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Abstract In this paper we first analyze the stylized facts of electricity prices, in partic-

ular, the extreme volatility and price spikes which lead to heavy-tailed distributions of

price changes. Then we calibrate Markov regime-switching (MRS) models with heavy-

tailed components and show that they adequately address the aforementioned charac-

teristics. Contrary to the common belief that electricity price models ‘should be built

on log-prices’, we find evidence that modeling the prices themselves is more beneficial

and methodologically sound, at least in case of MRS models.

Keywords Electricity spot price · Heavy-tails · Spikes · Markov regime-switching ·
Pareto distribution

1 Introduction

The recent deregulation and introduction of competitive markets has totally changed

the landscape of the traditionally monopolistic and government controlled power sec-

tors worldwide. The amount of risk borne by market participants has increased substan-

tially, partially due to the fact that electricity is a very unique commodity. Firstly, it

cannot be stored economically and requires immediate delivery, while end-user demand

shows high variability and strong weather and business cycle dependence. Secondly, ef-

fects like power plant outages or transmission grid (un)reliability add complexity and

randomness.

Consequently, for the valuation of electricity contracts we cannot simply rely on

models developed for the financial or other commodity markets. Despite numerous at-

tempts (for reviews see e.g. Benth et al., 2008, Bunn, 2004, Kaminski, 2004, Weron,

2006), the need for realistic models of price dynamics capturing the unique character-

istics of electricity and adequate derivatives pricing techniques still has not been fully

satisfied. It is the aim of this paper to study electricity price processes and suggest mod-
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Fig. 1 Mean daily spot prices and their long-term seasonal components (thick blue lines) for
EEX, OMEL, PJM and NEPOOL power markets from January 2, 2001 to January 2, 2006.

els that can address the most pertinent characteristics, in particular, the heavy-tailed

price distributions and price spikes.

The paper is structured as follows. In Section 2 we present the datasets and ex-

plain the deseasonalization procedures. In Section 3 we study the distributions of price

changes. Next, in Section 4 we calibrate Markov regime-switching models to deseason-

alized prices and evaluate their goodness-of-fit. Finally, in Section 5 we summarize the

results.

2 Data

In this study we use mean daily (baseload) spot prices from four major power markets:

EEX (Germany), OMEL (Spain), PJM (U.S.) and NEPOOL (U.S.). For each market

the sample totals 1827 daily observations (or 261 full weeks) and covers the period

January 2, 2001 – January 2, 2006, see Figure 1.

It is well known that electricity demand exhibits seasonal fluctuations, which mostly

arise due to changing climate conditions (temperature, number of daylight hours) and

business activities (working hours vs. leisure periods). Also the supply side (e.g. hydro

units) shows seasonal variations in output. These fluctuations in demand and sup-

ply translate into the seasonal, mean-reverting behavior of spot electricity prices. In

addition to strong seasonality on the annual, weekly and daily level, spot electric-
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ity prices exhibit very high volatility and abrupt, short-lived and generally unantic-

ipated extreme price changes known as spikes or jumps (Park et al., 2006, Simon-

sen, 2005, Weron, 2008). This behavior can be very well observed in the German EEX

market and the New England Pool. Not surprisingly, the share of hydro production in

both markets is very small and ‘hedging’ the volume risk is difficult. In case of tight

demand-supply balance – in particular due to unexpected events like plant outages or

power line disconnections – there are no units available that can generate electricity

instantly and at low marginal costs. Recall, that coal-fired and nuclear plants often

need a few hours for start-up. Gas-fired units, on the other hand, have high marginal

costs and when they are used the spot prices spike. For this reason the Spanish OMEL

market, which has the largest hydro share (ca. 30%) of the four analyzed markets,

exhibits different price dynamics with the lowest price volatility and least spikes.

Apart from the above mentioned characteristics, note that all spot prices depicted

in Figure 1 show a clear upward trend towards the end, starting in late 2004. Some

prices almost double in just a year time due to a combination of higher fuel prices and

the introduction of emission costs in Europe – EU Emission Trading scheme started in

January 2005 (Benz and Trück, 2006, Paolella and Taschini, 2008).

The first crucial step in defining a model for electricity price dynamics consists of

finding an appropriate description of the seasonal pattern. There are different sugges-

tions in the literature for dealing with this task; for a recent review consult Trück et

al. (2007). Here we follow the ‘industry standard’ and represent the spot price Pt by a

sum of two independent parts: a predictable (seasonal) component ft and a stochastic

component Xt, i.e. Pt = ft + Xt. Further, we let ft be composed of a weekly peri-

odic part st and a long-term seasonal trend Tt, which represents both the changing

climate/consumption conditions throughout the year and the long-term non-periodic

structural changes.

