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Abstract
This paper analyzes the set of pure strategy subgame perfect Nash equilibria of any
finitely repeated game with complete information and perfect monitoring. The main
result is a complete characterization of the limit set, as the time horizon increases, of
the set of pure strategy subgame perfect Nash equilibrium payoff vectors of the finitely
repeated game. This model includes the special case of observable mixed strategies.

Keywords Finitely repeated games · Pure strategy · Observable mixed strategies ·
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1 Introduction

This paper provides a full characterization of the limit set, as the time horizon increases,
of the set of pure strategy subgame perfect Nash equilibrium payoff vectors of any
finitely repeated game. The obtained characterization is in terms of appropriate notions
of feasible and individually rational payoff vectors of the stage-game.These notions are
based on Smith’s (1995) notion of Nash decomposition and appropriately generalize
the classic notion of feasible payoff vectors as well as the notion of effective minimax
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payoff defined by Wen (1994). The main theorem nests earlier results of Benoit and
Krishna (1985), Smith (1995), and Demeze-Jouatsa and Wilson (2019).
Whether non-Nash outcomes of the stage-game can be sustained via subgame perfect
Nash equilibria of the finitely repeated game depends on whether players can be
incentivized to abandon their short term interests and to follow some collusive paths
that have greater long-run average payoffs. There are two extreme cases. On the one
hand, in any finite repetition of a stage-game that has a unique Nash equilibrium
payoff vector such as the prisoners’ dilemma, only the stage-game Nash equilibrium
payoff vector is sustainable by subgame perfect Nash equilibria of finite repetitions
of that stage-game. On the other hand, for stage-games in which all players receive
different Nash equilibrium payoffs such as the battle of sexes, the limit perfect folk
theoremholds: any feasible and individually rational payoff vector of the stage-game is
achievable as the limit payoff vector of a sequence of subgame perfect Nash equilibria
of the finitely repeated game as the time horizon goes to infinity.
Benoit and Krishna (1985) established that for the limit perfect folk theorem to hold,
it is sufficient that the dimension of the set of feasible payoff vectors of the stage-
game equals the number of players and that each player receives distinct payoffs at
Nash equilibria of the stage-game.1 Smith (1995) provided a weaker, necessary and
sufficient condition for the limit perfect folk theorem to hold. Smith (1995) showed
that it is necessary and sufficient that the Nash decomposition of the stage-game is
complete.2 The distinct Nash payoffs condition and the full dimensionality of the
set of feasible payoff vectors as in Benoit and Krishna (1985) or the complete Nash
decomposition of Smith (1995) allow us to construct credible punishment schemes
and to (recursively) leverage the behavior of any player near the end of the finitely
repeated game. These are essential to generate a limit perfect folk theorem. In the
case that the stage-game admits a unique Nash equilibrium payoff vector, Benoit
and Krishna (1985) demonstrated that the set of subgame perfect Nash equilibrium
payoff vectors of the finitely repeated game is reduced to the unique stage-game Nash
equilibrium payoff vector.
A part of the puzzle remains unresolved. Namely, for stage-games that do not admit
a complete Nash decomposition, what is the exact range of payoff vectors that are
achievable as the limit payoff vector of a sequence of subgame perfect Nash equilibria
of finite repetitions of that stage-game?3

1 Fudenberg and Maskin (1986) introduced the notion of full dimensionality of the set of feasible payoff
vectors and used it to provide a sufficient condition for the perfect folk theorem for infinitely repeated
games.
2 The Nash decomposition of a normal form game is a strictly increasing sequence of non-empty groups
of players. Players of the first group are those who receive at least two distinct Nash equilibrium payoffs
in the stage-game. The second group of players of the Nash decomposition, if any, contains each player of
the first group as well as some new players. New players are those who receive at least two distinct Nash
equilibrium payoffs in the new game that is obtained from the stage-game by setting the utility function
of each player of the first group equal to a constant. This idea can be iterated. After a finite number of
iterations, the player set no longer changes. The Nash decomposition is complete if its last element equals
the whole set of players.
3 Consider the following 4-player stage-game. Player 1 is a social planer who wishes to maximize the
welfare of a representative agent, player 2 is a monopolist in the market, and players 3 and 4 are potential
entrants to the market. The latter entrants need both approval and support of the planer (player 1) to enter the
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If the stage-game has an incomplete Nash decomposition, then the set of players
naturally breaks up into two blocks where the first block contains all the players
whose behavior can recursively be leveraged near the end of the finitely repeated
game (see Footnote 2 for details). In contrast, it is not possible to control short run
incentives of players of the second block. Therefore, each player of the second block
has to play a stage-game pure best response at any profile that occurs on a pure strategy
subgame perfect Nash equilibrium play path. Stage-game action profiles eligible for
pure strategy subgame perfect Nash equilibrium play paths of the finitely repeated
game are therefore exactly the stage-game pure Nash equilibria of what one could call
the effective one shot game, the game obtained from the initial stage-game by setting
the utility function of each player of the first block equal to a constant.
This restriction of the set of eligible actions for pure strategy subgame perfect Nash
equilibrium play paths has two main implications. Firstly, for a feasible payoff vector
to be approachable via pure strategy subgame perfect Nash equilibria of the finitely
repeated game, it has to be in the convex hull of the set of payoffs to profiles of
actions that are Nash equilibria of the effective one shot game. I introduce the concept
of enforceable payoff vector. I call a payoff vector enforceable if it belongs to the
convex hull of the set of payoff vectors to profile of actions that are Nash equilibria
of the effective one shot game. Secondly, as subgame perfect Nash equilibria are
protected against unilateral deviations even off-equilibrium paths, any player of the
second block has to be at her best response at any action profile occurring on a credible
punishment path. Therefore, only pure Nash equilibria of the effective one shot game
are eligible for credible punishment paths in any finite repetition of the original stage-
game. Consequently, a player of the first block can guarantee herself a payoff that is

