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ABSTRACT. In chomp on graphs, two players alternatingly pick an edge or a vertex
from a graph. The player that cannot move any more loses. The questions one wants
to answer for a given graph are: Which player has a winning strategy? Can a explicit
strategy be devised? We answer these questions (and determine the Nim-value) for the
class of generalized Kneser graphs and for several families of Johnson graphs. We also
generalize some of these results to the clique complexes of these graphs. Furthermore,
we determine which player has a winning strategy for some classes of threshold graphs.

1. INTRODUCTION

Let P be a partially ordered set with a global minimum 0. In the game of chomp on
P (also know as poset game), two players A and B alternatingly pick an element of
P with A being the first player. Whoever is forced to pick 0 loses the game. A move
consists of picking an element x ∈ P and removing its up-set, that is, all the elements
that are larger or equal to x. The questions one wants to answer for a given P are:

Has either of the players a winning strategy? Can a strategy be devised explicitly?
An easy and well-known observation with respect to the first of these questions is the

following:

Remark 1.1. If P is a finite poset with a global maximum 1, then player A has a
winning strategy. This can be proved with an easy (non-constructive) strategy stealing
argument. Indeed, if A starting with 1 cannot be extended to a winning strategy, then B
has a devastating reply x ∈ P . But in this case, A wins starting with x.

One of the most well-known and probably oldest games that is an instance of chomp
is Nim [2], where P consists of a disjoint union of chains plus a global minimum. The
first formulation in terms of posets is due to Schuh [17], where the poset is that of all
divisors of a fixed number N , with x below y when y|x. A popular special case of this
is the chocolate-bar-game introduced by Gale [8], where P is a finite grid. Another
variant is to play chomp on the Boolean lattice, i.e., the inclusion order on all subsets of
an n-element set. It was conjectured by Gale and Neyman in the 80s [9], that here taking
the maximum element is always a good first move. After this was verified for n ≤ 6
in the 90s [6], it was shown that the conjecture fails for n = 7 [4]. Recently, chomp
was studied in [10] for infinite posets arising from numerical semigroups and several
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algebraic properties could be used to establish winning strategies. There is a rich body
of research on chomp with respect to different classes of posets. For more information
on the game and its history, we refer to [1, 3, 7].

This paper concerns chomp on (finite) simplicial complexes partially ordered by in-
clusion and we mostly investigate the chomp game on graphs, where the graph is re-
garded as a simplicial complex. Hence, the players take turns to remove either an edge
or a vertex (and all its incident edges), and the player who cannot move because the
remaining graph is the empty graph, loses. The game of chomp on graphs has been
studied in [13, 16]. In [13] the authors provide the Nim-value of bipartite graphs, com-
plete multipartite graphs (see Theorem 2.4), some families of pseudotrees, and state
some conjectures concerning the Nim-values of pseudotrees. In [16], the author proves
some of these conjectures and obtains the Nim-values of some other families of graphs,
including some wheels and fans. Moreover, the (simple) pseudo-forests that are second-
player win are characterized.

Our results. After introducing some basics, in Section 2 we provide an explicit
formula for the Nim-values of generalized Kneser graphs (Theorem 2.3). Also in this
section we are able to decide which player has a winning strategy for the chomp game on
the clique complex of generalized Kneser graphs (Corollary 2.15). In Section 3 we study
Johnson graphs and provide a formula for their Nim-values under certain hypotheses
(Propositions 3.2 and 3.3). In Proposition 3.5 we provide a negative result showing
that our methods cannot be pushed forward to compute the Nim-value of every Johnson
graph. Whenever we are able to obtain the Nim-value of a Johnson graph we prove that
this value equals the one of its clique complex (Proposition 3.4). Finally, in Section 4
we study certain families of threshold graphs.

Whenever we are able to decide the outcome of the chomp game, we are also able to
devise an explicit winning strategy. The sole exception is Corollary 2.15, whose proof
relies on the non-constructive strategy stealing argument of Remark 1.1, and we do not
know an alternative constructive proof.

We finish the paper with some concluding remarks in Section 5.

1.1. A little notation. When playing chomp on finite posets, the game finishes after a
finite number of moves and, since there are no draws, one of the players has a winning
strategy (this is a particular case of the classical Zermelo’s theorem in game theory, see,
e.g., [19]). For a given poset P with a minimum, we denote Chomp(P ) ∈ {A,B}
as follows: Chomp(P ) = A if the first player to move on P has a winning strategy,
and Chomp(P ) = B otherwise. When Chomp(P ) = A, we say that P is a winning
position, otherwise we say that P is a losing position.

Given P1 and P2 two posets with a global minimum each, we denote by P1 ∪0 P2 the
poset obtained by identifying both minima and without any extra comparability. When-
ever Chomp(P1) = B, then it is easy to check that Chomp(P1 ∪0 P2) = Chomp(P2).
However, when Chomp(P1) = Chomp(P2) = A, then Chomp(P1 ∪0 P2) can be either
A or B. To handle this situation and to be able to decide which player has a winning
strategy on P1 ∪0 P2, it is convenient to introduce the concept of Nim-value of a poset
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FIGURE 1. KG(5, 2, 0) is the Petersen graph.