The deseasonalization is conducted in three steps. First, Tt is estimated from daily

spot prices Pt using a wavelet filtering-smoothing technique (for details see e.g. Trück

et al., 2007). Recall, that any function or signal (here: Pt) can be built up as a se-

quence of projections onto one father wavelet and a sequence of mother wavelets:

SJ +DJ +DJ−1 + ...+D1, where 2J is the maximum scale sustainable by the number

of observations. At the coarsest scale the signal can be estimated by SJ . At a higher

level of refinement the signal can be approximated by SJ−1 = SJ + DJ . At each step,

by adding a mother wavelet Dj of a lower scale j = J − 1, J − 2, ..., we obtain a bet-

ter estimate of the original signal. Here we use the S8 approximation, which roughly

corresponds to annual (28 = 256 days) smoothing, see the thick blue lines in Figure

1. The price series without the long-term seasonal trend is obtained by subtracting

the S8 approximation from Pt. Next, the weekly periodicity st is removed by applying

the moving average technique (for details see e.g. Weron, 2006) and subtracting the

resulting ‘mean’ weekly pattern. Finally, the deseasonalized prices, i.e. Pt − Tt − st,

are shifted so that the minimum of the new process is the same as the minimum of

Pt (the latter alignment is required if log-prices are to be analyzed). The resulting

deseasonalized time series Xt can be seen in Figure 6.

Note that the above procedure differs from the one used by De Jong (2006) for

(roughly) the same datasets: moving average technique vs. weekly dummies for st and

wavelet approximation vs. a sum of a sinusoid and an exponentially weighted moving

average for Tt. We believe that our approach is more robust, especially with respect to

the long-term seasonal trend. Due to these differences, the qualitative results can be

compared between the papers, but the quantitative rather not.
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3 Distributions of electricity prices

It has been long known that financial asset returns are not normally distributed.

Rather, the empirical observations exhibit excess kurtosis. This heavy-tailed character

of the distribution of price changes has been repeatedly observed in various financial

and commodity markets. There are also reports of heavy-tailed behavior of electricity

prices. However, to our best knowledge, the studies were conducted either only for

one market (Bottazzi et al., 2005, Byström, 2005, Eberlein and Stahl, 2003, Rachev et

al., 2004, Weron, 2006), one distributional class (Mugele et al., 2005), samples of rel-

atively small size (Deng and Jiang, 2005) or (log-)returns only (Chan and Gray, 2006,

Khindanova and Atakhanova, 2002). Especially the latter two limitations can lead to

qualitatively different conclusions. In particular, (log-)returns (i.e. first differences of

log-prices) generally exhibit lighter tails than first differences of prices themselves.

Following Weron (2006), we fit Gaussian and three relatively popular and versa-

tile classes of heavy-tailed distributions – hyperbolic, Normal Inverse Gaussian (NIG)

and α-stable – to electricity price changes from the four markets. Calibration of the

hyperbolic and NIG distributions is performed via maximum likelihood (ML) as their

probability density functions (PDF) are given in explicit form (though using special

functions; for numerical details see e.g. Weron, 2004):

fH(x) =

p
α2 − β2

2αδK1(δ
p

α2 − β2)
e
−α

√
δ2+(x−µ)2+β(x−µ)

, (1)

and

fNIG(x) =
αδ

π
e
δ
√

α2−β2+β(x−µ) K1(α
p

δ2 + (x − µ)2)p
δ2 + (x − µ)2

, (2)

respectively. Both laws are characterized by four parameters: steepness (or ‘tail index’)

α, skewness β (with 0 ≤ |β| < α), scale δ > 0 and location µ ∈ R. The normalizing

constant Kλ(t) is the modified Bessel function of the third kind with index λ (here

λ = 1), also known as the MacDonald function. Both distributions exhibit ‘semi-heavy’

tails: heavier than Gaussian, lighter than power-law. The log-density of the hyperbolic

law forms a hyperbola (hence the name), while the tails of the NIG law satisfy the

following asymptotic relation:

fNIG(x) ≈ |x|−1.5
e
(∓α+β)x for x → ±∞. (3)

Inference for the α-stable distribution is more tricky (for details see e.g. Rachev

and Mittnik, 2000, Weron, 2004). Here we use the regression method, which is slightly

less accurate but faster than (approximate) ML. Recall, that with the exception of

three special cases (α = 2, 1, 0.5), the α-stable PDF does not have a closed form

expression and, consequently, the PDF has to be numerically approximated for ML

estimation. The regression method proceeds iteratively, until some prespecified conver-

gence criterion is satisfied, by performing regressions on transformations of the α-stable

characteristic function:

φ(t) =

(
exp(−σα|t|α{1 + iβsign(t) tan πα

2 [(σ|t|)1−α − 1]} + iµt), α 6= 1,

exp(−σ|t|{1 + iβsign(t) 2
π log(σ|t|)} + iµt), α = 1.