Footnote 3 continued
market and make profit. Player 1 can choose either to open the market to the potential entrants (OM) or to
keep it closed (CM), player 2 can choose either to cooperate (C) or to deviate (D) and maximize her profit
in the detriment of consumers. Player 3 can choose up (U) or down (D) and player 4 can choose L or R.
The Payoffs of the game are given by the following table:

C D

CM
L R

U 3 3 0 0 3 3 0 0
D 3 3 0 0 3 3 0 0

L R
0 6 0 0 0 6 0 0
0 6 0 0 0 6 0 0

OM
U 2 0 3 1 2 0 1 3
D 2 0 1 3 1 1 3 1

2 2 0 0 1 0 0 0
1 0 0 0 1 1 0 0

This game admits two pure Nash equilibrium profiles with respective payoff vectors (2,2,0,0) and (1,1,0,0),
which are both strictly Pareto-dominated, for instance by the feasible payoff ( 178 , 19

8 , 1, 1). One might
wonder if in the finite repetitions of this game players could cooperate and achieve efficiency via equilibrium
strategies of the repeated game. As only players 1 and 2 receive distinct payoffs at pure Nash equilibria of the
stage-game, the distinct Nash payoff condition of Benoit and Krishna (1985) does not hold. Furthermore,
given any fixed profile of action of players 1 and 2, the 2-player induced game (played by players 3 and 4)
does not admit a pure Nash equilibrium that has a payoff that is different from (0, 0). This means that the
complete Nash decomposition condition of Smith (1995), which is necessary and sufficient for the finite
horizon perfect folk theorem, does not hold. As a consequence, the finite horizon perfect folk theorem
does not hold for this game. If it is immediate that players can cooperate and achieve some payoffs that
are weakly Pareto-superior to any stage-game Nash equilibrium payoff, for instance (2.7, 2.7, 0, 0) in 10
repetitions, it is not clear what is the exact set of payoffs vectors that can be achieved via subgame perfect
equilibria of the finitely repeated game.
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strictly greater than her effective minimax payoff. I call this new reservation payoff
the enforceable minimax payoff.
The main finding of this paper says that, as the time horizon increases, the set of
payoff vectors to pure strategy subgame perfect Nash equilibria of the finitely repeated
game converges to the set of enforceable payoff vectors that dominate the enforceable
minimax payoff vector.
The paper proceeds as follows. In Sect. 2 I introduce the model and the definitions.
Section 3 states the main finding of the paper and sketches the proof, and Sect. 4
concludes the paper. Proofs are provided in the Appendix.

2 Themodel

2.1 The stage-game

Let G = (N , A = ×i∈N Ai , u = (ui )i∈N ) be a stage-game where the set of players
N = {1, . . . , n} is finite and where for all player i ∈ N the set Ai of actions of player
i is compact. Given a player i ∈ N and an action profile a = (a1, . . . , an) ∈ A, let
ui (a) denote the stage-game utility of player i given the action profile a. Given an
action profile a ∈ A, i ∈ N a player, and a′

i ∈ Ai an action of player i , let (a′
i , a−i )

denote the action profile in which all players except player i choose the same action
as in a, while player i chooses a′

i . A stage-game pure best response of player i to
the action profile a is an action bi (a) ∈ Ai that maximizes the stage-game payoff
of player i given that the choice of other players is given by a−i . An action profile
a ∈ A is a pure Nash equilibrium of the stage-game G (denoted by a ∈ Nash(G)) if
ui (a′

i , a−i ) ≤ ui (a) for all player i ∈ N and all action a′
i ∈ Ai .

Each stage-game considered in this paper is compact in the sens that each Ai is
compact, and u is continuous. A stage-game could for instance be finite, the mixed
extension of another finite stage-game, or a game with a continum of actions for some
players.

Let γ be a real number that is strictly greater than any payoff a player might receive
in the stage-game G.4 A player is said to have distinct pure Nash payoffs in the stage-
game if there exist two pure Nash equilibria of the stage-game in which this player
receives different payoffs. Let τ(G) = (N , A, (u′

i )i∈N ) be the normal form game
where the utility function of player i is defined by

u′
i =

{
γ if i has distinct Nash payoffs in G
ui otherwise.