P , denoted by Nim(P ). This value is defined inductively as follows: Nim(P ) = 0 if
P = {0}, or

Nim(P ) = mex{Nim(Px) |x ∈ P \ {0}} ∈ N,
where Px denotes the poset obtained after removing the up-set of x ∈ P , and for a finite
A ⊂ N, mex(A) denotes the minimum excluded value of A, i.e., the smallest value
n ∈ N such that n /∈ A. From this definition it is not difficult to see that

Chomp(P ) = B if and only if Nim(P ) = 0.

Indeed, if P is a poset with Nim(P ) = 0 and one player plays on P , the resulting poset
is Px for some x ∈ P and, by definition, Nim(Px) 6= 0. Conversely, if Nim(P ) 6= 0,
there exists an element x ∈ P such that Nim(Px) = 0, so it suffices to choose such an x
to devise a winning strategy. The main interest of knowing the Nim-value is explained
in the following classic result of Sprague and Grundy.

Theorem 1.2. [11, 18] Let P1 and P2 be two posets with a unique minimum. Then,

Nim(P1 ∪0 P2) = Nim(P1)⊕ Nim(P2),

where a⊕ b is the nonnegative integer whose binary encoding is the binary XOR oper-
ation on the binary encodings of a and b.

2. CHOMP ON GENERALIZED KNESER GRAPHS

The goal of this section is to compute the Nim-value of generalized Kneser graphs.

Definition 2.1. For every triplet (n, k, l) ∈ N × Z2, the generalized Kneser graph
KG(n, k, l) is the graph whose vertices correspond to the k-element subsets of the set
[1, n] := {1, . . . , n}, and where two vertices are adjacent if and only if the two corre-
sponding sets intersect in at most l elements (see Figure 1 for an example).
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Classical Kneser graphs correspond to l = 0 in this definition. For convenience we
have defined generalized Kneser graphs for all triplets (n, k, l) ∈ N × Z2; however, by
definition we have the following.

Lemma 2.2. Let (n, k, l) ∈ N× Z2. Then,
(a) KG(n, k, l) is the empty graph if and only if k < 0 or n < k.
(b) KG(n, k, l) has no edges if and only if it is the empty graph, l < 0 or n < 2k− l.

The Nim-value of the empty graph is 0 and, when a graph has no edges, its Nim-
value is either 0 or 1, and coincides with the number of vertices modulo 2. So, when
KG(n, k, l) has no edges, we trivially get that Nim(KG(n, k, l)) = 1 if and only if
KG(n, k, l) is not the empty graph and

(
n
k

)
is odd; and Nim(KG(n, k, l)) = 0 otherwise.

Another easy remark is that whenever l ≥ k − 1, then KG(n, k, l) = KG(n, k, k − 1)
and this coincides with K(n

k)
, the complete graph with

(
n
k

)
vertices. So, there is no loss

of generality in assuming that l < k.
All these easy considerations yield that it suffices to study the Nim-value of the graphs
KG(n, k, l) when (n, k, l) ∈ N3 and l < k. The following result, which is the main result
of this section, provides the Nim-value in all these cases.

Theorem 2.3. Let (n, k, l) ∈ N3 with l < k and set m := dlog2(k − l)e. Then,

Nim(KG(n, k, l)) =

((
n mod 2m

k mod 2m

)
mod 2

)
·
((bn/2mc
bk/2mc

)
mod 3

)
.

To prove this result we are going to demonstrate that the Nim-value of a generalized
Kneser graph coincides with the one of a complete multipartite graph, and then we will
conclude by applying the following result from [13].

Theorem 2.4. [13, Theorem 2] Let Kn1,...,nr denote the complete r-partite graph with
partitions of sizes n1, . . . , nr ∈ Z+. Then,

Nim(Kn1,...,nr) = (t mod 3); where t := |{i |ni is odd}|.
The tool we use is to exploit the many symmetries of generalized Kneser graphs. In

particular, we are going to use the following lemma.

Lemma 2.5. [16, Lemma 2.1] Let G = (V (G), E(G)) be a graph and let ϕ : V (G)→
V (G) be an automorphism of G such that

(a) ϕ ◦ ϕ = idV (i.e., ϕ is an involution), and
(b) {u, ϕ(u)} /∈ E for all u ∈ V .

Then, Nim(G) = Nim(H), where H = (V (H), E(H)) is the induced subgraph of G
whose vertices are the fixed points of ϕ, i.e., V (H) = {u ∈ V (G) |ϕ(u) = u}.

Let us illustrate this result with an example. Consider the graph G of Figure 2 and set
ϕ the involution of G sending ui 7→ vi, vi 7→ ui and w 7→ w for w /∈ {u1, u2, v1, v2};
then, the subgraph induced by the fixed points of ϕ is K5 and, by Lemma 2.5 and
Theorem 2.4, one gets that Nim(G) = Nim(K5) = 2.
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FIGURE 2. Nim(G) = Nim(K5) = 2.

An interesting feature of Lemma 2.5 is that it does not only reduce the computation
of the Nim-value of G to the one of the smaller graph H , but also exhibits a winning
strategy provided one knows a winning strategy for H . The idea is the following, if
Nim(H) = 0, then player B wins on chomp on H = (V (H), E(H)), thus whenever A
plays:

• u /∈ V (H), then B answers ϕ(u) /∈ V (H),
• {u, v} /∈ E(H), then B answers {ϕ(u), ϕ(v)} /∈ E(H), and
• a vertex or an edge in H , then B plays the corresponding winning answer in H .

Analogously, if Nim(H) > 0 and player A wins on chomp on H = (V (H), E(H)),
then A plays the winning move in H and continues playing as described before.

