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Abstract The Dreyfus–Wagner algorithm is a well-known dynamic programming
method for computing minimum Steiner trees in general weighted graphs in time
O∗(3k), where k is the number of terminal nodes to be connected. We improve its
running time to O∗(2.684k) by showing that the optimum Steiner tree T can be
partitioned into T = T1 ∪ T2 ∪ T3 in a certain way such that each Ti is a minimum
Steiner tree in a suitable contracted graph Gi with less than k

2 terminals. In the
rectilinear case, there exists a variant of the dynamic programming method that
runs in O∗(2.386k). In this case, our splitting technique yields an improvement to
O∗(2.335k).

Keywords Steiner tree · Exact algorithm · Dynamic programming

1 Introduction

The Steiner tree problem is one of the most well-known NP-hard problems: Given
a graph G = (V, E) of order n = |V |, edge costs c ∈ R

E+ and a set S ⊆ V of
k = |S| terminal nodes, we are to find a minimum cost subtree T = T (S) of G
connecting (spanning) all terminal nodes. Obviously, we may assume w.l.o.g. that
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C satisfies the triangle inequality and G is a complete graph (define edge costs by
shortest paths).

The Steiner tree problem has been investigated extensively with respect to
approximation (for a recent survey, see Gröpl et al. 2001) and computational com-
plexity, both from a theoretical and practical point of view, cf., e.g., Fößmeier and
Kaufmann (2000) for an overview and Warme et al. (2000). Particular attention
has been paid to the rectilinear Steiner tree problem, i.e., the case where the graph
is a grid graph in the plane. For this case, which remains NP-complete (Garey
and Johnson 1977), so-called exact algorithms have been designed (Fößmeier and
Kaufmann 2000), solving the problem in

O∗(2.386k) = O(2.386kpoly(n))

Here and in the sequel we adopt the O∗-notation to indicate that polynomial fac-
tors, i.e. factors of order O(poly(n)) are suppressed. In the general case, there is a
well-known algorithm developed by Dreyfus and Wagner (1972 or Sect. 2), solving
minimum Steiner tree problems in general graphs with k terminals in time O∗(3k).
It is by now tradition to measure the running time of Steiner tree algorithms in
terms of the number k of terminals rather than the number n of nodes. Note that,
in particular, for fixed k the Steiner tree problem can be solved efficiently. In other
words, relative to the parameter k, the Steiner tree problem is fixed parameter trac-
table (Downey and Fellows 1999), revealing that k is indeed the crucial problem
parameter.

The goal of this paper is to present a modification of the Dreyfus–Wagner algo-
rithm. In addition, the worst case complexity of O∗(3k) of the Dreyfus–Wagner
algorithm is – as far as we know – currently still the best for solving the problem
in general graphs. We shortly describe the Dreyfus–Wagner algorithm in Sect. 2.
Section 3 then presents our modification, yielding an improved worst case com-
plexity of order O∗(2.684k). In Sect. 4, Fößmeier and Kaufmann’s algorithm is
slightly modified and used as a subroutine in our algorithm to obtain a runtime of
O∗(2.335k) for the rectilinear case.

2 The Dreyfus–Wagner algorithm

The Dreyfus–Wagner algorithm solves the Steiner tree problem for S ⊆ V by
dynamic programming. More precisely, it computes optimal trees T (X ∪ v) for all
X ⊆ S and v ∈ V recursively.

