · ·
∫

z1+···+zn−1≤1

m−1∏

h=1

zh dz ≤ n!e−1.01 log2 n

(n +m− 2)!
.

Lemma 4.6.

(4.13) P1(Π)− P2(Π) ≤ e− log2 n

(n+m− 1)!!
.

In addition, since m ≤ mn = ⌈n1/2 log n⌉ and s ≤ sn = n1/2 + 3 log n, it

follows from (4.13) that on C2

(4.14)

∑

h∈Odd (Π)

xh ≤b sn
−1 log3 n,

∑

h∈Odd (Π)

x2h ≤b n
−1/2 log5 n,

n∑

i=1

x4i ≤b n
−1 log8 n,

n∑

i=1

x6i ≤b n
−2 log12 n.
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Step 3. With ξ :=
∑

i∈[n1]
xi, define v = {vi = xi/ξ : i ∈ [n1]}. Introduce

t2(v) =
∑

i∈[n1]
v2i . Define

C3 =
{

x ∈ C2 :
∣
∣
∣
n1
2
t2(v) − 1

∣
∣
∣ ≤ n−σ

}

, σ < 1/3.

Introduce L1, . . . ,Ln1 , the lengths of the n1 consecutive subintervals of [0, 1]

in the partition of [0, 1] by the random n1 − 1 points. Analogously to Step

2, we have

P2(Π)− P3(Π) ≤

n
︷ ︸︸ ︷∫

· · ·
∫

x≥0

e−
s2

2 χ
{∣
∣
∣
n1
2
t2(v) − 1

∣
∣
∣ ≥ n−σ

} ∏

h∈Odd(Π)

uh dx

≤
P
(∣
∣
∣
n1
2 t2(L)− 1

∣
∣
∣ ≥ n−σ

)

(n1 − 1)!(2m − 1)!

∫∫

η, ξ≥0

e−
(ξ+η)2

2 ξn1−1η2m−1 dξ dη

≤ e−Θ(n1/3−σ)

(n+m− 1)!

∫ ∞

0
e−

s2

2 sn+m−1 ds =
e−Θ(n1/3−σ)

(n+m− 1)!!
.

Lemma 4.7.

(4.15) P2(Π)− P3(Π) ≤ e−Θ(n1/3−σ)

(n+m− 1)!!
.

Similarly, with t3(v) :=
∑

i∈[n1/2]
vivi+n1/2 and

C4 :=
{
x ∈ C3 : |2n1t3(v)− 1| ≤ n−σ

}
,

Lemma 4.8.

(4.16) P3(Π)− P4(Π) ≤ e−Θ(n1/3−σ)

(n+m− 1)!!
.

Combining the estimates (4.10), (4.13), (4.15), we have

Lemma 4.9. Let Π be such that m = |Odd (Π)| ≤ mn. Then

P (Π)− P4(Π) ≤ e−Θ(log2 n)

(n+m− 1)!!
,

where P4(Π) is the integral of F (x) over C4 ⊂ [0, 1]n defined by the addi-

tional constraints: with s :=
∑

i∈[n] xi, sn = n1/2 + 3 log n, ξ =
∑

i∈[n1]
xi,

s ≤ sn, max
i∈[n]

xi ≤ 1.02
s log2 n

n
;(4.17)

∣
∣
∣
∣
∣

n1
∑

i∈[n1]
x2i

2ξ2
− 1

∣
∣
∣
∣
∣
≤ n−σ,

∣
∣
∣
∣
∣

2n1
∑

i∈[n1/2]
xixi+n1/2

ξ2
− 1

∣
∣
∣
∣
∣
≤ n−σ.(4.18)
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The constraint (4.18) involves only {xi}i∈[n1]. Furthermore, given s, the

constraint (4.17) imposes the uniform upper bound for the individual com-

ponents xi, i ∈ [n]: no mixing the components xi, i ∈ [n1], and xh,

h ∈ Odd (Π), either. Also, this constraint implies that

(4.19) max
i∈n]

xi ≤ 4n−1/2 log2 n = o(1),

meaning that the constraint maxi xi ≤ 1 is superfluous. Moreover, the

inequality (4.19) yields the equality

∏

(i,j)/∈D(Π)

(1− xixj) = exp

(

−
∑

(i,j)/∈D(Π)

(

xixj +
x2ix

2
j

2

)

+O
(∑

i∈[n]
x6i

)
)

,

that holds uniformly for x ∈ C4, with the remainder term ≪ n−1, see (4.14).

It is the matter of simple algebra to obtain from the constraints on C4:

Lemma 4.10. Uniformly for m ≤ mn and x ∈ C4,

(4.20) F (x) = exp

(

−s
2

2

(

1− 3

n

)

− s4

n2
+O(n−σ)

)
∏

h∈Odd (Π)

xh.

Thus, introducing η =
∑

h∈Odd (Π) xh, so that as s = ξ + η, within the

factor 1+O(n−σ) the integrand depends on (ξ, η) and
∏

h xh. Observe also

that, on C4,

max
i∈[n1]

xi
ξ

∼ max
i∈[n1]

xi
s

≤ 1.02
log2 n

n
≪ 1

ξ
.

So denoting ψn(s) = s2

2

(
1 − 3

n

)
+ s4

n2 , and applying Lemma 3.1, (3.1), we

have: P4(Π), the integral of F (x) over C4, is given by

(4.21)

P4(Π) =
(
1 +O(n−σ)

)

n
︷ ︸︸ ︷∫

· · ·
∫

x∈C4

e−ψn(ξ+η)
∏

h∈Odd (Π)

xh dx

=
(
1 +O(n−σ)

)
∫∫

ξ+η≤sn

e−ψn(η+ξ) ξn1−1

(n1 − 1)!
· η2m−1

(m− 1)!
dη dξ

· P

(
∣
∣
∣
n1
2

∑

i∈[n1]

L2
i − 1

∣
∣
∣ ≤ n−σ,

∣
∣
∣2n1

∑

i∈[n1/2]

LiLi+n1/2 − 1
∣
∣
∣ ≤ n−σ

)

.

From the step (4) we know that the probability factor is at least 1−e− log2 n.

The double integral, denote it In,m, is given by

In,m =
(2m− 1)!

(m− 1)! (n +m− 1)!

∫

s≤sn
e−ψn(s)sn+m−1 ds.
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The integrand attains its maximum at ŝ = (n +m − 1)1/2 − Θ(n−1/2), so

that sn − ŝ ≥ 2 log n. and it is easy to show that
∫

|s−ŝ|≥logn

e−ψn(s)sn+m−1 ds ≤ e−Θ(log2 n)

∫

|s−s∗|≤logn

e−ψn(a)sn+m−1 ds.