(4)

The distribution is characterized by four parameters: tail index α ∈ (0, 2], skewness

β ∈ [−1, 1], scale σ > 0 and location µ ∈ R. When α = 2, the Gaussian distribution
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Table 1 Parameter estimates and goodness-of-fit statistics for Gaussian, hyperbolic, NIG
and α-stable distributions fitted to the deseasonalized (with respect to the weekly period and
annual seasonality) price changes: Xt −Xt−1, for t = 2, ..., 1827. The symbol ‘+INF’ denotes
a very large number (infinity in computer arithmetic). The best fits for each market, in terms
of the lowest statistics, are emphasized in bold. Compare with Figure 2.

Parameters Test values
Distribution α σ, δ β µ AD K

EEX

Gaussian 10.1818 0.0017 +INF 7.9005
Hyperbolic 0.2126 0.1414 -0.0024 0.1095 +INF 2.0055
NIG 0.0556 3.4255 -0.0011 0.0691 2.3600 1.2190
α-stable 1.5025 2.9612 -0.1572 -0.3880 0.5185 0.6265

OMEL

Gaussian 5.3788 -0.0007 10.8666 2.4719
Hyperbolic 0.2927 2.2668 -0.0174 0.4888 0.5000 0.6469

NIG 0.1907 5.4420 -0.0131 0.3734 0.5534 0.6913
α-stable 1.7748 3.1411 -0.2554 -0.1513 1.2293 1.1421

PJM

Gaussian 8.1489 -0.0134 +INF 4.8914
Hyperbolic 0.2099 0.0001 -0.0078 0.3418 +INF 0.9910
NIG 0.0781 4.1792 -0.0058 0.2996 0.3981 0.5162

α-stable 1.5584 3.3174 -0.1148 -0.0891 0.7273 0.7518

NEPOOL

Gaussian 14.3490 -0.0100 +INF 9.6336
Hyperbolic 0.1898 0.0003 -0.0060 0.3215 +INF 2.2445
NIG 0.0335 3.2320 -0.0023 0.2125 2.2277 0.9246
α-stable 1.4202 2.9764 -0.1215 -0.2217 0.5624 0.7343

results. When α < 2, the variance is infinite and the tails asymptotically decay as a

power-law (hence are heavier than those of the hyperbolic and NIG laws).

Let us now return to the dataset. It does not make sense to analyze differences (or

returns) of raw prices due to the spurious skewness resulting from weekly seasonality

(Weron, 2006). If the data is deseasonalized then the distribution of price or log-price

differences is more prone to modeling. The Gaussian, hyperbolic, NIG and α-stable fits

to the deseasonalized price changes (i.e. Xt −Xt−1, for t = 2, ..., 1827) are summarized

in Table 1. Right tails of the corresponding cumulative distribution functions (CDF)

are plotted in Figure 2. The goodness-of-fit statistics leave no doubt that the price

distributions in all markets have much heavier tails than the Gaussian law. Here we

utilize the Anderson-Darling (AD) and Kolmogorov (K) statistics:

AD = n

∞Z
−∞

[Fn(x) − F (x)]2

F (x)[1 − F (x)]
dF (x), (5)

K = sup
x

|Fn(x) − F (x)| , (6)

which measure the distance between the empirical CDF, Fn(x), and the fitted one,

F (x); n is the sample size. The Anderson-Darling statistic may be treated as a weighted

Kolmogorov statistic which puts more weight to the differences in the tails of the

distributions. Approximate critical values for these goodness-of-fit tests can be obtained

via the bootstrap technique (for implementation details see Chapter 13 in Čižek et
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Fig. 2 Right tails of the distributions of deseasonalized price changes (first differences) and
the fitted Gaussian, hyperbolic, NIG and α-stable distributions. EEX (top left) and NEPOOL
(bottom right) prices have the heaviest, power-law tails, while OMEL (top right) the lightest,
but still heavier than Gaussian. PJM (bottom left) prices are characterized by ‘semi-heavy’
tails. Compare with Table 1.

al., 2005), in this study, though, we do not perform hypothesis testing and just compare

the test values. Naturally, the lower the values the better the fit.