As a direct consequence of Lemma 2.5, we have the following result that applies for
join graphs. Given to graphs G1 = (V1, E1) and G2 = (V2, E2), the join graph of G1

and G2, which we denote by G1 + G2 is the graph with vertices V1 ∪ V2 and edges
E1 ∪ E2 ∪ (V1 × V2).

Corollary 2.6. LetG = G1 +G2 be the join graph ofG1 = (V1, E1) andG2 = (V2, E2)
and, for i = 1, 2, let ϕi : Vi → Vi be an automorphism of Gi such that

(a) ϕi ◦ ϕi = idVi , and
(b) {u, ϕi(u)} /∈ Ei for all u ∈ Vi.

Then, Nim(G) = Nim(G′), where G′ = H1 + H2, and Hi is the induced subgraph of
Gi with vertices are the fixed points of ϕi, i.e., V (Hi) = {u ∈ Vi |ϕi(u) = u}.
Proof. It suffices to consider ϕ : V1 ∪ V2 → V2 ∪ V2 the only automorphism extending
ϕ1 and ϕ2. It is straightforward to check that ϕ satisfies the hypotheses of Lemma 2.5
and, as a consequence, the result follows. �

In this section we will consider several times a particular type of involution of induced
subgraphs of KG(n, k, l) which is given by a permutation π ∈ Σn of order 2; this type
of involutions is described in the following technical lemma:

Lemma 2.7. Let k ∈ [0, n] and let also
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• H = (V (H), E(H)) be an induced subgraph of KG(n, k, l), and
• π ∈ Σn be a permutation of order 2, i.e., π = (a1, a2) · · · (a2t−1, a2t) for some

different values a1, . . . , a2t ∈ [1, n].

Consider ϕπ ∈ Aut(KG(n, k, l)) defined as ϕπ({b1, . . . , bk}) := {π(b1), . . . , π(bk)}. If
(a) ϕπ(V (H)) = V (H), and
(b) t < k − l;

then Nim(H) = Nim(H ′), where H ′ is the induced subgraph of H with vertex set

V (H ′) := {u ∈ V (H) | a2i+1 ∈ u⇔ a2i+2 ∈ u for all i ∈ [0, t− 1]}.
Proof. The morphism ϕπ : V (H) −→ V (H) is well defined, it is an involution (because
π is of order 2) and ϕπ is an automorphism of H (because |u∩ v| = |ϕπ(u)∩ϕπ(v)| for
all u, v ∈ V (H) andH is an induced subgraph ofKG(n, k, l)). Moreover, {u, ϕπ(u)} /∈
E(H) because |u ∩ ϕπ(u)| ≥ k − t > l. It suffices to observe that

{u ∈ V (H) |ϕπ(u) = u} = {u ∈ V (H) | a2i+1 ∈ u⇔ a2i+2 ∈ u, ∀i ∈ [0, t− 1]}
and apply Lemma 2.5 to get the result. �

The following lemma will be crucial to prove our result.

Lemma 2.8. Let m ∈ Z+ such that 2m < min(2(k− l), n+ 1) and set Im := [1, 2m] =
{1, . . . , 2m}; then

Nim(KG(n, k, l)) = Nim(Hm),

where Hm is the induced subgraph of KG(n, k, l) with vertex set

V (Hm) := {u ∈ V (KG(n, k, l)) | Im ⊆ u or Im ∩ u = ∅}.
Proof. We set M := 2m and consider iterative applications of Lemma 2.7 with the
following permutations π1, . . . , πm:

π1 := (1, 2)(3, 4)(5, 6) · · · (M − 1, M),
π2 := (1, 3)(2, 4)(5, 7) · · · (M − 2, M),

. . .
πi :=

∏
j∈{1,...,M}

0<(j mod 2i)≤2i−1
(j, j + 2i−1),

. . .
πm := (1, M

2
+ 1)(2, M

2
+ 2) · · · (M

2
, M).

We observe that each of the πi’s is a product of M/2 = 2m−1 < k − l transpositions
and, thus, we may apply Lemma 2.7. As a consequence of iteratively applying Lemma
2.7 with π1, . . . , πm−1 we get that the fixed vertices after the application of πi for all i
are those of Hm; hence Nim(KG(n, k, l)) = Nim(Hm) and the result follows. �

As a consequence of the previous Lemma we get the following result. This result
relates the Nim-value of a generalized Kneser graph with the one of the join graph of
two smaller generalized Kneser graphs.
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Proposition 2.9. Let (n, k, l) ∈ N3 such that 2 ≤ k − l and take m ∈ Z+ such that
k − l ≤ 2m < 2(k − l). If 2m ≤ n, then:

Nim(KG(n, k, l)) = Nim(KG(n− 2m, k, l) +KG(n− 2m, k − 2m, l − 2m)).