The crucial observation is as follows. Assume first that v is a leaf of the
(unknown) optimal tree T (X ∪ v). Then v is joined in T (X ∪ v) to some node
w of T (X ∪ v) along a shortest path Pvw, such that either w ∈ X or w /∈ X , i.e., w
is a Steiner node in T (X ∪v). In both cases we have T (X ∪v) = Pvw ∪ T (X ∪w).
In case w is a Steiner node, it splits T (X ∪w), i.e., we can decompose T (X ∪w) =
T (X ′ ∪ w) ∪ T (X ′′ ∪ w) for some nontrivial bipartition X = X ′ ∪ X ′′. We may
thus write (abusing the notation slightly in an obvious way)

T (X ∪ v) = min Pvw ∪ T (X ′ ∪ w) ∪ T (X ′′ ∪ w), (1)

where the minimum is taken over all w ∈ V and all nontrivial bipartitions X =
X ′ ∪ X ′′. Note that (1) also holds in case w ∈ X if we let X ′ = X \ {w} and
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X ′′ = {w}. Finally, note that (1) also remains valid without our assumption of v
being a leaf in T (X ∪ v). Indeed, if v is an internal node of T (X ∪ v), we may
simply take w = v (and Pvw = ∅).

The recursion (1) thus allows us to compute all optimal trees T (X ∪ v) for
v ∈ V and X ⊆ S of size |X | = i recursively for i = 1, 2, . . . , k. Assuming that
we have already computed all these trees up to level i − 1, the minimum in (1) for
a given X ⊆ S of size |X | = i can be computed in time O∗(2i ). Hence, in total
the algorithm takes

O∗
(

k∑
i=1

(
k

i

)
2i

)
= O∗(3k).

Remark Note that in order to compute the minimum in (1) for fixed X ⊆ S of size
i = |X |, we have to consider all bipartitions X = X ′ ∪ X ′′ and all w ∈ |V\X |.
So – modulo the time spent on the table look ups – computing the minimum in
(1) takes O(n2i ) and, consequently, the Dreyfus–Wagner algorithm has in total a
running time of O(n3k).

3 Improving the Dreyfus–Wagner algorithm

The basic idea for improvement is as follows. We use the Dreyfus–Wagner algo-
rithm to compute minimum Steiner tree for all subsets of S of size at most k

2 (or
even less), and then seek to compose the minimum Steiner tree for S from these
smaller trees. The basic difficulty to overcome is the following. Assume we knew
that the minimum Steiner tree T for S contains some point v whose removal splits
T into three branches T ′, T ′′ and T ′′′, connecting three corresponding subsets S′,
S′′ and S′′′ of S of size approximately k

3 each. Then v is the unique node splitting
T into components of size at most k

2 . On the other hand, exhaustive search for all
possible (de-) compositions of T into three such subtrees amounts to search for all
partitions S = S′ ∪ S′′ ∪ S′′′ into sets of size k

3 (and the unknown node v). The
time needed by such an exhaustive search would be(

k

k/3

)(
2k/3

k/3

)
≈ 3k,

due to Stirling’s formula.
For this reason, the standard way of decomposing T (as in the Dreyfus–

Wagner algorithm) turns out to be inadequate. We use instead the following kind
of decomposition.

Definition An r-split of a tree T ⊆ E is a partition

T = T1 ∪ · · · ∪ Tr

such that each

T1 ∪ · · · ∪ Ti , i = 1, . . . , r

is connected.
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Now consider a fixed minimum Steiner tree T for S ⊆ V and an r -split T =
T1 ∪ · · · ∪ Tr as above. So, T1 is a subtree of T and for i ≥ 2, Ti ⊆ E con-
sists of several components, each of them containing exactly one node in the set
V (Ti ) ∩ [V (T1) ∪ · · · ∪ V (Ti−1)]. More precisely, let us define

A−
i := V (Ti ) ∩ [V (T1) ∪ · · · ∪ V (Ti−1)]

A+
i := V (Ti ) ∩ [V (Ti+1) ∪ · · · ∪ V (Tr )] \ A−

i
Ai := A+

i ∪ A−
i (i = 1, . . . , r)

Si := S ∩ V (Ti ) \ Ai

(2)

We refer to A := A1 ∪ · · · ∪ Ar as the set of split nodes. A split node a ∈ A−
i

connects a component of Ti to T1 ∪ · · · ∪ Ti−1, while a ∈ A+
i is good for connect-

ing a component of some Tj , j > i to Ti . The sets Si , i = 1, . . . , n are pairwise
disjoint and if |A| is “small" compared to k = |S|, the sets Si are close to forming
a partition of S. Using this kind of split-decomposition, it can be shown that T has
a 2-split with |S1|, |S2| ≈ k

2 . As we will see, a (theoretically) even faster algorithm
is obtained by considering certain 3-splits of T . Before analyzing these in detail,
however, let us first state some simple facts.