Let G0 := G and Gl+1 := τ(Gl) for all l ≥ 0. For all l ≥ 0, let Nl be the set of
players with a utility function that is constant to γ in the game Gl . As N is finite, there
is an h ∈ [0,+∞) such that Nl+1 = Nl for all l ≥ h. Let Ã = Nash(Gh) be the set of
pure Nash equilibria of the game Gh . We call Ã the enforceable action set. The set of

4 As the set A of action profiles is compact and the utility function u is continuous on A, the set u(A) =
{u(a) | a ∈ A} is compact and therefore bounded. This guarantees the existence of γ .
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A complete folk theorem for finitely repeated games 1133

enforceable payoff vectors of the game G is defined as the convex hull Conv[u( Ã)]
of the set u( Ã) = {u(a) | a ∈ Ã}. The sequence 0 � N1 � · · · � Nh is the Nash
decomposition of the game G, and the Nash decomposition is complete if Nh = N .5

Let ∼ be the equivalence relation defined on the set of players as follows: player i
is equivalent to j (denoted by i ∼ j) if there exist αi j > 0 and βi j ∈ R such that for all
a ∈ Ã, we have ui (a) = αi j · u j (a) + βi j . For all i ∈ N , let J (i) be the equivalence
class of player i and let

μ̃i = min
a∈ Ã

max
j∈J (i)

max
a′
j∈A j

[
αi j · u j (a

′
j , a− j ) + βi j

]
and μ̃ = (μ̃1, . . . , μ̃n).

The payoff μ̃i is the enforceable minimax of player i in the stage-game G.6

Call a payoff vector e-rational if it dominates the enforceable minimax payoff
vector μ̃. Let Ĩ = {x = (x1, . . . , xn) ∈ R | xi ≥ μ̃i for all i ∈ N } be the set of
e-rational payoff vectors.

The name “enforceable action” comes from Fudenberg et al. (2009) notion of
enforceability, which requires an action to be incentive compatible given some set of
continuation payoffs. The concepts of enforceable payoff and enforceable minimax
are respective generalizations of the classic concepts of feasible payoff and effective
minimax, viewed as indicators to derive the perfect folk theorem for finitely repeated
games. If each player receives (recursively) distinct payoffs at Nash equilibria of the
stage-game, then the behavior of each player can be leveraged if the game is finitely
repeated. In that case, the enforceable action set Ã equals the whole set A of action
profiles, the enforceable minimax equals the classic effective minimax, and the set of
enforceable payoffs vectors equals the set of feasible payoff vectors. In the other case,
the set of enforceable actions Ã is a proper subset of the whole set of profile of pure
actions, the set of enforceable payoff vectors is a proper subset of the classic set of
feasible payoff vectors, and the enforceable minimax of a player can be strictly greater

5 While being equivalent to Smith’s (1995) definition of Nash decomposition, ours is simpler and requires
to analyse no more than n simple transformations of the stage-game, while Smith’s definition requires, in
many cases, to analyse at least 2n−1 subgames, n being the number of players. Smith (1995) proved that
having a complete Nash decomposition is a necessary and sufficient condition for the limit perfect folk
theorem to hold. Under a complete Nash decomposition, the set of enforceable payoff vectors equals the
classic set of feasible payoff vectors and the enforceable minimax payoff vector equals the classic effective
minimax payoff vector. In that case, the main result (see Theorem 1) says that any feasible payoff vector
that dominates the effective minimax payoff vector is approachable via pure strategy subgame perfect Nash
equilibria of the finitely repeated game. That is the message of the limit perfect folk theorem. Benoit and
Krishna (1985) showed that, if the dimension of the set of feasible payoff vectors of the stage-game equals
the number of players and each player receives at least two distinct payoffs at pure Nash equilibria of the
stage-game, then the limit perfect folk theorem holds. This result is a particular case of the main result of
this paper, Theorem 1. Indeed, under the distinct stage-game Nash equilibrium payoffs condition of Benoit
and Krishna (1985), the Nash decomposition of the stage-game equals ∅ � Nh = N which is complete
and therefore the set of the enforceable payoff vectors equals the classic set of the feasible payoff vectors
and the enforceable minimax payoff vector equals the classic effective minimax payoff vector. Furthermore,
under the full dimensionality condition, the effective minimax payoff vector equals the minimax payoff
vector.
6 If the stage-game G does not have any pure Nash equilibrium, then the set of pure strategy subgame
perfect Nash equilibrium payoff vectors of the finitely repeated game is empty. If the stage-game G admits
at least one pure Nash equilibrium, then Ã is non-empty and μ̃ is well defined.
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Fig. 1 Equilibrium payoff vectors of players 1 and 2

than her effective minimax.7 Figure 1 uses the example of Footnote 3 to illustrate the
differences between our newly introduced concepts and the classic ones. Only payoffs
of players 1 and 2 are displayed. In that game, pure action profiles where player
1 chooses OM and player 2 chooses C are not enforceable. The effective minimax
payoff vector equals (1, 0, 0, 0) and the enforceable minimax payoff vector equals
(1, 1, 0, 0).8