Besides, s4/n2 = 1 +O(m/n) for |s− ŝ| ≤ log n. Therefore

In,m = e−1+O(m/n) (2m− 1)!

(m− 1)! (n +m− 1)!

∫

s≥0
e−

s2(1−3/n)
2 sn+m−1 ds

= e−1+O(m/n) (2m− 1)!

(m− 1)! (n +m− 1)!
· (n+m− 2)!!

(1− 3/n)(n+m)/2

= e1/2+O(m/n) (2m− 1)!

(m− 1)! (n +m− 1)!!
.

Since m/n = O(n−1/2 log n), and σ < 1/3 in (4.21), we have proved

Lemma 4.11. Uniformly for even m ≤ mn and Π with |Odd (Π)| = m,

P4(Π) =
(
1 +O(n−σ)

) e1/2

(n+m− 1)!!
.

Consequently, by Lemma 4.9 ,

(4.22) P (Π) =
(
1 +O(n−σ)

) e1/2

(n +m− 1)!!
.

Note. The formula (4.22) works for m = 0 as well, meaning that

P(matching Π is stable) =
(
1 +O(n−σ)

) e1/2

(n− 1)!!
.

So the expected number of stable matchings tends to e1/2 as n→ ∞, [13].

4.3. The expectations of the numbers of stable partitions and odd

parties.

Theorem 4.12. Let Sn and On denote the total number of odd stable par-

titions Π, and the total number of odd cycles. Then

E
[
Sn
]
=
(
1 +O(n−1/4)

) Γ(1/4)√
πe 21/4

n1/4,(4.23)

E
[
On

]
.

Γ(1/4)

4
√
πe 21/4

n1/4 log n.(4.24)

Proof. For even m, let f(m) denote the total number of permutations of m,

having only odd cycles, each of length 3 at least. For even k, let f(m,k)

denote the total number of permutations of [m] having only k odd cycles,

each of length 3, at least; so f(m) =
∑

k f(m,k). Then the total number

of permutations of [n] with k odd cycles, each of length 3 at least, with m



STABLE PARTITIONS 23

elements overall, and even cycles of length 2 only, is
(
n
m

)
f(m,k)(n−m−1)!!.

So, by Lemma 4.11, we have

(4.25) E
[
Sn
]
=
(
e1/2 +O(n−σ)

) ∑

m≤mn

(
n

m

)
f(m)(n−m− 1)!!

(n+m− 1)!!
.

A standard argument from permutation enumeration shows that

(4.26)
∑

m≥4

f(m)

m!
xm = exp




∑

odd j≥3

xj

j



 = e−x
√

1 + x

1− x
, (|x| < 1).

So, using the saddle-point method (Flajolet and Sedgewick [5]),

(4.27) f(m) =
(
e−1

√
2 +O(m−1)

)(2m− 1)!!

2m
.

With a bit of work, based on Stirling formula, it follows that

(
e1/2 +O(n−σ)

)
(
n

m

)
f(m)(n−m− 1)!!

(n+m− 1)!!

=
(
1 +O(n−σ +m−1)

)
√

2

πe
·m−1/2 exp

(

−m
2

2n

)

.

Combining this formula with (4.25), and choosing σ = 1/4, we complete the

proof of (4.23).

A bivariate extension of (4.26) is

∑

m≥4

xm

m!

∑

k≥2

ykf(m,k) = exp



y
∑

odd j≥3

xj

j



 .

Differentiating this identity at y = 1, we obtain

(4.28)
∑

m≥4

xm

m!

∑

k≥2

kf(m,k) =
∑

odd j≥3

xj

j
exp




∑

odd j≥3

xj

j





=

(
1

2
log

1

1− x
+

1

2
log(1 + x)− 1

)

e−x
√

1 + x

1− x
.

So, analogously to (4.27), we obtain

∑

k≥2

kf(m,k) =
(
1 +O(m−1)

)e−1
√
2 logm

2
· (2m− 1)!!

2m
.

Combining this formula with the counterpart of (4.25), i.e. with

E
[
On

]
≤
(
e1/2 +O(n−σ)

) ∑

m≤mn

(
n

m

)
(n−m)!!

(n+m− 1)!!

∑

k≥2

kf(m,k),

we have (4.24). �
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Tan [15], [16] defined a maximum stable matching for an instance I as a

matching M of maximum size (number of matched pairs) such that no pair

of members, both having a partner inM , prefer each other to their partners.

In short, no two members assigned in M , but not to each other, block M .

He proved that a maximum stable matching has size (n − O)/2, (see also

Manlove [10]).

Corollary 4.13. Let Mn denote the size of the maximum stable matching

for the random instance In. Then

E
[
Mn

]
≥ n− cn1/4 log n

2
, c =

Γ(1/4)

3
√
πe 21/4

,

P
(

Mn ≥ n− n1/4 log2 n

2

)

≥ 1−O
(
log−1 n)

)
,

so that the number of members unassigned in the maximum stable matching

is likely to be of order O
(
n1/4 log2 n).

4.4. A “maximally stable” matching in the random instance In.

For a given set of preferences, Abraham, Biró and Manlove [1] (see also [10])

defined a “maximally stable” matching as a perfect matching M on [n] that

is blocked by the smallest number of pairs, B(In), of members not matched

with each other in M . (Two members block M if they prefer each other

to their partners in M .) A weaker corollary of the bound in [1] states that

B(In) ≤ d(In)O(In), where O(In) is the number of odd parties (common to

all stable partitions for In) and d(In) is the length of the longest preference

list.

Once we estimate Rmax, defined as the largest rank of a predecessor in the

uniformly random instance In, we will be able to apply the ABM inequality

via replacing d(In) with Rmax.

For a stable Π (without a fixed point), introduce X(Π) := maxiXi,Π−1(i).

Intuitively, maxΠX(Π) controls the worst predecessor’s rank. From Lemma

4.9, and the proof of Theorem 4.12, it follows that

P

(

max
Π

X(Π) ≥ log2 n

n1/2

)

≤ e−Θ(log2 n).

A bit more generally, for every δ > 0,

(4.29) Pδ := P

(

max
Π

X(Π) ≥ log1+δ n

n1/2

)

≤ e−Θ(log1+δ n).