Recall that we assume G to be complete. For B ⊆ V , we denote by G/B the
graph obtained from G by identifying all vertices b ∈ B with a new vertex vB (i.e.,
contracting all the |B|(|B| − 1)/2 edges induced by B). Edge costs in G/B are
again defined via shortest path distances.

Lemma 1 Let T ⊆ E be a minimum Steiner tree for S ⊆ V and let T = T1 ∪
· · · ∪ Tr be an r-split. Let A±

i and Si be defined as in (2). Then

(i) T1 ∪ · · · ∪ Ti is a minimum Steiner tree for S1 ∪ · · · ∪ Si ∪ A1 ∪ · · · ∪ Ai .
(ii) Ti is a minimum Steiner tree for Si ∪ A+

i ∪ vA−
i

in G/A−
i .

Proof (i) Let T̃ ⊆ E be any tree connecting S1 ∪ · · · ∪ Si ∪ A1 ∪ · · · ∪ Ai in G.
Then it is straightforward from the definition of r -split that

T̃ ∪ Ti+1 ∪ · · · ∪ Tr

connects S1 ∪ · · · ∪ Sr ∪ A. But T = T1 ∪ · · · ∪ Tr is a minimum Steiner tree
connecting S1 ∪ · · · ∪ Sr ∪ A, implying

c(T1 ∪ · · · ∪ Tr ) ≤ c(T̃ ∪ Ti+1 ∪ · · · ∪ Tr )

Hence c(T1 ∪ · · · ∪ Ti ) ≤ c(T̃ ), proving (i).
(ii) Each component of Ti is joined to T1∪· · ·∪Ti−1 by a (unique) common point

in A−
i . Therefore, Ti is a tree in G/A−

i . Furthermore, A+
i is, by definition, disjoint

from A−
i and spanned by Ti . Summarizing, Ti is a Steiner tree for Si ∪ A+

i ∪ vA−
i

in G/A−
i .

We are left to prove minimality of Ti . Let T̃i ⊆ E be any Steiner tree for
Si ∪ A+

i ∪ vA−
i

in G/A−
i . Then certainly

T1 ∪ · · · ∪ Ti−1 ∪ T̃i ⊆ E
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is connected (as T̃i connects to vAi ) and spans

S1 ∪ · · · ∪ Si ∪ A1 ∪ · · · ∪ Ai−1 ∪ A+
i = S1 ∪ · · · ∪ Si ∪ A1 ∪ · · · ∪ Ai

(as A−
i ⊆ A1 ∪ · · · ∪ Ai−1).

Hence we conclude from (i) that c(Ti ) ≤ c(T̃i ), proving the minimality of Ti .

�

Lemma 2 For any ε > 0 and any 0 < α < 1 the following holds: any Steiner tree
T for S ⊆ V with k = |S| sufficiently large has a 2-split T = T1 ∪ T2 such that
V (T1) contains a prescribed node s ∈ V (T ) and |S1| = |V (T1) ∩ S| = (α ± ε)k.
Furthermore, it is possible to choose a corresponding set of split nodes A ⊆ V (T )
of size |A| ≤ ⌈

log 1
ε

⌉
.

Proof There exists v ∈ V (T ) such that all components T1, T ′
2, T ′

3, . . . of T\v have
size k′

i := |V (T ′
i ) ∩ S| ≤ k

2 . Let T ′
1 denote the component with s ∈ V (T ′

1). (If
s = v, we may choose any T ′

i .) We prove the claim by induction on M = ⌈
log 1

ε

⌉
.