2.2 The finitely repeated game

Let G be the stage-game. Given T > 0, let G(T ) denote the T -fold repeated
game obtained by repeating the stage-game T times. A pure strategy of player
i in the repeated game G(T ) is a contingent plan that provides for each history
the action chosen by player i given this history. That is, a strategy is a function
σi : ⋃T

t=1 A
t−1 → Ai where A0 contains only the empty history.9 The strategy profile

σ = (σ1, . . . , σn) of G(T ) generates a play path π(σ) = [π1(σ ), . . . , πT (σ )] ∈ AT

and player i ∈ N receives a sequence (ui (πt (σ ))1≤t≤T of payoffs. The preferences
of player i ∈ N among strategy profiles are represented by the average payoff
uTi (σ ) = 1

T

∑T
t=1 ui [πt (σ )]. A strategy profile σ = (σ1, . . . , σn) is a pure strat-

egy Nash equilibrium of G(T ) if uTi (σ ′
i , σ−i ) ≤ uTi (σ ) for all i ∈ N and for all pure

strategies σ ′
i of player i . A strategy profile σ = (σ1, . . . , σn) is a pure strategy sub-

game perfect Nash equilibrium of G(T ) if given any t ∈ {1, . . . , T } and any history
ht ∈ At−1, the restriction σ|ht of σ to the history ht is a Nash equilibrium of the finitely
repeated game G(T − t + 1).

7 Exceptions are degenerated games where at least one player has a constant utility function.
8 Note that the enforceable minimax payoff vector weakly Pareto-dominates the effective minimax payoff
vector.
9 If the stage-game G is the mixed extension of another finite stage-game and mixed actions are observ-
able, then players can condition their actions on the mixed actions themselves instead of outcomes of
randomization devices.
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A complete folk theorem for finitely repeated games 1135

For any T > 0, let E(T ) be the set of pure strategy subgame perfect Nash equilibrium
payoff vectors of G(T ). Let E be such that the Hausdorff distance between E(T )

and E goes to 0 as T goes to infinity.10 The set E is the Hausdorff limit of the set of
pure strategy subgame perfect Nash equilibrium payoff vectors of the finitely repeated
game. As I show later in the Appendix A, the limit set E exists, is nonempty, convex,
and compact.

3 Main result

Theorem 1 Let G be a compact stage-game. As the time horizon increases, the set
of pure strategy subgame perfect Nash equilibrium payoff (average payoff) vectors of
the finitely repeated game converges (in the Hausdorff sense) to the set of enforceable
and e-rational payoff vectors.

A constructive proof of Theorem 1 is provided in the appendix. It uses four main
lemmata. Lemma 3 states that as the time horizon increases, the set of pure strategy
subgame perfect Nash equilibrium payoffs of the finitely repeated game converges to a
well defined set, ASPNE(G), which is the set of payoffs that are approachable via pure
strategy subgame perfect Nash equilibria. Lemmata 4 and 5 together say that the limit
set of the set of pure strategy subgame perfect Nash equilibrium payoff vectors, which
equals the set ASPNE(G), is included in the set of enforceable and e-rational payoff
vectors. Lemma 6 states that every enforceable and e-rational payoff vector belongs to
the set ASPNE(G). The enforceability and the e-rationality can therefore be observed
as necessary and sufficient conditions on feasible payoffs to be approachable via pure
strategy subgame perfect Nash equilibria of the finitely repeated game.

Theorem 1 assumes no discounting. This assumption is without loss of generality.
One can indeed check that as the discount factor goes to 1, the discounted average
converges to the average payoff. Therefore, if the average payoff of a player to a path
π is strictly greater than her average payoff to another path π ′, then the discounted
average payoff of that player to the path π is strictly greater than her discounted
average to π ′, given that the discount factor is high enough. One can also make use
of the payoff continuation lemma for finitely repeated games and prove a stronger
result.11 With a fixed discount factor, one can show that the limit set of the set of pure
strategy subgame perfect Nash equilibrium payoffs of the discounted finitely repeated
game equals the set of enforceable and e-rational payoffs, given that the discount factor
exceeds a threshold δ.

10 Let d be the Euclidean distance of Rn , A and B be two closed and bounded non-empty subsets of the
metric space (Rn , d). The Hausdorff distance (based on d) between A and B is given by dH (A, B) =
max

{
supx∈A d(x, B), supy∈B d(y, A)

}
, where d(x, Y ) = inf y∈Y d(x, y).

11 Fudenberg and Maskin (1991) provides a payoff continuation lemma for infinitely repeated games with
discounting. The payoff continuation lemma for finitely repeated games say that: for any ε > 0, there exists
k > 0 and δ < 1 such that for any feasible payoff vector x , there exists a deterministic sequence of profile

of stage-game actions
{
aτ

}k
τ=1 whose discounted average payoff is within ε of x for all discount factor

δ ≥ δ. A proof of this lemma is provided in Demeze-Jouatsa (2019).

123



1136 G.-H. Demeze-Jouatsa

4 Conclusion

This paper analysed the set of pure strategy subgame perfect Nash equilibrium payoff
vectors of the finitely repeated games with complete information. The main finding
is an effective folk theorem. It is a complete characterization of the limit set, as the
time horizon increases, of the set of pure strategy subgame perfect Nash equilibrium
payoff vectors of the finitely repeated game. As the time horizon increases, the lim-
iting set always exists, is compact, convex and can be strictly in-between the convex
hull of the set of stage-game Nash equilibrium payoff vectors and the classic set of
feasible and individually rational payoff vectors. This finding exhibits the exact range
of cooperative payoffs that players can achieve via subgame perfect Nash equilibria
of the finitely repeated game.