Denoting xn = log1+δ n
n1/2 , let Ri := |{j 6= i : Xi,j ≤ xn}|. Since Xi,j are

independent [0, 1]-Uniforms, we have Ri
D≡ Bin(n − 1, p = xn). Let c > 1;
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by the classic (Chernoff) bound for the tails of the binomial distribution,

P(Ri ≥ c(n− 1)xn) ≤ exp(−f(c)(n − 1)xn), f(c) := 1 + c(log c− 1).

So, P(Ri ≥ 2nxn) ≤ e−n
1/2/3 if n is large enough. Invoking (4.29), we have

then

P
(

Rmax ≥ 2n1/2 log1+δ n
)

≤ Pδ +
∑

i∈[n]
P
(

Ri ≥ 2n1/2 log1+δ n
)

≤ e−Θ(log1+δ n) + ne−n
1/2/3.

Thus

Lemma 4.14. For δ > 0 arbitrarily small, quite surely Rmax is of order

n1/2 log1+δ n.

Combining Lemma 4.14 with (4.24) in Theorem 4.12, we have proved

Corollary 4.15. With high probability, there exists a perfect matching which

is blocked by at most n3/4(log n)2+δ unmatched pairs.

4.5. Likely range of R(Π) in a stable, fixed-point free, partition Π.

In Lemma 2.6 we proved that Pk(Π) the probability that Π is stable and

the total rank of all n predecessors R(Π) equals k, necessarily exceeding

n+ |Odd (Π), is given by

(4.30)

Pk(Π) =

∫

· · ·
∫

x∈[0,1]n

[

zk̄
]

F (x, z) dx,

F (x, z) :=
∏

h∈Odd (Π)

xh ·
∏

(i,j)/∈D(Π)

(
x̄ix̄j + zxix̄j + zx̄ixj

)
,

where m := |Odd (Π)| and k̄ := k − (n+m).

Theorem 4.16. For ε ∈ (0, 1),

P

(

max
Π

∣
∣
∣
∣

R(Π)

n3/2
− 1

∣
∣
∣
∣
≥ ε

)

≤ e−Θ(log2 n).

Proof. Predictably, we will prove the claim via the union bound, i.e. sum-

ming the bounds of the respective probabilities for the individual partitions.

It suffices then to consider the partitions Π with m ≤ mn = ⌈n1/2 log n⌉.
First of all, since F (x, z) in (4.30) is a polynomial of z with non-negative

coefficients, we have a Chernoff-type bound: for k := ⌈(1 + ε)n3/2⌉,

P(R(Π) ≥ k) ≤ I(Π, k) :=

∫

· · ·
∫

x∈[0,1]n
inf
z≥1

[

z−k̄F (x, z)
]

dx.
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The integrand is, at most,

F (x, 1) = F (x) ≤b e
− s2

2

∏

h∈Odd (Π)

xh,

(s =
∑

i∈[n] xi), see Lemma 4.1. Therefore the proof of Lemma 4.9 delivers,

with only notational modification, that

(4.31) I(Π, k) − I4(Π, k) ≤
e−Θ(log2 n)

(n+m− 1)!!
.

Here I4(Π, k) is the integral of infz≥1

[

z−k̄F (x, z)
]

over C4 ⊂ [0, 1]n, defined

by the additional constraints: with ξ =
∑

i∈[n1]
xi, (n1 := n−m),

s ≤ sn := n1/2 + 3 log n, max
i∈[n]

xi ≤ 1.02
s log2 n

n
;(4.32)

∣
∣
∣
∣
∣

n1
∑

i∈[n1]
x2i

2ξ2
− 1

∣
∣
∣
∣
∣
≤ n−σ,

∣
∣
∣
∣
∣

2n1
∑

i∈[n1/2]
xixi+n1/2

ξ2
− 1

∣
∣
∣
∣
∣
≤ n−σ.(4.33)

Instead of looking for the best z = z(x) ≥ 1 where z−k̄F (x, z) attains, or

is close to, its infimum, we confine ourselves to a sub-optimal z = z(s) ≥ 1

(i.e. dependent on s only), which makes z−k̄F (x, z) suitably small for all

x ∈ C4. Consider z ≤ 2k̄
sn ; as we shall see shortly, the minimum point of an

auxiliary bound for the integrand does satisfy this constraint.

Using 1 + x ≤ ex, the constraints (4.32), (4.33) and z ≤ 2k̄
sn , we have

∏

(i,j)/∈D(Π)

(
x̄ix̄j + zxix̄j + zx̄ixj

)
=

∏

(i,j)/∈D(Π)

(
1 + (1− 2z)xixj + (z − 1)(xi + xj)

)

≤ exp
( ∑

(i,j)/∈D(Π)

[
(1− 2z)xixj + (z − 1)(xi + xj)

])

≤b exp
(

(1− 2z)
s2

2
+ n(z − 1)s

)

;

therefore

z−k̄F (x, z) ≤b exp
(

(1− 2z)
s2

2
+ n(z − 1)s− k̄ log z

) ∏

h∈Odd (Π)

xh.

So, applying the identity (3.2),

I4(Π, k) ≤b
1

(n +m− 1)!

∫ sn

0
exp(H(z, s)) ds,(4.34)

H(z, s) := (1− 2z)
s2

2
+ n(z − 1)s − k̄ log z + (n+m− 1) log s.
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Let us use (4.34) to prove that

(4.35) I4(Π, k) ≤
e−Θ(ε2n)

(n+m− 1)!!
.

As a function of z, H(z, s) is convex, and has its absolute minimum at

z̄ = z̄(s) :=
k̄

(n− s)s
∼ k̄

ns
<

2k̄

ns
.

This decreasing function of s is “Chernoff-admissible” when s is such that

z(s) ≥ 1. Let s1 be the smaller root of the (quadratic) equation z̄(s) = 1:

s1 >
k̄

n
, s1 =

k̄

n
+O(1) = (1 + ε)n1/2 +O(1).

Thus our best hope is a function

z(s) =

{
z̄(s), if s ≤ s1,

1, if s > s1.

(i) s > s1. Here s1 ∼ k̄
n > (n+m− 1)1/2, the maximum point of

h(s) := H(1, s) = −s
2

2
+ (n +m− 1) log s.

So, arguing as in the proof of Lemma 4.5,

(4.36)

1

(n +m− 1)!

∫ sn

s1

exp(H(1, s)) ds ≤b
eh(s1)

(−h′(s1))(n +m− 1)!

≤ e−Θ(ε2n)(n+m− 2)!!

(n+m− 1)!
=

e−Θ(ε2n)

(n+m− 1)!!
.