Assume first that M = 1, i.e., ε ≥ 1
2 . In this case we let T1 = T ′

1∪· · ·∪T ′
r where

r is minimal such that
r∑
1

k′
i ≥ αk. Observe that T1 defines a 2-split T = T1 ∪ T2

meeting all requirements: We have A = {v} of size 1 and αk ≤ |S1| ≤ (α + 1
2 )k.

Now assume M ≥ 2. We start by constructing a tentative subtree T̃ = T ′
1 ∪

· · ·∪T ′
r exactly as for M = 1. If k̃ := ∑

k′
i ≤ (α+ε)k, we are done. Hence assume

k̃ > (α + ε)k and let α′ be such that
r−1∑
i=1

k′
i + α′k′

r = αk. By induction, there is a

2-split T ′
r = T ′′

r ∪ T ′′′
r with s′ := v ∈ V (T ′′

r ) and k′′
r = |V (T ′′

r )∩ S| = (α′ ±2ε)k′
r .

Observe that T1 := T ′
1 ∪ · · · ∪ T ′

r−1 ∪ T ′′
r defines a 2-split T = T1 ∪ T2 meet-

ing all requirements. Indeed, by induction, the set A′ of split nodes for the 2-split
T ′

r = T ′′
r ∪ T ′′

r may be assumed to have size |A′| ≤ ⌈
log 1

2ε

⌉ = ⌈
log 1

ε

⌉ − 1. So the
total set A = A′ ∪ {v} of split nodes for the 2-split T1 ∪ T2 has size |A′| ≤ ⌈

log 1
ε

⌉
,

as required. Furthermore, the size of T1 equals k′
1 + · · · + k′

r−1 + k′′
r = (α ± ε)k

since 2εk′
r ≤ εk. 
�

Lemma 2 also allows us to construct certain 3-splits of T .

Theorem 3 For each ε > 0 and 0 < α < 1
2 the following holds: any Steiner tree

T for S ⊆ V with k = |S| sufficiently large has a 3-split T = T1 ∪ T2 ∪ T3 with
S1 = S ∩ V (T1) and S2 = S ∩ V (T2) of size (α ± ε)k. Furthermore, the set of split
nodes A can be chosen to have size |A′| ≤ 2

⌈
log 1

ε

⌉
Proof We first split T into T = T1 ∪ T ′

2 with S1 of size |S1| = (α ± ε)k. Then
we left T2 consist od sufficiently many components of T ′

2 (one of them split if
necessary) so that S2 has size |S2| = (α ± ε)k. 
�

The algorithm After these preliminaries, it should now be clear how to pro-
ceed. Given ε > 0 and a suitable α ≤ 1

2 (to be determined below), we apply the
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Dreyfus–Wagner algorithm to compute minimum Steiner trees for all subsets of
type

S̃ ∪ Ã+ ∪ v Ã−, S̃ ⊆ S, |S̃| ≤ (α + ε)k

in G/ Ã−, for all disjoint subsets Ã+, Ã− ⊆ A and all A ⊆ V of size at most
M . The number of possible choices for Ã+ and Ã− is bounded by nM , which is
polynomial in n. Assuming that k is large enough, we may assume that M ≤ εk, so
that |S ∪ A| ≤ (1 + ε)k and, similarly, |S̃ ∪ Ã+| < (α + 2ε)k. So this computation
takes

nM
(α+2ε)k∑

i=2

(
(1 + ε)k

i

)
n2i = O∗

(
(1 + ε)k

(α + 2ε)k

)
2(α+2ε)k

in total (cf. the remark at the end of Sect. 2).
The second part of the algorithm is an exhaustive search for the 3-split T =

T1 ∪ T2 ∪ T3 whose existence is assured in Theorem 3. Basically, this comes down
to finding the associated sets Si (plus the corresponding sets of split nodes Ai out
of a polynomial number of possible choices). For a fixed set of split nodes A ⊆ V ,
we thus search for a partition S \ A = S1 ∪ S2 ∪ S3 with |S1|, |S2| = (α ± ε)k. For
α close to 1

2 , this takes time of order

O∗
((

k

(1 − 2α − 2ε)k

)
2(2α+2ε)k

)

which also gives the total time bound for the second phase of the algorithm.
Setting ε = 0, we obtain an upper bound on the total computation time by

solving (
k

αk

)
2αk =

(
k

(1 − 2α)k

)
22αk

or, according to Stirling’s Formula

(
1

α

)α (
1

1 − α

)1−α

=
(

1

2α

)2α (
1

1 − 2α

)1−2α

2α.