Proof. By Lemma 2.8, we have that Nim(KG(n, k, l)) = Nim(Hm), with Hm is the
induced subgraph of KG(n, k, l) with vertex set

V (Hm) := {u ∈ V (KG(n, k, l)) | Im ⊆ u or Im ∩ u = ∅};
where Im = [1, . . . , 2m]. Taking G1 the induced subgraph with vertex set

V (G1) := {u ∈ V (KG(n, k, l)) | Im ⊆ u}
it turns out that G1 ' KG(n− 2m, k− 2m, l− 2m), and taking G2 the induced subgraph
with vertex set

V (G2) := {u ∈ V (KG(n, k, l)) | Im ∩ u = ∅}
it turns out that G2 ' KG(n−2m, k, l). Finally, we observe that for all u ∈ V (G1), v ∈
V (G2) we have that {u, v} ∈ E(Hm) because |u ∩ v| ≤ k − 2m ≤ l. �

The general idea in the proof of Theorem 2.3 is to first apply Proposition 2.9 to
get that the Nim-value of a generalized Kneser graph equals the Nim-value of the join
of two (smaller) generalized Kneser graphs. Then, by Corollary 2.6, we may apply
iteratively Proposition 2.9 to these smaller graphs until the number of vertices of the
resulting graphs is < 2m. Hence, we stop this procedure when the resulting graph is a
join of several graphs of the form KG(n − t2m, k − i2m, l − i2m) for some 0 ≤ i ≤ t
and n − t2m < 2m. It turns out that all these smaller graphs do not have edges and,
thus, the resulting graph is a complete multipartite graph. Therefore we derive that
the Nim-value of a generalized Kneser graph coincides with that of a certain complete
multipartite graph, and apply Theorem 2.4 to conclude the result.

Proof of Theorem 2.3. If l = k − 1, then m = 0. Moreover, KG(n, k, l) equals the
complete graph on

(
n
k

)
vertices and, by Theorem 2.4, we have that Nim(KG(n, k, l)) =

(
(
n
k

)
mod 3). Hence the result holds for l = k − 1.

From now on, we assume that l ≤ k − 2. If n ≥ 2m, we apply Proposition 2.9 and
get that

Nim(KG(n, k, l)) = Nim(KG(n− 2m, k, l) +KG(n− 2m, k − 2m, l − 2m)).

If n− 2m ≥ 2m, we can apply again Proposition 2.9 together with Corollary 2.6 and get
that

Nim(KG(n, k, l)) = Nim( KG(n− 2 · 2m, k, l)+
2 · KG(n− 2 · 2m, k − 2m, l − 2m)+
KG(n− 2 · 2m, k − 2 · 2m, l − 2 · 2m)).

;
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where 2 ·G denotes the join graph G+G and, in general, m ·G denotes (m−1) ·G+G
for m ∈ N. If we set t := bn/2mc and repeat this argument we get that

Nim(KG(n, k, l)) = Nim

(
t∑
i=0

(
t

i

)
· KG(n− t 2m, k − i2m, l − i2m)

)
.

Moreover, for each i ∈ {0, . . . , t}, by Lemma 2.2, we have that KG(n − t 2m, k −
i2m, l− i2m) is the empty graph if and only if n− t2m < k− i2m or k− i2m < 0; thus,
it only remains to consider the values i such that

k − n
2m

+ t ≤ i ≤ k

2m
.

If there is no integer value in the interval [k−n
2m

+ t, k
2m

], then Nim(KG(n, k, l)) =

Nim(∅) = B and
(
n−bn/2mc 2m
k−bk/2mc2m

)
=
(
n mod 2m

k mod 2m

)
= 0, which is even and the result fol-

lows. If [k−n
2m

+ t, k
2m

] ∩ N 6= ∅ then it has only one element j := bk/2mc. So,

Nim(KG(n, k, l)) = Nim

((
t

j

)
· KG(n− t2m, k − j2m, l − j2m)

)
.

We claim that KG(n − t2m, k − j2m, l − j2m) has no edges. Indeed, if we set n′ :=
n− t2m, k′ := k − j2m and l′ := l − j2m, we observe that if l′ < 0, then KG(n′, k′, l′)
has no edges and if l′ ≥ 0, we have that the following inequalities hold

2k′ − l′ ≥ 2(k′ − l′) = 2(k − l) > 2m > n′;

thus, by Lemma 2.2, KG(n′, k′, l′) has no edges. Hence, the resulting graph a complete(
t
j

)
-partite graph and each of the partitions has

(
n−t2m
k−j2m

)
vertices. Now the result follows

from Theorem 2.4. If
(
n−t2m
k−j2m

)
is even, then Nim(KG(n, k, l)) = 0. Otherwise, it is(

t
j

)
(mod 3). �

Corollary 2.10. Let (n, k, l) ∈ N3 with l < k and set m := dlog2(k − l)e. Then,

Nim(KG(n, k, l)) = A if and only if 2 -
(
n mod 2m

k mod 2m

)
and 3 -

(bn/2mc
bk/2mc

)
.

Given p a prime number, a classical result by Kummer [14] states that the biggest
power of p that divides

(
a+b
a

)
(also called the p-valuation) coincides with the number of

carries when a and b are added in base p. Also a nice result by Lucas [15] provides a
formula to compute the value of a binomial coefficient modulo p. Both results have as
corollary that p divides

(
a+b
a

)
if and only if there is a carry when a and b are added in

base p. Thus one could restate Theorem 2.3 in terms of the binary and ternary encoding
of n, k and l.
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2.1. Chomp on the clique complex of KG(n, k, l).
Given a graphG = (V (G), E(G)), we recall that a clique ofG is a subset V ′ ⊂ V (G)

such that the edge {u, v} ∈ E(G) for all distinct u, v ∈ V ′. We denote by C(G) the
clique complex of G, that is, the simplicial complex with vertex set V (G), and whose
faces are the cliques ofG. Moreover, for s ∈ N, we denote by Cs(G) the (s−1)-skeleton
of C(G), that is, the simplicial complex whose vertex set is V (G), and whose faces are
the cliques of G of size ≤ s. We observe that C(G) = Cs(G) for all s ≥ |V (G)| (or
for any s greater or equal to the clique number of the graph). Since C0(G) is the empty
simplicial complex and the only non-empty faces of C1(G) are the vertices of the graph,
the interesting cases are when s ≥ 2. The faces of any simplicial complex are partially
ordered by inclusion, hence, it makes sense to play chomp in Cs(G) with s ∈ N.