One point of this work is that it provides a full characterization of the optimal
punishment payoff of finitely repeated games with complete information and perfect
monitoring (Benoit and Krishna 1985, Gossner and Hörner 2010).

Themethodof this paper applies to theNash equilibriumcase. In this particular case,
to leverage the behaviour of a player near the end of the finitely repeated game, it is
necessary and sufficient that the latter player either has a pure Nash equilibrium payoff
that is strictly greater than her pure minimax payoff, or that there exists a recursive
Nash equilibrium in which the latter player receives a payoff that is different from her
pure minimax payoff. Pure actions eligible for pure strategy Nash equilibrium play
paths of the finitely repeated game are therefore the pure Nash equilibrium profiles of a
new stage-game obtained from the original stage-game by setting the utility functions
of players whose behaviour can be leverage near the end of the finitely repeated
game to a constant. I refer to the convex hull of the set of original payoffs to eligible
profiles as the set of Nash-feasible payoffs. As the time horizon increases, the set of
pure strategy Nash equilibrium payoff vectors of the finitely repeated game converges
to the set of Nash-feasible payoffs vectors that dominate the pure minimax payoff
vector. This characterization of the limit set of the set of Nash equilibrium payoff
vectors of the finitely repeated game nests early results of Benoit and Krishna (1987)
and González-Díaz (2006).

One might wonder if similar method applies in the case that players can employ
unobservable mixed strategies (Gossner 1995), in the case that the monitoring tech-
nology is imperfect (see Fudenberg et al. 2007 for the infinite horizon case, and with
public monitoring), or in the case that equilibrium strategies are protected against
renegotiation (Benoit and Krishna 1993).
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Appendix

A. Existence of the limit set of the set of equilibrium payoffs

In this section, I show that the limit set of the set of pure strategy subgame perfect Nash
equilibrium payoff vectors of any finitely repeated game is well defined. Precisely,
I prove that for any compact stage-game, the set of feasible payoff vectors that are
approachable via pure strategy subgame perfect Nash equilibria of the finitely repeated
game equals the limit set E . As corollary, I obtain that the limit set E is a compact
and convex subset of the set of feasible payoff vectors of the stage-game. The main
ingredient of this proof is the conjunction lemma-henceforth, LemmaCBK-established
byBenoit andKrishna (1985). LemmaCBKstates that the conjunction of two subgame
perfect Nash equilibrium play paths is a subgame perfect Nash equilibrium play path
of the corresponding finitely repeated game.

Let G be a compact stage-game and let ASPNE(G) be the set of all feasible payoff
vectors ofG that are approachable via pure strategy subgame perfect Nash equilibrium
payoff vectors of the finitely repeated game.12

Lemma 1 The set ASPNE(G) is compact and convex.

Proof of Lemma 1 The reader can check that ASPNE(G) is a closed subset of the set
of feasible payoff vectors which is compact. The set ASPNE(G) is therefore compact.
Since ASPNE(G) is closed, its convexity holds if z = 1

2 (x + y) ∈ ASPNE(G) for all
x, y ∈ ASPNE(G), which follows from Lemma CBK. 	

Lemma 2 For all T > 0, E(T ) ⊆ ASPNE(G).

Proof of Lemma 2 Let σ be a pure strategy subgame perfect Nash equilibrium of the
finitely repeated game G(T ) and π(σ) = (π1(σ ), · · · , πT (σ )) be the play path gen-
erated by σ . Let x = uT (σ ). For all s ≥ 0 and t ∈ {2, · · · , T }, let

π(s, t) = (πt (σ ), · · · , πT (σ ), π(σ ), · · · , π(σ )︸ ︷︷ ︸
s times

)

be a play path of G((s + 1)T − t + 1). From Lemma CBK, π(s, l) is a pure strategy
subgame perfect Nash equilibrium play path of the finitely repeated game G((s +
1)T − t + 1). Moreover, the sequence of payoff vectors

(
u(s+1)T−t+1[π(s, l)])s≥0

converges to x . 	

Lemma 3 As the time horizon increases, the set of pure strategy subgame perfect Nash
equilibrium payoff vectors of the finitely repeated game converges (in the Hausdorff
sense) to the set ASPNE(G).

12 A feasible payoff vector x is approachable via pure strategy subgame perfect Nash equilibria of the
finitely repeated game if for all ε > 0 there exists an integer Tε such that for all T > Tε , the finitely
repeated game G(T ) has a pure strategy subgame perfect Nash equilibrium whose average payoff vector is
within ε of x .
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1138 G.-H. Demeze-Jouatsa

Proof of Lemma 3 Let ε > 0. We search for Tε > 0 such that for all T > Tε,
dH (ASPNE(G), E(T )) < ε. Let {B(xl , ε

2 ) | xl , l = 1, . . . , L} be a finite covering
of ASPNE(G), where B(x, ε) = {y ∈ Rn / d(x, y) < ε}. For all l = 1, . . . , L take
T l
0 given by the definition of “xl ∈ ASPNE(G)” with ε

2 . Pose T0 = maxl≤L T l
0 . Let

T > T0 and let x ∈ ASPNE(G). Let xl0 ∈ ASPNE(G) be such that x ∈ B(xl0 , ε
2 ) and

let y ∈ E(T ) be such that d(xl0 , y) < ε
2 .We have d(x, y) ≤ d(x, xl0)+d(xl0 , y) < ε.