The solution of this equation is α < 0.4361. Hence we can achieve a total time
bound of [(

1

0.4361

)0.4361 (
1

0.5639

)0.5639

20.4361

]k

= 2.684k

by an appropriately small choice of ε > 0.

Remark A closer analysis also reveals the polynomial factor hidden behind the
O∗-notation: There are nM choices for A. For each fixed A there are in turn at
most 2|A| = 2M choices for each of A+

1 , A−
2 , A+

2 and A−
3 , yielding a total of
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(16n)M = O(nM ) choices. In view of the bound given above for phase 1 of the
algorithm, this gives an overall bound of

O(nM+12.684k) = O(n1+log 1
ε 2.684k),

where ε > 0 satisfies α + ε ≤ 0.4361. This occurs for ε = 1.451 × 10−4

with log 1
ε

≤ 9. Increasing α to say α = 0.44 would result in a running time
of O(n72.6937k).

4 The rectilinear case

Given a set S = {s1, . . . , sk} of points in the plane, the rectilinear Steiner tree
problem asks for a shortest tree connecting the points in S, relative to the so-
called Manhattan-metric (where the distance between two points is, by definition,
the sum of the differences of their x- and y-coordinates). Equivalently, we may
define an instance of the Steiner tree problem rectilinear, if the underlying graph
G = (V, E) is a grid graph (the so-called “Hannan-grid”) in the plane (with the
grid being generated by the x- resp. y-coordinates of the points in S). We refer the
reader to Zachariasen (2001) for an introduction to the rectilinear case.

According to Ganley and Cohoon (1994) and Fößmeier and Kaufmann (2000),
the dynamic programming approach for computing minimum Steiner trees can be
implemented more efficiently in the rectilinear case as follows. The basic notion
is that of a full Steiner tree: if X ⊆ S is given, a minimum Steiner tree T = T (X)
for X is full if each node in X is a leaf of T . We call X ⊆ S a full set if every
minimum Steiner tree for X is full.

Clearly, every minimum Steiner tree T = T (X) for X ⊆ S decomposes
uniquely into full components, i.e., edge-disjoint full subtrees. A crucial result
of Hwang (1976) states that, in the rectilinear case, full components (sets) can be
assumed to have a certain simple topological structure. Subsets X ⊆ S with this
particular structure are called candidate full sets. The set of all candidate full sets
X ⊆ S is denoted by F(S). Given a candidate full set X ∈ F(S), one can (due to
the particular simple structure of full components) easily compute (in linear time)
a corresponding candidate full tree Tfull(X), which is guaranteed to be a minimum
Steiner tree for X in case X is a full set.

Adopting the notation

X = X1 �� X2 ⇔ X = X1 ∪ X2, |X1 ∩ X2| = 1

from Ganley and Cohoon (1994), we may thus compute minimum Steiner trees for
all X ⊆ S by means of the recursion

T (X) = min Tfull(X1) ∪ T (X2), (3)

where the minimum is taken over all decompositions X = X1 �� X2 with X1 ∈
F(S) and |X1| ≥ 2. Note that when X ⊆ S itself is a full set, then X ∈ F(S), so
we may take X1 = X and let X2 be a singleton.

The running time of this procedure depends on the number of candidate full
sets. Indeed, letting

F(X) := {X1 ∈ F(S) | X1 ⊆ X},
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we find that computing the minimum in (3) takes time O∗(|F(X)|) – assuming
recursively that T (X2) is known already for all subsets X2 ∈ S of size |X2| < |X |.
(Recall that, as mentioned above, Tfull(X1) can be computed for given X1 ∈ F(S)
in time O(|X1|) = O(k) = O∗(1).)