Apparently, the α-stable distribution yields the best fit for markets with a very

spiky price behavior – EEX and NEPOOL. In particular, the tails of the empirical

CDF are well approximated by a power-law, see Figure 2. The Spanish OMEL market

is at the opposite end – it has the lowest price volatility and tails which taper off much

faster. Its price change distribution is best approximated by a hyperbolic law, with the

NIG fit being only slightly worse. The PJM market is somewhere in between – the tails

are lighter than power-law, but significantly heavier than hyperbolic (note the +INF

value for the AD statistic in Table 1). This ordering can be also observed in terms of

the tail indexes. The EEX and NEPOOL α’s are the lowest, followed by those of PJM.

The tail indexes for the OMEL market are significantly larger than the rest.

The relatively good fit of α-stable and NIG laws to electricity prices has been

already utilized in the context of time series modeling (Mugele et al., 2005, Weron and

Misiorek, 2007). This line of study may be further developed by considering Periodic

ARMA (Nowicka-Zagrajek and Wy lomańska, 2008) or Fractional ARIMA (Burnecki

et al., 2008) time series with α-stable (or NIG) innovations, which can address both

the seasonality and heavy tails prevailing in electricity prices.
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Table 2 Parameter estimates and goodness-of-fit statistics for Gaussian, hyperbolic, NIG and
α-stable distributions fitted to the deseasonalized returns (or log-price changes): Yt − Yt−1,
Yt = log(Xt), for t = 2, ..., 1827. Compare with Table 1.

Parameters Test values
Distribution α σ, δ β µ AD K

EEX

Gaussian 21.3989 0.0053 +INF 5.0547
Hyperbolic 0.0769 1.3352 -0.0011 0.3958 3.7089 1.4347
NIG 0.0271 11.1972 -0.0003 0.1338 1.1503 0.9255
α-stable 1.5185 8.8920 -0.0135 -0.2353 0.4103 0.6358

OMEL

Gaussian 15.3814 -0.0020 15.3015 2.7183
Hyperbolic 0.0989 4.4556 -0.0061 1.3866 0.5226 0.7813
NIG 0.0578 13.6146 -0.0044 1.0488 0.4904 0.6706

α-stable 1.7010 8.5069 -0.2009 -0.3675 1.2750 0.9243

PJM

Gaussian 15.9973 -0.0431 17.0345 2.6161
Hyperbolic 0.0936 3.3472 -0.0045 1.0533 0.3334 0.5096

NIG 0.0546 13.6774 -0.0044 1.0550 0.2760 0.5745
α-stable 1.7020 8.7366 -0.0704 0.1688 1.0258 0.8235

NEPOOL

Gaussian 19.4973 -0.0330 41.6959 3.9451
Hyperbolic 0.0798 0.0001 -0.0031 0.9341 1.2395 0.7431
NIG 0.0336 11.6958 -0.0025 0.8556 0.2895 0.4842

α-stable 1.5808 8.9218 -0.1613 -0.4092 0.6964 0.7025

As we have mentioned earlier, (log-)returns – i.e. first differences of log-prices –

generally exhibit lighter tails than first differences of prices themselves; compare Ta-

bles 1 and 2. Now, the α-stable law yields the best fit only for EEX returns; it even

overestimates the most extreme observations, see Figure 3. NEPOOL returns are best

modeled by the NIG distribution and for the remaining two markets the hyperbolic

and NIG laws lead to comparable fits, with the latter performing just a bit better.

Why does this happen? Well, because the logarithmic transformation dampens the

spikes and hence extreme returns. It also makes the distribution of electricity price

returns more symmetric as the low prices become even lower. This is confirmed by

the values of sample skewness (i.e. the third central moment, divided by the cube of

standard deviation) for price differences: 3.9915, −0.0848, −0.7859, −4.9609, compared

with those for returns: 0.6530, −0.0295, −0.5183, −0.6864, for EEX, OMEL, PJM and

NEPOOL, respectively.

This empirical exercise clearly shows that different models should be used for price

changes and different for log-price changes. As we will see in the next Section, contrary

to the common belief that electricity price models ‘should be built on log-prices’, in

some cases modeling prices themselves may be more beneficial and methodologically

sound.