The following result, which has the same hypotheses of Lemma 2.5, reduces the
computation of Nim(Cs(G)) to the computation of the Nim-value of the clique complex
of an induced subgraph of G.

Lemma 2.11. Let s ∈ N, G = (V (G), E(G)) be a graph and ϕ ∈ Aut(G) such that
(a) ϕ ◦ ϕ = idV , and
(b) {u, ϕ(u)} /∈ E for all u ∈ V .

Then, Nim(Cs(G)) = Nim(Cs(H)), whereH = (V (H), E(H)) is the induced subgraph
of G whose vertices are the fixed points of ϕ, i.e., V (H) = {u ∈ V (G) |ϕ(u) = u}.

Lemma 2.11 is a generalization of Lemma 2.5 and a direct consequence of the follow-
ing one, which appeared in a preliminary version of [7]. Since this result disappeared in
the final version of [7], we include here their original proof.

Lemma 2.12. Let (P,≤) be a finite poset and let ψ : P → P such that
(a) ψ ◦ ψ = idP ,
(b) x ≤ y if and only if ψ(x) ≤ ψ(y), and
(c) the subposet F of P with vertices {x ∈ P |ψ(x) = x} (the fixed points of ψ), is

a down-set.
Then, Nim(P ) = Nim(F ).

Proof. Let F ′ be a copy of the poset F disjoint from P . By Theorem 1.2, Nim(P ) =
Nim(F ) if and only if Nim(P ∪0 F ′) = 0. Moreover, this is equivalent to check that
Chomp(P ∪0 F ′) = B. To prove the result we are going to devise a winning strategy
for player B on P ∪0 F ′. The strategy is the following: whenever A picks an element in
F (respect. in F ′), then B picks the same element in F ′ (respect. in F ) and, whenever
A picks an element y ∈ P \ F , then B chooses ψ(y). Since F is a down-set, this latter
pair of moves does not disturb F or F ′. Since P is finite, player A will eventually be
forced to pick 0 and, hence, this is a winning strategy for B. �

An easy application of Lemma 2.11 yields the following result (which generalizes
Theorem 2.4).

Proposition 2.13. Let s ∈ N, then,
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Nim(Cs(Kn1,...,nr)) = Nim(Cs(Kt)); where t := |{i |ni is odd}|.
Thus, if one follows the lines of the proof of Theorem 2.3 replacing Lemma 2.5 by

Lemma 2.11 and Theorem 2.4 by Proposition 2.13, one gets the following result:

Theorem 2.14. Let s ∈ N, (n, k, l) ∈ N3 with l < k and set m := dlog2(k − l)e. Then,

Nim(Cs(KG(n, k, l))) =

((
n mod 2m

k mod 2m

)
mod 2

)
· Nim(Cs(Kt)),

where t =
(bn/2mc
bk/2mc

)
.

So, the computation of the Nim-value of the (s − 1)-skeleton of the clique complex
of any generalized Kneser graph reduces to the one of Nim(Cs(Kt)) for some t ∈ N.
The value of Nim(Cs(Kt)) is not known in general. When s ≤ 2, by Theorem 2.4, we
have that Nim(Cs(Kt)) = (t mod (s + 1)). For any value of s ∈ N, Gale and Neyman
[9] conjectured that Nim(Cs(Kt)) = 0 if and only if s + 1 divides t, however, Brauer
and Christensen [4] disproved this conjecture by showing that the first player loses in
the chomp game on C3(K7) and, thus, C3(K7) = 0. When s ≥ t, the simplicial complex
Cs(Kt) = C(Kt) has a maximum (the set of all vertices of the graph), and the ’strategy
stealing’ argument of Remark 1.1 yields Chomp(C(Kt)) = A for all t ≥ 1 and, hence,
Nim(C(Kt)) > 0. Even if we know that Chomp(C(Kt)) = A for all t ≥ 1, the problem
of finding an explicit winning strategy for this simplicial complex is still open. Indeed,
it was conjectured by Gale and Neyman [9] that taking the maximum is the (unique)
winning move and proved in the same paper that it this is true for n ≤ 5, and later
by Christensen and Tilford [6] for n = 6. Recently, Brauer and Christensen [4] have
proved that this is no longer true for n = 7, where the winning move is to take a set of
4 elements.

As a consequence of Theorem 2.14 and the fact that Chomp(C(Kt)) = A if and only
if t ≥ 1, we have the following result which characterizes which player has a winning
strategy in the clique complex of any generalized Kneser graph:

Corollary 2.15. Let (n, k, l) ∈ N3 with l < k ≤ n and set m := dlog2(k − l)e. Then,

Chomp(C(KG(n, k, l))) = A ⇐⇒
(
n mod 2m

k mod 2m

)
is odd.

3. CHOMP ON JOHNSON GRAPHS

In this short section we will study the chomp game on Johnson graphs.