(ii) s < s1. Let h̄(s) := H(z(s), s). Since Hz(z(s), s) = 0, we have

h̄′(s) = Hs(z, s)|z=z(s) =
(

s− k̄

n− s

)

+
( k̄

s
− n

)

+
n+m− 1

s
,

h̄′′(s) = 1− k̄

(n− s)2
− k − 1

s2
.

By the second formula, we have h̄′′(s) < 0 for s ≤ sn, i.e. h̄(s) is concave.

By the first formula, we have

h̄′
(
k̄
n

)

≥ −(1 + o(1))
k̄2

n3
+
n2

k̄
∼ n1/2

1 + ε
→ ∞,

h̄′(s1) =
(n+m− 1)− s21

s1
∼ −(2ε+ ε2)n1/2

1 + ε
→ −∞.

Thus max {h̄(s) : s ≤ sn} is attained at a unique point s2 ∈ [k̄/n, s1]; in

particular, s1 − s2 = O(1). Since |h̄′′(s)| = O(n1/2), it follows – via Tay-

lor’s approximation of h̄(s1)(= h(s1)) at s2 – that h̄(s2) = h(s1) + O(n1/2).



28 BORIS PITTEL

Therefore, similarly to (4.36), we obtain

1

(n +m− 1)!

∫ s1

0
exp(H(z(s), s)) ds ≤ e−Θ(ε2n)

(n+m− 1)!!
.

This bound together with (4.36) imply (4.35), which in combination with

(4.31) deliver

P(R(Π) ≥ k) ≤ e−Θ(log2 n)

(n+m− 1)!!
.

As in the proof of Corollary 4.4, it follows that

P(∃Π : R(Π) ≥ (1 + ε)n3/2) ≤ e−Θ(log2 n).

Similarly

P(∃Π : R(Π) ≤ (1− ε)n3/2) ≤ e−Θ(log2 n).

�

5. E
[
S2
n

]
and the expected number of members with multiple

stable predecessors

First of all

E
[
(Sn)2

]
=

∑

Π1 6=Π2

P(Π1,Π2),

where P(Π1,Π2) is the probability that Π1 and Π2 are both stable. By

Lemma 2.3,

(5.1)

P(Π1,Π2) =

∫

· · ·
∫

x,y∈[0,1]n
F (x,y) dxdy,

F (x,y) :=
∏

h

xh ·
∏

(i 6=j)
[1− xixj − yiyj + (xi ∧ yi)(xj ∧ yj)],

dx =
∏

i∈[n]
dxi, dy =

∏

i∈[n]:Π1(i)6=Π2(i)

dyi,

where h ∈ Odd (Π1,2), (i 6= j) ∈ Dc
1 ∩Dc

2, (Dt = D(Πt)), yi = xi if Π1(i) =

Π2(i), and for every circuit {i1, . . . , iℓ}, (ℓ ≥ 4), formed by alternating pairs

matched either in Π1 or Π2, we have :

(5.2)
either xi1 > yi1 , xi2 < yi2 , . . . , xiℓ < yiℓ ,

or xi1 < yi1 , xi2 > yi2 , . . . , xiℓ > yiℓ .

Let µ=µ(Π1,Π2) be the total number of these circuits, and 2ν=2ν(Π1,Π2),

be their total length. Obviously, there are 2µ ways to select one of two “al-

ternation” sequences described in (5.2) for each of the µ circuits. Whatever

the choice, there are exactly ν vertices i, on those circuits, where yi > xi and
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ν vertices where yi < xi. Let A and B denote the correspondent subsets,

|A| = |B| = ν. So

(5.3)
yi > xi, if i ∈ A; yi < xi, if i ∈ B,

yi = xi, if i ∈ [n] \ (A ∪B) = Odd1,2 ∪
(
Even1,2 \ (A ∪B)

)
,

Even1,2 := [n] \Odd1,2. The individual contributions of these 2µ choices of

the inequalities along the circuits to the integral in (5.1) are all the same.

This means that P(Π1,Π2) equals the RHS integral in (5.1), with inequal-

ities (5.3) instead of (5.2), times 2µ.

As in the previous section, we need first to identify the subrange of (x,y)

that provides an asymptotically dominant contribution to the integral, and

second to find a sharp approximation for that contribution. Like Theorem

4.12, the key instrument is the bound for the double-indexed product in the

definition of F (x,y) proved in Lemma 4.1:

(5.4)

F (x,y) ≤b exp

(

−s
2
1

2
− s22

2
+
s21,2
2

)
∏

h

xh,

s1 :=
∑

i∈[n]
xi, s2 :=

∑

i∈[n]
yi, s1,2 :=

∑

i∈[n]
(xi ∧ yi).

Here (x,y) are subject to the constraints (5.3). To make use of this bound,

we change the variables of integration:

(5.5) x′i =

{
xi − yi, i ∈ B,

xi, i 6∈ B,
y′i =

{
yi − xi, i ∈ A,
yi, i /∈ A.

Here x′,y′ ∈ [0, 1]n, such that x′i = y′i if Π1(i) = Π2(i), and the Jacobian

∂(x,y)/∂(x′,y′) equals 1. Furthermore, switching to (x′,y′) and introducing

(5.6) ξ1 =
∑

i∈[n]\B
x′i +

∑

i∈B
y′i, ξ2 =

∑

i∈B
x′i, ξ3 =

∑

i∈A
y′i,

we obtain

(5.7)

− s21
2

− s22
2

+
s21,2
2

= −1

2

(
∑

i∈[n]\B
x′i +

∑

i∈B
y′i +

∑

i∈B
x′i

)2

− 1

2

(
∑

i∈[n]\B
x′i +

∑

i∈B
y′i +

∑

i∈A
y′i

)2

+
1

2

(
∑

i∈[n]\B
x′i +

∑

i∈B
y′i

)2

= −1

2
(ξ1 + ξ2)

2 − 1

2
(ξ1 + ξ3)

2 +
1

2
ξ21 = −1

2
(ξ1 + ξ2 + ξ3)

2 + ξ2ξ3.
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Notice that

(5.8)

ξ1 + ξ2 + ξ3 =
∑

i∈[n]
x′i +

∑

i∈A∪B
y′i =

∑

i∈[n]
(xi ∨ yi),

ξ2 + ξ3 =
∑

i∈B
x′i +

∑

i∈A
y′i =

∑

i∈[n]
|xi − yi|.

In full analogy with the case of E
[
On

]
, the bound (5.4) and the identity

(5.7) will allow us to shrink, in several steps, the range of (x, y) to a core

range, on which the integrand F (x,y) can be sharply approximated.