This implies that d(x, E(T )) < ε. Consequently, supx∈ASNPE(G) d(x, E(T )) ≤ ε.

Furthermore, from Lemma 2, d(y,ASPNE(G)) = 0 for all y ∈ E(T ). That
is supy∈E(T ) d(y,ASPNE(G)) = 0. It follows that dH (ASPNE(G), E(T )) =
supx∈P d(x, E(T )) ≤ ε for all T > T0. Take Tε = T0. 	


B. Necessity of enforceability

Lemma 4 Let G be a compact normal form game, let T > 0, and let σ be a pure
strategy subgame perfect Nash equilibrium of G(T ). The support Supp(π(σ )) =
{π1(σ ) . . . πT (σ )} of the subgame perfect Nash equilibrium play path π(σ) =
(π1(σ ) . . . πT (σ )) is included in the set Nash(Gh) of pure Nash equilibrium profiles
of the effective game Gh.

Proof of Lemma 4 If Nh = N , then Nash(Gh) = A and Supp(π(σ )) ⊆ Nash(Gh).
Now assume that N\Nh �= ∅.
Let’s proceed by induction on the time horizon T .
For T = 1, the pure strategy subgame perfect Nash equilibrium σ is a pure Nash
equilibrium of the stage-game G, and Nash(G) = Nash(G0) ⊆ Nash(Gh).
Suppose that T > 1 and that the support of any pure strategy subgame perfect Nash
equilibrium play path of the finitely repeated game G(t) with t ∈ {1, . . . , T − 1} is
included in the set Nash(Gh) and let’s show that {π1(σ ), . . . , πT (σ )} ⊆ Nash(Gh).
The restriction σ|π1(σ ) of σ to the history π1(σ ) is a pure strategy subgame perfect
Nash equilibrium of the game G(T − 1) and the induction hypothesis implies that
the support {π2(σ ) . . . πT (σ )} of the play path π(σ|π1(σ ) ) generated by the strategy
profile σ|π1(σ ) is included in Nash(Gh).
It remains to show that π1(σ ) ∈ Nash(Gh).
At this point I proceed by contradiction. Assume that π1(σ ) /∈ Nash(Gh). Then,
in the game Gh , there exists a player i ∈ N who has a strict incentive to deviate
from the pure action profile π1(σ ). This player has to be in the block N\Nh since
any player of the block Nh has a constant utility function in the game Gh . Let σ ′

i
be a pure strategy one shot deviation of player i from σ that consists in playing a
stage-game pure best response bi [π1(σ )] to π1(σ ) in the first round of the finitely
repeated game G(T ), and conforming to σi from the second round on. At the pure
strategy profile (σ ′

i , σ−i ), player i receives ui (π1) + e (with e > 0) in the first round.
Let h1 = (bi (π1(σ )), π1(σ )−i ) be the observed history after this first round and
σ|h1 be the restriction of σ to the history h1. We have (σ ′

i , σ−i )|h1 = σ|h1 and
σ|h1 is a pure strategy subgame perfect Nash equilibrium of G(T − 1). By induction

hypothesis, the support of the play path generated by σ|h1 is included in Nash(Gh).
Therefore, at the profile (σ ′

i , σ−i ) player i receives the sequence of stage-game payoffs
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{ui (π1) + e, ni , . . . , ni } where ni is her unique stage-game pure Nash equilibrium
payoff. Since player i receives {ui (π1(σ )), ni , . . . ni } at the strategy profile σ , we
have uTi (σ ′

i , σ−i ) > uTi (σ ). This contradicts the fact that σ is a pure strategy subgame
perfect Nash equilibrium of G(T ) and concludes the proof. 	


Let F̃ be the set of enforceable payoff vectors. We have the following corollary.

Corollary 1 Let G be a compact normal form game, let T > 0, and let σ be a pure
strategy subgame perfect Nash equilibrium of G(T ). Then the average payoff vector
uT (σ ) belongs to the set F̃ .

C. Necessity of the e-rationality

Wen (1994) shows that any subgame perfect Nash equilibrium payoff vector of the
infinitely repeated game weakly dominates the effective minimax payoff vector. This
domination also holds for finitely repeated games. The following lemma provides a
sharper lower bound of the set of equilibriumpayoffs of the finitely repeated game. The
lemma says that, any pure strategy subgame perfect Nash equilibrium payoff vector of
the finitely repeated game weakly dominates the enforceable minimax payoff vector.

Lemma 5 Let G be a compact normal form game, let T ≥ 1, and let σ be a pure
strategy subgame perfect Nash equilibrium of the finitely repeated game G(T ). Then
the average payoff vector uT (σ ) dominates the enforceable minimax payoff vector of
the stage-game.