Definition 3.1. For every pair (n, k) ∈ N2 with 0 ≤ k ≤ n, the Johnson graph J (n, k)
is the graph whose vertices correspond to the k-element subsets of a set of n elements,
and where two vertices are adjacent if and only if the two corresponding sets intersect
in exactly k − 1 elements (see Figure 3 for an example).
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FIGURE 3. The Johnson graph J (4, 2).

For Johnson graphs, we will follow a similar strategy as in the previous section and
see how we can exploit the symmetries of Johnson graphs to obtain the Nim-value when
either both n and k are even (Proposition 3.2), and when n = 2k (Proposition 3.3). In
order to show that the same strategy cannot be used to obtain the Nim-value of any
Johnson graph, we will see in Proposition 3.5 that for all other pairs (n, k), there are no
nontrivial involutions satisfying the hypotheses of Lemma 2.5. In fact, for these pairs
we do not know which player has a winning strategy. The smallest such Johnson graph
is J (5, 2) – the complement of the Petersen graph.

Proposition 3.2. Let (n, k) ∈ N2 with 0 ≤ k ≤ n. If k and n are even, then:

Nim(J (n, k)) =

(
n

k

)
mod 2.

Proof. Set π := (1, 2)(3, 4) · · · (n − 1, n) ∈ Σn and consider ϕπ the map on the
vertices of J (n, k) defined as

ϕπ({b1, . . . , bk}) := {π(b1), . . . , π(bk)}.
Since π is a permutation of order 2, then ϕπ is an involution. Moreover, ϕπ is an
endomorphism of G (indeed, it is an isomorphism). Moreover, {u, ϕπ(u)} is never an
edge of J (n, k) because by construction |u ∩ ϕπ(u)| is even and k − 1 is odd. Thus,
the hypotheses of Lemma 2.5 are satisfied and Nim(J (n,K)) = Nim(H), where H is
the subgraph induced by the fixed points of ϕ(π). We observe that for any two vertices
u, v, if u = ϕπ(u) and v = ϕπ(v), then |u∩ v| is even and, hence, {u, v} is not an edge.
Since H is a graph without edges and with

(
n/2
k/2

)
vertices, Nim(H) equals

(
n/2
k/2

)
mod 2 .

To finish the proof it suffices to observe that
(
n/2
k/2

)
and

(
n
k

)
have the same parity because

both n and k are even. �

Proposition 3.3. Let k ∈ N, then

Nim(J (0, 0)) = 1, Nim(J (2, 1)) = 2 and Nim(J (2k, k)) = 0 for all k ≥ 2.
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Proof. Since J (0, 0) = K1 and J (2, 1) = K2, Nim(J (0, 0)) = 1 and Nim(J (2, 1)) =
2. Assume now that k ≥ 2. Set ϕ the involution on the set of vertices of J (2k, k)
defined as ϕ(u) := {1, . . . , 2k} \ {u}. We observe that {u, ϕ(u)} is never an edge and
that ϕ has no fixed points. Thus, by Lemma 2.5, we conclude that Nim(J (2k, k)) =
Nim(∅) = 0. �

The proofs of propositions 3.2 and 3.3 consist of applying Lemma 2.5 to get a graph
without edges. Thus, the Nim-value only depends on the parity of the number of vertices
of the resulting graph, which coincides with the parity of the number of vertices of the
original Johnson graph. If we consider the clique complex of the Johnson graph or its
(s− 1)-skeleton (see Subsection 2.1), and use Lemma 2.11 in an analogous way, we get
the following result.

Corollary 3.4. Let (n, k) ∈ N2 with 0 ≤ k ≤ n. If k and n are even or n = 2k, then
Nim(Cs(J (n, k))) = Nim(J (n, k)) for all s ≥ 1.

In the proofs of Proposition 3.2 and Proposition 3.3, we have considered the following
automorphisms of Johnson graph’s:

(1) the relabeling map ϕπ({b1, . . . , bk}) = {π(b1), . . . , π(bk)}, where π ∈ Σn is a
permutation, and

(2) when n = 2k, the complementation map σ(u) = [1, n] \ u.
Indeed, according to [5] (see also [12, Theorem 2]), the group of automorphisms of
J (n, k) is exactly {ϕπ | π ∈ Σn} ' Σn when n 6= 2k, and{ϕπ |π ∈ Σn}∪{ϕπ ◦σ |π ∈
Σn} when n = 2k.

Proposition 3.5. If n 6= 2k and either n or k is odd. Then, the only involution ofJ (n, k)
satisfying the hypotheses of Lemma 2.5 is the identity.

Proof. When n 6= 2k, the automorphisms that are also involutions are {ϕπ | π is a per-
mutation of order 2}. If ϕπ is not the identity, we may assume without loss of gen-
erality that π = (1, 2) · · · (2t − 1, 2t) for some t ≥ 1. For k odd, we consider
the vertex u := {1, 3, . . . , k + 1} and observe that {u, ϕπ(u)} is an edge because
ϕπ(u) = {2, 3, . . . , k + 1}; hence ϕπ does not satisfy the hypotheses of Lemma 2.5.
For k even and n odd, we consider the vertex u := {1, n − k + 1, . . . , n} and observe
that {u, ϕπ(u)} is an edge because ϕπ(u) = {2, n − k − 1, . . . , n}; again here we
conclude that ϕπ does not satisfy the hypotheses of Lemma 2.5. �

4. CHOMP IN SOME SUBFAMILIES OF THRESHOLD GRAPHS

In this section we study the chomp game in some subfamilies of threshold graphs.
Given nonnegative integers n, k and ij ≤ n, with j = 1, . . . , k, we define the graph
Ki1,...,ikn as the graph containing a clique Kn with vertices {u1, . . . , un} and k new ver-
tices, {vi1 , . . . , vik}, such that vij is adjacent to {u1, . . . , uij} for every 1 ≤ j ≤ k. This
family of graphs is known as the family of threshold graphs.