The main result of Ganley and Cohoon (1994) states that (due to the specific
topological structure of full sets), only very few subsets of X are candidate full
sets. More precisely, they show that for |X | = i we have |F(X)| ≤ 1.62i . This
bound is further improved by Fößmeier and Kaufmann (2000) to |F(X)| ≤ 1.386i .
As a consequence, the total running time of the recursion, applying (3) to all sets
X ⊆ S with increasing size |X | = i , can be bounded by

O∗
(

k∑
i=1

(
k

i

)
1.386i

)
= O∗(2.386k). (4)

Applying our splitting technique to this recursion, we would – just like in Sect. 3 –
compute the minimum Steiner trees only up to a certain level i = αk, α < 1

2 . The
time consumed by this computation is

O∗
(

αk∑
i=1

(
k

i

)
1.386i

)
= O∗

((
k

αk

)
1.386αk

)
. (5)

On the other hand, searching for the unknown 3-split would roughly (we set ε = 0)
take

O∗
((

k

(1 − 2α)k

)
22αk

)
. (6)

Again, the best upper bound on the running time of our algorithm is obtained by
balancing (5) and (6). For α ≈ 0.477, we obtain an upper bound of O∗(2.335k) –
a minor improvement over the original bound (4).

There is one problem that we are left to solve: Recall that in “phase 1” of our
algorithm we compute small Steiner trees up to level i = αk not only in G, but also
in certain contracted graphs. But these graphs are in general not rectilinear any-
more! A moment’s thought, however, reveals this problem as simply non-existent.
Indeed, the only reason for considering contracted graphs in Sect. 3 is notational
convenience: assume, for example, that we are to compute (recursively) the mini-
mum Steiner tree for a certain subset

X ∪ vA in G/A, X ⊆ V \ A.

This is tantamount to looking for a minimum Steiner A-forest for X in G, i.e., a
minimum length forest F ⊆ E , connecting all of X to A. In other words, a Steiner
A-forest for X consists of |A| tree components (|A| ≥ 1), each containing exactly
one node of A. Thus a minimum Steiner A-forest F ⊆ E gives rise to a minimum
Steiner tree F in G/A and conversely.

Rather than computing minimum Steiner trees for various sets X ∪vA in certain
contracted graphs G/A, we compute minimum Steiner A-forests in G for various
sets X and A. In the rectilinear case, this can be done in complete analogy to the
full set dynamic programming approach described above.
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For X ⊆ S \ A, |A| ≥ 1, let FA(X ∪ A) denote the minimum Steiner A-forest
for X . Then FA(X ∪ A) consists of at most |A| nonempty tree components. (Recall
that we always consider a tree as a set of edges. So a tree component consisting
of a single vertex a ∈ A is empty.) Each such nonempty tree component contains
exactly one node a ∈ A and decomposes into one or more full components. Thus
we can compute FA(X ∪ A) recursively from FA(A) = ∅ and

FA(X ∪ A) = min Tfull(X1) ∪ FA(X2 ∪ A) (7)

where the minimum is taken over all candidate full sets X1 ∈ F(X ∪ A) with
X ∪ A = X1 �� (X2 ∪ A).

Note that the dynamic program (7) is (for fixed A) very similar to (3). (Indeed,
we formally obtain (4) from (7) by setting A = ∅.) This completes our proof of
the upper bound on the running time.

5 Concluding remarks

We presented a splitting technique to speed up the dynamic programming approach
to minimum Steiner tree computation. We do not claim that our improvements as
presented in Sects. 3 and 4 are of any practical use. Yet it might turn out that already
for small values of |A|, say |A| < 4, the existence of 2-splits with |Si | fairly close
to k/2 can be guaranteed. This needs to be further investigated, as it might well be
of practical interest.
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