Proof of Lemma 5 I proceed by induction on the time horizon T .
At T = 1, pure strategy subgame perfect Nash equilibria of the game G(T ) are pure
Nash equilibria of the stage-game G and uT (σ ) dominates μ̃.13

Assume that T > 1 and that the average payoff vector to any pure strategy subgame
perfect Nash equilibrium of the finitely repeated gameG(t)with 0 < t < T dominates
the enforceable minimax payoff vector μ̃. Let us show that the payoff vector uT (σ )

dominates μ̃.
Let π1(σ ) be the action profile played in the first round of the game G(T ) according
to σ . The restriction σ|π1(σ ) of the strategy σ to the history π1(σ ) is a pure strategy
subgame perfect Nash equilibrium of the finitely repeated game G(T − 1) and by
induction hypothesis, we have that the payoff vector uT−1(σ|π1(σ ) ) dominates μ̃.
Suppose now that uT (σ ) does not dominates μ̃. Then there exists a player i ∈ N
such that uTi (σ ) < μ̃i . It follows that ui [π1(σ )] < μ̃i since uTi (σ ) is a convex
combination of ui [π1(σ )] and uT−1

i (σ|π1(σ ) ). Moreover, as π1(σ ) ∈ Nash(Gh), we
have u j [π1(σ )] < μ̃ j for all j ∈ J (i). From the definition of μ̃, there exists a player
i0 ∈ J (i) and a pure action ai0 ∈ Ai0 of player i0 such that ui0 [ai0 , π1(σ )−i0 ] ≥ μ̃i0 .
Consider the pure strategy one shot deviation σ ′

i0
of player i0 from σ in which she

13 Indeed, as each pure Nash equilibrium of the stage-game G is a pure Nash equilibrium of the game Gh

and each player plays a best response in Nash equilibrium, the Nash equilibrium payoff of any player is
greater than or equal to her enforceable minimax payoff. It follows that any pure Nash equilibrium payoff
vector weakly dominates the enforceable minimax payoff vector.
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1140 G.-H. Demeze-Jouatsa

plays ai0 in the first round of the finitely repeated game G(T ) and conforms to her
strategy σi0 from the second round on. We have

uTi0(σ
′
i0 , σ−i0) = 1

T
ui0 [ai0 , π1(σ )−i0 ] + T − 1

T
uT−1
i0

(σ∣∣(ai0 ,π1(σ )−i0 ) )

which is greater than or equal to μ̃i0 . Indeed, since σ∣∣(ai0 ,π1(σ )−i0 ) is a pure strategy
subgame perfect Nash equilibrium play path of the finitely repeated game G(T − 1),
the induction hypothesis implies that uT−1(σ∣∣(ai0 ,π1(σ )−i0 ) ) dominates μ̃. It follows

that the deviationσ ′
i0
of player is profitable. This contradicts the fact thatσ is a subgame

perfect Nash equilibrium. 	


D. Proof of the complete perfect folk theorem

From Corollary 1 and Lemma 5, the set of pure strategy subgame perfect Nash equi-
librium payoff vectors of any finite repetition of the stage-game G is included in the
set of enforceable and e-rational payoff vectors. To complete the proof of Theorem 1,
it is left to show that any enforceable and e-rational payoff vector belongs to the limit
set E . In what follows, I prove that any enforceable and e-rational payoff vector is
approachable via pure strategy subgame perfect Nash equilibria of the finitely repeated
game (see Lemma 3).

Lemma 6 Let G be a compact normal form game. We have F̃ ∩ Ĩ ⊆ ASPNE(G).

Proof of Lemma 6 Let G be a compact normal form game. If G admits no pure Nash
equilibrium, then F̃ = ∅ and F̃ ∩ Ĩ ⊆ ASPNE(G). If G admits a unique pure Nash
equilibrium payoff vector x , then F̃ = {x} = ASPNE(G) and F̃ ∩ Ĩ ⊆ ASPNE(G).
Now suppose thatG admits at least two distinct pure Nash equilibrium payoff vectors.
Normalize the game such that the enforceable minimax of each player equals 0 and
such that two equivalent players have the same utility function on Ã. Consider

F1 =
{
1

p

∑
1≤l≤p

u(al) | p > 0, al ∈ Ã∀l ≤ p

}
and

I1 = {x ∈ Rn | xi > 0 if i ∈ Nh and xi = 0 otherwise}.

It is immediate that the closure of F1 ∩ I1 is equal to the set F̃ ∩ Ĩ . From
Lemma 1, ASPNE(G) is closed. Therefore, it is enough to show that F1 ∩ I1 ⊆
ASPNE(G). Let y = 1

p

∑
1≤l≤p u(al) ∈ F1 ∩ I1. For all i ∈ Nh , let wi ∈

argmina∈ Ã max j∈J (i) maxa′
j∈A j

ui (a′
j , a− j ).14

I use a suitable but minimal adjustment of the 5-phase strategy presented in Smith
(1995) andDemeze-Jouatsa andWilson (2019) to caseswhere theNash decomposition
is incomplete to approximate the target payoff vector y.