(1) Recall that we consider the partitions Π with the total length of all

odd cycles m = m(Π) ≤ mn = [n1/2 log n]. Our first step is to dispense with

the pairs (Π1,Π2) of the partitions such that 2ν = 2ν(Π1,Π2) ≥ 2mn.

Lemma 5.1.

E
[
(Sn)2

]
− E1

[
(Sn)2

]
≤ e−Θ(log2 n),

E1

[
(Sn)2

]
:=

∑

ν(Π1,Π2)≤mn

P(Π1,Π2).

Proof. By the equations (5.4) and (5.7), and the identity (3.2), we have

(5.9)

P(Π1,Π2) ≤b 2µ
∫

· · ·
∫

x′,y′≥0

exp

(

−1

2

(∑

j

ξj

)2
+ ξ2ξ3

)

×
(

∏

h∈Odd1,2

x′h

)
∏

i∈[n]
dx′i

∏

j∈A∪B
dy′j

= 2µ
∫∫∫

ξj≥0

exp

(

−1

2

(∑

j

ξj

)2
+ ξ2ξ3

)

ξn+m−1
1

(n+m− 1)!
· (ξ2ξ3)

ν−1

[(ν − 1)!]2
dξ.

Expanding exp(ξ2ξ3) =
∑

k≥0 ξ
k
2ξ
k
3/k! and using again, term-wise, (3.2), we

obtain

(5.10)

P(Π1,Π2) ≤b 2
µ
∑

k≥0

s(n+m, ν, k),

s(n+m, ν, k) :=
[(ν − 1 + k)!]2

[(ν − 1)!]2k!(n+m+ 2(ν + k)− 1)!!
.

For m = 0 this sum was estimated in [14]. For our case the estimate from

[14] becomes

(5.11)
∑

k≥0

s(n+m, ν, k) ≤b n

(
e

n+m

)n+m
2

(n+m)−ν .
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Furthermore, the number of ordered pairs (Π1,Π2) with parameters m, ν

and µ is

(5.12)

(
n

m

)

f(m)

(
n−m

2ν

)

(n−m− 2ν − 1)!! · 2µf(2ν, µ);

here, as we recall, f(m) is the total number of permutations of [m] with only

odd cycles of length 3 or more, and f(2ν, µ) is the total number of circuit

partitions of [2ν] with µ circuits, each of even length 4 at least. The factor

2µ counts the total number of ways to assign, in the alternating fashion,

the edges of the circuits to the matching sets of Π1 and Π2. Clearly then,

2µf(2ν, µ) is the total number of permutations of [2ν] with only even cycles,

of length 4 at least. We add that (n −m− 2ν − 1)!! is the total number of

ways to form the (n−m− 2ν)/2 matched pairs out of n−m− 2ν elements

outside the circuits, i.e. the pairs common to Π1 and Π2.

So, by (5.10), (5.11) and (5.12), we obtain

(5.13)

∑

ν(Π1,Π2)≥mn

P (Π1,Π2) ≤b n
∑

m≤mn

(
n

m

)

f(m)

(
e

n+m

)n+m
2

×
∑

ν≥mn

(
n−m

2ν

)

(n−m− 2ν − 1)!!(n +m)−ν
∑

µ

22µf(2ν, µ).

Now f(m) ≤ m!, and from [14] (Appendix) it follows that

(5.14)
∑

µ

22µf(2ν, µ) = e−1+O(ν−1)(2ν)! = O((2ν)!).

Also

(n−m− 2ν − 1)!!

(n−m− 2ν)!
=

[

2
n−m−2ν

2

(
n−m− 2ν

2

)

!

]−1

.

So the bound (5.13) yields

∑

ν(Π1,Π2)≥mn

P (Π1,Π2) ≤b n!n ·
∑

m≤mn

(
e

n+m

)n+m
2

×
∑

ν≥mn

[

(n+m)ν 2
n−m−2ν

2

(
n−m− 2ν

2

)

!

]−1

≤ n!n2 ·
∑

m≤mn

(
e

n+m

)n+m
2
[

(n+m)mn 2
n−m−2mn

2

(
n−m− 2mn

2

)

!

]−1

,

since in the ν-sum the terms decrease with ν. Applying Stirling formula for

the two factorials and using m ≤ mn ≪ n2/3 in the expansions of log(1+ z),
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(z = m/n, z = −m+2mn
n ), we transform this bound into

(5.15)
∑

ν(Π1,Π2)≥mn

P (Π1,Π2) ≤ n2 ·
∑

m≤mn

exp

(

−(m+ 2mn)
2

4n

)

≤ e−0.99 log2 n.

�

From now on we will consider only admissible pairs (Π1,Π2), i.e. those

satisfying m(Π1,Π2) ≤ mn and ν(Π1,Π2) ≤ mn.

(2) For the admissible pairs (Π1,Π2), we can discard large parts of the

(x,y)’s range, like we did for individual partitions Π in the case of E
[
Sn
]
.

For a generic set C of (x, y) with x,y ∈ [0, 1]n, we define

PC(Π1,Π2) =

∫

· · ·
∫

(x,y)∈C

F (x,y) dxdy, EC
[
(Sn)2

]
=
∑

Π1,Π2

PC(Π1,Π2).

Lemma 5.2. Introducing sn = n1/2 + 6 log n, and C1 =
{

x,y :
∑

i∈[n](xi ∨
yi) ≤ sn

}

, we have

E1

[
(Sn)2

]
− EC1

[
(Sn)2

]
≤ e−Θ(log2 n).

Proof. We already observed, (5.8), that
∑

i(xi ∨ yi) =
∑

j ξj. So, similarly

to (5.9)-(5.10) we have:

(5.16) P(Π1,Π2)− PC1(Π1,Π2)

≤b 2
µ

∫∫∫

ξ1+ξ2+ξ3≥sn

exp

(

−1

2

(∑

j

ξj

)2
+ ξ2ξ3

)

ξn+m−1
1

(n+m− 1)!
· (ξ2ξ3)

ν−1

[(ν − 1)!]2
dξ

= 2µ
∑

k≥0

[(ν − 1 + k)!]2

[(ν − 1)!]2k!(n+m+ 2(ν + k)− 1)!

×
∫

s≥sn
exp
(

−s
2

2

)

sn+m+2(ν+k)−1 ds.

(Relaxing the constraint on s to s ≥ 0 we get back to (5.10).) The last

integrand attains its maximum at

smax =
(
n+m+ 2(ν + k)− 1

)1/2
,

which is below sn − 3 log n if k ≤ mn. Let S≤mn and S>mn denote the

sub-sums of the sum above, for k ≤ mn and k > mn respectively. Then,
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expanding integration to [0,∞), we obtain

S>mn ≤
∑

k>mn

[(ν − 1 + k)!]2

[(ν − 1)!]2 k! (n+m+ 2(ν + k)− 1)!!