We prove which player has a winning strategy for chomp on Kin for n ≥ i ≥ 0 (see
Table (b)) and for chomp on Kj,in for some values on i and j (see Tables (c), (d) and
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(e)). In order to prove these results, we use the following lemma that proves which
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FIGURE 4. The subscript in each letter A indicates which element is the
winning movement for player A where e = u1vi, f = u1v1, x is a vertex
of Kn different from u1, . . . , ui and w is an edge of Kn not incident to
the vertices u1, . . . , ui. The symbol “?” denotes that the problem is open
in this case.

player has a winning strategy for chomp in complete graphs and is a direct consequence
of Theorem 2.4.

Lemma 4.1 ([13, Lemma 1]). Player B has a winning strategy for chomp on Kn when
n ≡ 0 (mod 3), and loses otherwise (see Table (a)).

We first prove which player has a winning strategy for chomp on Kin for every i ≥ 0
when n = i, i+ 1, i+ 2.

Lemma 4.2. Let i ≥ 0 and n = i, i+ 1, i+ 2. Then player B has a winning strategy for
chomp on Kni when i, n ≡ 2 (mod 3), when i, n− 1 ≡ 0 (mod 3) and loses otherwise.

Proof. If n = i thenKii = Ki+1. If n = i+1, we notice that chomp inKii+1 is equivalent
to chomp in Ki since there exists an involution on vertices vi and the vertex of Kn not
adjacent to vi. Then, these cases can be solved by Lemma 4.1. If n = i + 2, we have
the following cases:

Case i ≡ 0 (mod 3). Player A wins by removing a vertex x different from u1, . . . , ui
since player A gives to player B the graph Kii+1. As chomp in Kii+1 is equivalent to
chomp in Ki, player A wins by Lemma 4.1.
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Case i ≡ 1 (mod 3). Player A wins by removing vertex vi since player A gives to
player B the graph Ki+2. Then player A wins by Lemma 4.1.

Case i ≡ 2 (mod 3). Player A wins by removing an edge w = xy of Kn not incident
to vertices u1, . . . , ui. As there exists an involution on vertices x and y in Kii+2 − w,
player A gives to player B the graph Ki+1. Then player A wins by Lemma 4.1. �

Next, we prove which player has a winning strategy for chomp on Kin for every n ≥
i ≥ 0 and i = 0, 1, 2.

Lemma 4.3. Let n ≥ i ≥ 0 and i = 0, 1, 2. Then player B has a winning strategy for
chomp on K0

n when n ≡ 1 (mod 3), for chomp on K2
n when n ≡ 2 (mod 3) and loses

otherwise.

Proof. For each i = 0, 1, 2, we proceed by induction on n where the base cases are
n = 0, 1, 2. For n = 0, Ki0 = K1 and player A wins. For n = 1, player B wins when
i = 0 sinceK0

1 consists of two isolated vertices and player A wins otherwise by deleting
the edge u1vi. For n = 2, player B wins when i = 2 by Lemma 4.1 and player A wins
otherwise by deleting vertex u1. Now suppose the lemma holds for i = 0, 1, 2 and every
positive integer j ≤ n − 1. Let us consider the graph Kin for n ≥ 3 and 0 ≤ i ≤ 2.
By induction hypothesis and by Lemma 4.1, one can check that player A wins in the
cases when appears the letter A in Table (b) by removing the element that the subscript
indicates. Next, we prove that player B wins for the two remaining cases.

First suppose that n ≡ 1 (mod 3) and i = 0. Then player A loses by removing any
element. If player A removes vertex vi, A loses by Lemma 4.1. If player A removes
any vertex of Kn, then A loses by induction hypothesis. If player A removes some edge
w = xy, then there exists an involution on vertices x and y in K0

n − w, giving to player
B the graph K0

n−2. As n− 2 ≡ 2 (mod 3) then player B wins by induction hypothesis.
Therefore, player A loses in any case.

Now suppose that n ≡ 2 (mod 3) and i = 2. Then player A loses by removing any
element. One can check that for all cases except one, player A gives to player B a graph
(or a graph who is equivalent in chomp to a graph) corresponding to a letter A in Tables
(a) or (b) with fewer vertices. Thus, the result holds by induction hypothesis for almost
all the cases. The special case is when player A removes an edge f = xu2 of Kn with
x 6∈ {u1, u2}. In this case the graph K2

n− f does not have involutions and is not a graph
of Tables (a) or (b). Nevertheless, player B can remove vertex v2. Hence, there exists
an involution on vertices x and u2 in K2

n − f − v2, giving to player A the graph Kn−2.
Hence, player A loses by Lemma 4.1. �

We are now able to prove the next theorem.