14 At the profile of actions wi , player i does not have to be at a pure best response. If she plays a pure best
response to wi , she receives at least her stage-game pure minimax payoff but no more than her stage-game
enforceable minimax payoff.
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For each g ∈ {1, . . . , h}, let eNg−1 , fNg−1 ∈ ×i∈Ng−1 Ai be two profiles of actions
of players of the bloc Ng−1 such that there exists two Nash equilibria z(eNg−1) and
z( fNg−1) respectively for games G(eNg−1) and G( fNg−1), with distinct payoff for each
player of the block Ng\Ng−1, where G(eNg−1) (respectively G( fNg−1)) is a stage-
game with players N\Ng−1 obtained from G by fixing the actions of players of the
block Ng−1 to eNg−1 (respectively fNg−1 ). Define cg = mini∈Ng\Ng−1 ||u(z(eNg−1)) −
u(z( fNg−1))||. Let yg denote alternating between the action profiles z(eJg−1) (in even
periods) and z( fJg−1) (in odd periods). Let z

i,g be the Nash equilibrium profile among
z(eNg−1) and z( fNg−1) which is the worst for player i ∈ Ng .

The 5-phase strategy profile is adjusted as follows. The phase length variables -
namely q (Phase 3), r (Phase 4), and tg(qp + rp) (g = 1, 2, . . . , h, Phases 2 and
5)- will be chosen at the end of the construction, along with the reward vectors x j

(∀ j ∈ Nh) used in Phase 4. Early (late) deviations are those occurring up to (after)
period T − th(qp+ rp) − (qp+ rp), ie deviation is “early” if there is still time to run
Phases 3 and 4 before period T − th(qp + rp) + 1.

Strategy profiles.

1. (Main Path) Play al at period t = l[mod p]+ th(qp+rp) until period T − th(qp+
rp). [After an early deviation by i ∈ Nh , go to Phase 3; after a late deviation by
i ∈ Ng′ , go to Phase 5.] Go to Phase 2.

2. (Good Recursive Nash) For g = h, . . . , 1: Play yg in periods T − tg(qp + rp) +
1, . . . , T − tg−1(qp + rp). [After a deviation by i ∈ Ng′ with g′ < g, start Phase
5.]

3. (Minmax Phase for i): Play wi for qp periods. [If any j ∈ N\J (i) deviates early,
start Phase 4; if any j ∈ Ng′ deviates late, start Phase 5 with i ← j . If any j ∈ J (i)
deviates early, set i ← j and restart Phase 3.] Then set j ← i and start Phase 4.

4. (Reward Phase) Repeat the path π p, j for r rounds. [If any i ∈ Nh deviates early,
restart Phase 3; if any i ∈ Ng′ deviates late, start Phase 5.] Then return to Phase 1.

5. (Bad Recursive Nash) Play zg
′,i until period T − tg′(qp+rp). [If j ∈ Ng′′ deviates,

where g′′ < g′, set g′ ← g′′ and i ← j and restart Phase 5.] Then go to Phase 2.

So along the equilibrium path, the sequence of action profiles is

al , . . . , a p; a1, . . . , a p; · · · ; a1, . . . , a p︸ ︷︷ ︸
T−th(qp+rp) periods

;

yh, . . . , yh︸ ︷︷ ︸
sh(qp+rp) periods

; yh−1, . . . , yh−1︸ ︷︷ ︸
sh−1(qp+rp) periods

; . . . ; y1, . . . , y1︸ ︷︷ ︸
s1(qp+rp) periods

Length of phases: Let ρ be the largest gap between best and worst payoffs across all
players inG. For all i ∈ Nh, letπ p′,i be a sequence of length p′ of pureNash equilibria
of the effective game such that the sequence of average payoffs xi = u(π p′,i ), i ∈ Nh

satisfies xi � 0 ∀i ∈ Nh , xii < x j
i ∀ j /∈ (N\Nh) ∪ J (i), xi = x j ∀ j ∈ J (i), and

xii < yi ∀i ∈ Nh . (Such vectors exist following Abreu et al. (1994)). There is no loss
of generality to assume that p′ = p. Choose q such that ρ < qp · xii and r such that

ρ + max
{
0, qp · (y j − u j (w

i )
)}

< rp · (xij − x j
j ) for all i ∈ Nh and j ∈ Nh\J (i).
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For any number k, let ψg(k) be the least even number above 2kρ/cg , so that that a
player i ∈ Ng is willing to play k periods of any action followed by ψg(k) periods of
yg , if deviations switch each yg to zg,i . Recursively define

sh(m) = ψh(m) and (∀g = 1, 2, . . . , h − 1)sg(m)

= ψg(m + sg+1(m) + · · · + sh(m)) (1)

Then set t0(m) = 0 and tg(m) = s1(m) + · · · + sg(m), for g = 1, 2, . . . , h.
Subgame perfect verification: By construction, no one-shot deviation by a player

of the block Nh is profitable (see Smith (1995), Demeze-Jouatsa and Wilson (2019)).
Observe that only Nash equilibria of the effective game appears on equilibrium paths
of each subgame. Therefore, no player of the block N\Nh can profitably deviate from
the constructed strategy. 	
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