≤b
[(ν +mn)!]

2

[(ν − 1)!]2mn! (n +m+ 2(ν +mn) + 1)!!
;

since ν ≤ mn, the ratio of the consecutive terms in the sum is below 2/3.

Droping [(ν − 1)!]2 in the denominator and using the Stirling formula for

the other factorials, we simplify the bound to

(5.17) S>mn ≤b

(
e

n+m

)n+m
2

(n+m)−(ν+mn).

The bound is smaller than the bound (5.11) for the full sum of s(n+m, ν, k)

by the factor (n+m)mn . Turn to S≤mn . This time the bottom integral over

s ≥ sn in (5.16) is small, compared to the integral over all s ≥ 0, because

for k ≤ mn the maximum point of the integrand is at distance 3 log n, at

least, from the interval [sn,∞). More precisely, using the argument in the

proof of Lemma 4.5, we have
∫

s≥sn
exp
(

−s
2

2

)

sn+m+2(ν+k)−1 ds ≤b e
−8 log2 n

(
n+m+ 2(ν + k)− 2

)
!!.

Therefore

(5.18)

S≤mn ≤b e
−8 log2 n

∑

k≤mn

[(ν − 1 + k)!]2

[(ν − 1)!]2k!(n+m+ 2(ν + k)− 1)!!

≤ e−8 log2 n
∑

k≥0

[(ν − 1 + k)!]2

[(ν − 1)!]2k!(n +m+ 2(ν + k)− 1)!!

= e−8 log2 n
∑

k≥0

s(n+m, ν, k).

Combining (5.17), (5.18) and (5.11) we transform the inequality (5.16) into

(5.19) P (Π1,Π2)− PC1(Π1,Π2) ≤ e−Θ(log2 n) 2µ
(

e

n+m

)n+m
2

(n +m)−ν .

So, like the part (1) in the proof of Lemma 5.1,

(5.20)

∑

Π1,Π2

[
P (Π1,Π2)− PC1(Π1,Π2)] ≤ e−Θ(log2 n)n!mn

×
∑

m≤mn]

(
e

n+m

)n+m
2
[

(n+m)0 2
n−m−2·0

2

(
n−m− 2 · 0

2

)

!

]−1

= e−Θ(log2 n).
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�

We need some additional reduction of the last range C2. The bound (5.4)

will continue to be the key tool, until the resulting range is narrow enough

to permit a sufficiently sharp bound of the double product

G(x,y) =
∏

(i 6=j)∈Dc
1∩Dc

2

[
1− xixj − yiyj + (xi ∧ yi)(xj ∧ yj)

]

in (5.1). Define N = N (Π1,Π2) and M = M(Π1,Π2) as the vertex set

of all odd cycles and even cycles, of length 4 or more, and the vertex set of

the edges common to both partitions, respectively. So |N | = m + 2ν, and

|M| = n − (m + 2ν). Arguing as in the proof of Lemma 4.1, but retaining

more terms, we have

(5.21)

G(x,y) ≤ exp

(

−s
2
1

2
− s22

2
+
s21,2
2

+
1

2

∑

i∈M
x2i +

∑

(i 6=j)∈M1∩M2

xixj

− 1

4

(∑

i∈[n]
(xi ∧ yi)2

)2
+O

(∑

i∈N
(x2i + y2i )

)

+O
(∑

i∈[n]
x4i

)
)

.

Thus we have to find sharp approximations of the three explicit sums and

to establish the o(1) bounds of the remainders for almost all (x,y) ∈ C1.
With those approximations at hand we will obtain an explicit upper bound

for E
[
(Sn)2

]
. For brevity will not present a proof of a matching lower bound.

(3) By (5.5) and (5.6), s := ξ1 + ξ2 + ξ3 =
∑

i∈[n] x
′
i +
∑

i∈A∪B y
′
i.

Lemma 5.3. Define u′ = {u′i}i∈[n], where u′i = x′i/s, for i ∈ [n], and

u′i = y′i/s for i ∈ A ∪B. Define T1(u
′) = maxi u

′
i. For

C2 :=
{

(x,y) ∈ C1 : T1(u′) ≤ 1.01
log2 n

n

}

,

we have

PC1(Π1,Π2)− PC2(Π1,Π2) ≤ 2µe−Θ(log2 n)

(
e

n+m

)n+m
2

n−ν .

Proof. Introduce L′
1, . . . , L

′
n+2ν , the intervals lengths in the random parti-

tion of [0, 1] by the n+2ν−1 random points. Analogously to (5.9), but using
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the sharper inequality in Lemma 3.1, (3.1), we have: with s := ξ1 + ξ2 + ξ3,

PC1(Π1,Π2)− PC2(Π1,Π2)

≤b 2µ
∫

· · ·
∫

x′,y′≥0

T1(u
′)>1.01

log2 n
n

e−
s2

2
+ξ2ξ3

∏

h∈Odd1,2

xh
∏

i∈[n]
dx′i

∏

j∈A∪B
dy′j

≤ 2µ

(n+ 2ν − 1)!
E

[

χ
(

T1(L
′) ≥ 1.01

log2 n

n

) ∏

h∈Odd1,2

L′
h

]

×
∫

· · ·
∫

x′,y′≥0

e−
s2

2
+ξ2ξ3 sm

∏

i∈[n]
dx′i

∏

j∈A∪B
dy′j.

Arguing as in (4.12), the expectation factor is less than

e−1.01 log2 n (n+ 2ν)!

(n+m+ 2ν − 2)!
.

The integral is less than

In(m, ν) :=

∫∫∫

ξj≥0

e−
s2

2
+ξ2ξ3sm

ξn−1
1

(n − 1)!
· (ξ2ξ3)

ν−1

[
(ν − 1)!

]2 dξ

=
∑

k≥0

[
(ν − 1 + k)!

]2

(n− 1)!
[
(ν − 1)!

]2
k!
(
2(ν + k)− 1

)
!

×
∫∫

ξ1,ξ4≥0

e−
(ξ1+ξ4)

2

2 (ξ1 + ξ4)
m ξn−1

1 ξ
2(ν+k)−1
4 dξ1dξ4.

Here the double integral equals

(n − 1)!
(
2(ν + k)− 1

)
!
(
n+m+ 2(ν + k)− 2

)
!!