Theorem 4.4. Let n ≥ i ≥ 0. Then,

(i) player B has a winning strategy for chomp on Kin when n ≡ 1 (mod 3) and
i ≡ 0 (mod 3), when n ≡ 2 (mod 3) and i ≡ 2 (mod 3), and loses otherwise
(see Table (b)).
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(ii) playerB has a winning strategy for chomp onK0,i
n when n, i ≡ 0 (mod 3), when

n ≡ 2 (mod 3) and i ≡ 1 (mod 3), and loses otherwise (see Table (c)).
(iii) playerA has a winning strategy for chomp onK1,i

n when n, i ≡ 0 (mod 3), when
n ≡ 0 (mod 3) and i ≡ 2 (mod 3), when n ≡ 1 (mod 3) and i ≡ 0 (mod 3),
when n, i ≡ 1 (mod 3), when n ≡ 2 (mod 3) and i ≡ 1 (mod 3), and when
n, i ≡ 2 (mod 3) (see Table (d)).

(iv) player A has a winning strategy for chomp on Kj,in for every j ≥ 0 when n ≡ 1
(mod 3) and i ≡ 0 (mod 3), and when n, i ≡ 2 (mod 3) (see Table (e)).

Proof. (i). We prove by induction on n and i. Lemma 4.2 proves the cases n = i, i +
1, i+ 2 and every i ≥ 0. Lemma 4.3 proves the cases i = 0, 1, 2 and every n ≥ i. Now
suppose the theorem holds for Kjn when j ≤ i − 1 and n ≥ j, and also for Kim when
m ≤ n − 1 and i ≥ 0. Let us consider the graph Kin with i ≥ 3 and n ≥ i + 3. By
induction hypothesis and by Lemma 4.1, one can check that playerAwins whenever we
have a letter A in Table (b) by removing the element indicated by the subscript. Next,
we prove that player B wins for the two remaining cases.

When n ≡ 1 (mod 3) and i ≡ 0 (mod 3), player A loses by removing any element.
One can check that for all cases except one, player A gives to player B a graph (or
a graph with the same chomp value) corresponding to a letter A in Tables (a) or (b)
with fewer vertices. Hence, the result holds by induction hypothesis. The special case
is when player A removes an edge f = xuj , for some j ∈ {1, . . . , i}, where x 6∈
{u1, . . . , ui, vi}. In this case, the graph Kin − f does not have involutions and is not
a graph consider in Tables (a) or (b). Nevertheless, player B can remove the edge
e = viuj . Then, there exists an involution on vertices x and uj in Kin − f − e, giving to
player A the graph Ki−1n−2. As n− 2, i− 1 ≡ 2 (mod 3), player A loses also in this case
by induction hypothesis. Similar arguments occur when n, i ≡ 2 (mod 3).

(ii) and (iii). Table (c) shows which player wins for chomp on K0,i
n for every n ≥

i ≥ 0 and Table (d) shows, for some values of n and i, the winning positions of player
A of chomp on K1,i

n . We omit this proof since the ideas are similar to the proofs of
Lemmas 4.2, 4.3 and to (i). We notice that the subscript in each letter A of Tables
(c) and (d) indicates which element is a winning movement for player A because the
resulting graph corresponds to a position with letter B in Table (b) or (c).

(iv). For every j ≥ 0, we notice that player A wins when n ≡ 1 (mod 3) and i ≡ 0
(mod 3) by removing vertex vj , since player A gives to player B a graph corresponding
to a letter B in Table (b). The same occurs when n, i ≡ 2 (mod 3). �

We have not been able to complete all the cases in Tables (d) and (e). For instance,
we do not know the value of Chomp(K1,i

n ) for all possible values n ≡ 0 (mod 3) and
i ≡ 1 (mod 3). Nevertheless, taking i = 1, we have that Chomp(K1,1

n ) = B when
n ≡ 0 (mod 3) because Chomp(K1,1

n ) = Chomp(Kn). We wonder if player B has a
winning strategy for chomp on K1,i

n when n ≡ 0 (mod 3) and i ≡ 1 (mod 3).
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Similarly, for K1,2
n and n ≡ 1 (mod 3), we know that player A wins by removing the

vertex u2. We do not know if player A has a winning strategy for chomp on K1,i
n when

n ≡ 1 (mod 3) and i ≡ 2 (mod 3).
For chomp on K1,i

n when n ≡ 2 (mod 3) and i ≡ 0 (mod 3), we have a different
situation. Player B wins when i = 0 (see Table (c)) but loses when i = 3 since
player A can remove edge u2u3, the resulting graph is K1,1

n−2 and Chomp(K1,1
n−2) =

Chomp(Kn−2). Hence, one may conclude that Chomp(K1,i
n ) does not depend on the

parameters of the graph modulo 3 when n ≡ 2 (mod 3) and i ≡ 0 (mod 3). However,
we do not know what happens when the parameters 1, i are in increasing order, i.e., for
i ≥ 1?.

More generally, we wonder the following: for i1 ≤ . . . ≤ ik, does the outcome of
chomp on the threshold graph Ki1,...,ikn can be described only in terms of the parameters
i1, . . . , ik, n modulo 3?

5. CONCLUSIONS

We have enlarged the graph families for which Nim-values or winning-strategies for
chomp are known. The strongest results could be obtained in graphs (and their clique
complexes) with symmetries such as generalized Kneser graphs and certain Johnson
graphs. However, our method cannot be used for some families of Johnson graphs. We
think the next class to attack here are Johnson graphs of the form J (2k+ 1, 2), i.e., line
graphs of odd complete graphs.

Finally, we determined the chomp value of some threshold graphs. We observed some
patterns depending only on the parameters of the graph modulo three. Could it be true
that for i1 ≤ . . . ≤ ik, the value of Chomp(Ki1,...,ikn ) only depends on (n mod 3, i1
mod 3, . . . , ik mod 3)?
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