(
n+ 2(ν + k)− 1

)
!

.

So

In(m, ν) =
∑

k≥0

[
(ν − 1 + k)!

]2 (
n+m+ 2(ν + k)− 2

)
!!

[
(ν − 1)!

]2
k!
(
n+ 2(ν + k)− 1

)
!

Therefore

PC1(Π1,Π2)− PC2(Π1,Π2) ≤b 2
µe− log2 n

∑

k≥0

s′(n,m, ν, k),

s′(n,m, ν, k) :=

[
(ν − 1 + k)!

]2(
n+m+ 2(ν + k)− 2

)
!! (n + 2ν)!

(n+m+ 2ν − 2)!
[
(ν − 1)!

]2
k!
(
n+ 2(ν + k)− 1

)
!
.

The summand s′(n,m, ν, k) is similar to the summand s(n+m, ν, k) defined

in (5.10). Closely following the derivation of the bound for
∑

k≥0 s(n, ν, k)
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in [14], we obtain

∑

k≥0

s′(n,m, ν, k) ≤b n
2

(
e

n+m

)n+m
2

n−ν ,

compare to (5.11). The last two bounds complete the proof. �

On C1 ⊃ C2 we have

s =
∑

i∈[n]
x′i +

∑

i∈A∪B
y′i =

∑

i∈[n]
(xi ∨ yi) ≤ sn = n1/2 + 6 log n.

and on C2
max

{

max
i

x′i
s
, max
j∈A∪B

y′j
s

≤ 1.01
log2 n

n

}

.

Since m, ν ≤ n1/2 log n, we have then the counterparts of the bounds in

(4.14). Namely, on C2,

(5.22)

∑

i∈N
(x′i+y

′
i) ≤b sn

−1 log3 n,
∑

i∈N
(x′i + y′i)

2 ≤b n
−1/2 log5 n,

∑

i∈N
(x′i + y′i)

4 ≤b n
−1 log8 n,

(4) With ξ :=
∑

i∈M x′i(=
∑

i∈M xi), define v
′
i = x′i/ξ for i ∈ M, |M| =

n −m − 2ν. Introduce T2(v
′) =

∑

i∈M(v′i)
2, and V ′ the set of all v′ such

that ∣
∣
∣
∣

n−m− 2ν

2
T2(v

′)− 1

∣
∣
∣
∣
≤ n−σ.

Lemma 5.4. For σ < 1/3, let C3 =
{
(x,y) ∈ C2 : v′ ∈ V

}
. Then

PC2(Π1,Π2)− PC3(Π1,Π2) ≤b 2
µ e−Θ(n1/3−σ)

(
e

n+m

)n+m
2

n−ν .

Proof. Introduce

ξ4 := ξ1 − ξ =
∑

i∈Bc∩Mc

x′i +
∑

i∈B
y′i =

∑

i∈Odd1,2

x′i +
∑

i∈A
x′i +

∑

i∈B
y′i.

Then with s := ξ + ξ4 + ξ2 + ξ3,

PC2(Π1,Π2)− PC3(Π1,Π2)

≤b 2µ
∫

· · ·
∫

x′,y′:v′∈V

e−
s2

2
+ξ2ξ3

∏

i∈M
dx′i

∏

j∈Odd1,2

xjdxj

×
∏

k∈A
dx′k

∏

ℓ∈B
dy′ℓ

∏

b∈B
dx′b

∏

a∈A
dy′a.
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Now the integrand depends on {x′i}i∈M only through ξ =
∑

i∈M x′i. So,

introducing the random intervals L′
1, . . . ,L′

n−m−2ν forming the partition of

[0, 1], we obtain

PC2(Π1,Π2)− PC3(Π1,Π2)

≤b 2
µ P
(∣
∣
∣
n−m− 2ν

2
T2(L

′)− 1
∣
∣
∣ ≥ n−σ

) ∫∫∫∫

ξ, ξj≥0

e−
s2

2
+ξ2ξ3 ξ

|M|−1 dξ

(|M| − 1)!

× ξ2m+2ν−1
4 dξ4

(2m+ 2ν − 1)!
· ξ

ν−1
2 dξ2
(ν − 1)!

· ξ
ν−1
3 dξ3
(ν − 1)!

.

The probability is of order e−Θ(n1/3−σ), and the integral equals the bottom

3-dimensional integral in (5.9). Jointly with (5.10) and (5.11) this proves

the claim. �

Finally, introduce T3(v
′) =

∑

(i,j)∈M1∩M2

v′iv
′
j; (here, of course, i, j ∈ M).

Lemma 5.5. For σ < 1/3, let

C4 =
{
(x,y) ∈ C3 :

∣
∣2(n −m− 2ν)T3(v

′)− 1
∣
∣ ≤ n−σ

}
;

Then

PC3(Π1,Π2)− PC4(Π1,Π2) ≤ 2µe−Θ(n1/3−σ)

(
e

n+m

)n+m
2

n−ν.

The proof is a copy of the previous argument.

The Lemmas 5.2, 5.3, 5.4 and 5.5 imply

Lemma 5.6. For every admissible pair Π1, Π2,

P (Π1,Π2)− PC4(Π1,Π2) ≤b e
−Θ(log2 n) 2µ

(
e

n+m

)n+m
2

n−ν .

Here PC4(Π1,Π2) is the integral of F (x,y) over

C4 ⊂ {x, y ∈ [0, 1]n : xi = yi if Π1(i) = Π2(i)},
defined by the additional constraints: denoting ξ :=

∑

i∈M x′i
(
=
∑

i∈M xi
)
,

s :=
∑

i∈[n]
x′i +

∑

j∈A∪B
y′j(= ξ1 + ξ2 + ξ3) ≤ sn(= n1/2 + 6 log n),(5.23)

max

{

max
i∈[n]

x′i, max
j∈A∪B

y′j

}

≤ 1.01
s log2 n

n
,(5.24)

∣
∣
∣
∣
∣

|M|
2ξ2

∑

i∈M
x2i − 1

∣
∣
∣
∣
∣
≤ n−σ,

∣
∣
∣
∣
∣
∣

2|M|
ξ2

∑

(i,j)∈M1∩M2

xixj − 1

∣
∣
∣
∣
∣
∣

≤ n−σ.(5.25)
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The constraint (5.25) involves only {xi}i∈M, and the constraint (5.24)

imposes the bound for the individual components x′i and y′j . Since sn ≤
2n1/2, the latter implies that

(5.26) max

{

max
i∈[n]

x′i, max
j∈A∪B

y′j

}

≤ 3n−1/2 log2 n,

obviating the constraint x′i ≤ 1, y′j ≤ 1. On C4 the inequality (5.21) can be

drastically simplified. First of all, the bottom part of the bound (5.21) is

−1

4

(∑

i∈M
x2i

)2
+O

(
n−1/2 log5 n

)
.

Second,

∑

i∈M
x2i =

(
1 +O(n−σ)

) 2ξ2

|M| =
2ξ2

|M| +O(n−σ),

∑

(i,j)∈M1∩M2

xixj =
(
1 +O(n−σ)

) ξ2

2|M| =
ξ2

2|M| +O(n−σ),

and ξ = ξ1
(
1 + O(n−1 log2 n)

)
. In addition, |M| = n

(
1 + O(n−1/2 log n)

)
.

Therefore (5.21) becomes

G(x,y) ≤
(
1 +O(n−σ)

)
exp
[
H(ξ)

]
, H(ξ) = −s

2

2
+ ξ2ξ3 +

3ξ21
2n

− ξ41
n2
.

Lemma 5.7.

PC4(Π1,Π2) ≤
2µ
(
1 +O(n−σ)

)

(n+m− 1)!
[
(ν − 1)!

]2 · I(n+m, ν),

I(n+m, ν) :=

∫∫∫

(ξ1,ξ2,ξ3)∈R

exp
[
H(ξ)

]
ξn+m−1
1 · (ξ2ξ3)ν−1 dξ,

R :=
{
ξ ≥ 0 : ξ1 ≤ n1/2 + 6 log n; ξ2, ξ3 ≤ 2 log3 n

}
.

The proof, of course, is based on the description of C4, and it runs along

the familiar lines of our preceding proofs; in particular, see the proof of

Lemma 5.4. We omit the details. Furthermore, by the asymptotic formula

for I(n, ν) from [14] (3.60), we have

I(n+m, ν) = (1 + o(1))

(
πe

n+m

)1/2(n+m

e

)n+m
2

(n+m)−ν
[
(ν − 1)!

]2
.

So, by Lemma 5.7,

PC4(Π1,Π2) ≤
2µ
(
1 +O(n−σ)

)

(n+m− 1)!

(
πe

n+m

)1/2(n+m

e

)n+m
2

(n+m)−ν .
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Therefore, within the factor 1 +O(n−σ),
∑

Π1,Π2

PC4(Π1,Π2)

≤
∑

m≤mn

(
n

m

)
f(m)

(n +m− 1)!

(
πe

n+m

)1/2(n+m

e

)n+m
2

×
∑

ν≤mn

(
n−m

2ν

)

(n−m− 2ν − 1)!! (n +m)−ν ·
∑

µ

22µf(2ν, µ)

= n!
∑

m≤mn

f(m)

m! (n+m− 1)!

(
πe

n+m

)1/2(n+m

e

)n+m
2

×
∑

ν≤mn

(n−m− 2ν − 1)!!

(n−m− 2ν)! (2ν)!
(n+m)−ν ·

∑

µ

22µf(2ν, µ).

cf. (5.13). The sum over µ is e−1(2ν)!(1 + O(1/ν)), see (5.14). So the sum

over ν is asymptotic to

e−1

(n−m)!!

∑

ν≤mn

(n+m)−ν
ν−1∏

j=0

(n−m− 2j) ∼ e−1

(n−m)!!

∑

ν≤mn

e−
ν2

n
− 2νm

n .

Thus, since f(m)/m! = e−1
√

2
πm (1 +O(m−1)), the m-term in the resulting

sum is (within a factor 1 +O(m−1))

e−2

√

2

πm
· n!

(n−m)!! (n +m− 1)!

(
e

n+m

)1/2(n+m

e

)n+m
2

×
∑

ν≤mn

e−
ν2

n
− 2νm

n

∼ e−3/2

√

2

π2m
· e−m2

2n

∑

ν≤mn

e−
ν2

n
− 2νm

n .

So

∑

Π1,Π2

PC4(Π1,Π2) . e−3/2

√

2

π2

∑

m, ν≤mn

1 +O(m−1)

m1/2
e−

m2

2n
− 2νm

n
− ν2

n ∼ cn3/4,

c := e−3/2

√

2

π2

∫∫

x, y≥0

x−1/2e−
x2

2
−2xy−y2 dxdy ≈ 0.617.

Thus, since E[Sn] is of order n1/4, we have

Theorem 5.8. E
[
S2
n

]
. cn3/4.
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With extra work, we could have proved that E
[
S2
n

]
& cn3/4, as well. Since

E
[
S2
n

]
≫ E2[Sn], we cannot deduce that Sn → ∞ in probability, even though

E[Sn] → ∞. We firmly believe that the argument itself may help to define

a subset of stable partitions for which the two-moments approach will work

just fine. For now we are content to use the techniques above to prove a

result that would have been out of reach if not for the analysis of E
[
S2
n].

Theorem 5.9. Let qn denote the fraction of members that have more than

one stable predecessor. Then E[qn] . 2ec n−1/4, so that with high probability

almost all members have a unique stable predecessor.

Proof. It suffices to consider the members outside the odd cycles. If any

such member has some two stable partners, it belongs to a cycle of even

length ≥ 4 formed by the alternating pairs matched in the corresponding

stable partitions Π1 and Π2. Notice that selecting every other edge of those

cycles, we get a stable partition. Therefore, without loss of generality we can

assume thatΠ1 andΠ2 form a unique cycle of even length 2ν ≥ 4. It follows

that Qn, the total number of members with at least two stable partners, is

below the total length of the single cycles formed by these special pairs of

stable partitions Π1 and Π2. The bound does look crude, but it works.

To bound the total expected length of those cycles, we need to estimate
∑

2ν(Π1,Π2)PC4(Π1,Π2). For those pairs we have µ := µ(Π1,Π2) = 1,

and
∑

µ 2
2µf(2ν, µ) = 2(2ν − 1)!. Therefore

E[Qn] .
∑

Π1,Π2

2ν(Π1,Π2)PC4(Π1,Π2) . 2ec n3/4.

�
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[1] D. J. Abraham, P. Biró and D. F. Manlove, “Almost stable” matchings in the room-

mates problem, Proceedings of WAOA ’05: the 3rd Workshop on Approximation and

Online Algorithms, Lecture Notes in Computer Science, 3879 (2006) 1–14.

[2] J. Alcalde, Exchange-proofness or divorce proofness? Stability in one-sided matching

markets, Economic Design 1 (1995) 275–287.

[3] G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press

(1999).
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