4 Markov regime-switching models

Price process models lie at the heart of derivatives pricing and risk management sys-

tems. If the price process chosen is inappropriate to capture the main characteristics of
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Fig. 3 Right tails of the distributions of deseasonalized log-price changes (i.e. returns) and
the fitted Gaussian, hyperbolic, NIG and α-stable distributions. Compare with Table 2. Note
also that the returns in all markets: EEX (top left), OMEL (top right), PJM (bottom left) and
NEPOOL (bottom right) have lighter tails than the corresponding price changes in Figure 2.

electricity prices, the results from the model are likely to be unreliable. On the other

hand, if the model is too complex the computational burden will prevent its on-line use

in trading departments. In a way, the Markov regime-switching (MRS) models offer the

best of the two worlds; they are a trade-off between model parsimony and adequacy to

capture the unique characteristics of power prices.

The underlying idea behind the MRS scheme is to model the observed stochastic

behavior of a specific time series by two (or more) separate phases or regimes with

different underlying processes. In other words, the parameters of the underlying process

may change for a certain period of time and then fall back to their original structure.

Thus, regime-switching models divide the time series into different phases that are

called regimes. For each regime one can define separate and independent underlying

price processes. The switching mechanism between the states is assumed to be governed

by an unobserved random variable.

For example, the spot price can be assumed to display either low or very high prices

at each point in time, depending on the regime Rt = 1 or Rt = 2. Consequently, we

have a probability law that governs the transition from one state to another. The price

processes being linked to each of the two regimes are assumed to be independent from

each other. The transition matrix Q contains the probabilities qij of switching from
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regime i at time t to regime j at time t + 1, for i, j = {1, 2}:

Q = (qij) =

�
q11 q12

q21 q22

�
=

�
q11 1 − q11

1 − q22 q22

�
. (7)

Because of the Markov property the current state Rt at time t of a Markov chain

depends on the past only through the most recent value Rt−1. Consequently the prob-

ability of being in state j at time t + m starting from state i at time t is given by

P (Rt+m = j | Rt = i) = (Q′)m · ei,

where Q′ denotes the transpose of Q and ei denotes the ith column of the 2×2 identity

matrix.

Calibration of MRS models is not straightforward since the regime is only latent

and hence not directly observable. Hamilton (1990) introduced an application of the

Expectation-Maximization (EM) algorithm of Dempster et al. (1977) where the whole

set of parameters θ is estimated by an iterative two-step procedure. In the first step

the conditional probabilities P (Rt = j|P1, ..., PT ; θ) for the process being in regime j

at time t are calculated based on starting values θ̂(0) for the parameter vector θ of

the underlying stochastic processes. These probabilities are referred to as smoothed

inferences. Then in the second step new and more exact ML estimates θ̂ for all model

parameters are calculated by using the smoothed inferences from step one. With each

new vector θ̂(n) the next cycle of the algorithm is started in order to reevaluate the

smoothed inferences. Every iteration the EM algorithm generates new estimates θ̂(n+1)

as well as new estimates for the smoothed inferences. Each iteration cycle increases the

log-likelihood function and the limit of this sequence of estimates reaches a (local)

maximum of the log-likelihood function.

To our best knowledge, Ethier and Mount (1998) were the first to apply MRS

models to electricity prices. They proposed a two state specification in which both

regimes were governed by AR(1) price processes and concluded that there was strong

empirical support for the existence of different means and variances in the two regimes.

Huisman and Mahieu (2003) proposed a regime-switching model with three possible

regimes in which the initial jump regime was immediately followed by the reversing

regime and then moved back to the base regime. Consequently, their model did not

allow for consecutive high prices (and hence did not offer any obvious advantage over

jump-diffusion models). This restriction was efficiently relaxed by Huisman and de Jong

(2003) who proposed a model with only two regimes – a stable, mean-reverting AR(1)

regime and a spike regime – for the deseasonalized log-prices. The third regime was

not needed to pull prices back to stable levels, because the prices were assumed to be

independent from each other in the two regimes. They assumed that the dynamics of

the spike regime could be modeled with a simple normal distribution whose mean and

variance were higher than those of the mean-reverting base regime process. Bierbrauer

et al. (2004) extended the model by allowing log-normal and Pareto distributed spike

regimes to cope with the heavy-tailed nature of spike severities, while Bierbrauer et al.

(2007) used a model with exponentially distributed spikes. De Jong (2006) proposed

yet another modification of the basic two-regime model with autoregressive, Poisson

driven spike regime dynamics and compared it to a number of MRS models.

What differentiates our study from the ones mentioned above is the fact that we

not only look at some statistics of goodness-of-fit (like log-likelihoods, spike frequencies

and severities) but also identify which prices or log-prices are classified as being in the
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spike regime. As we will see later in this Section, in some models surprisingly many

‘non-spiky’ prices are wrongly classified.

We start with modeling deseasonalized log-prices, i.e. Yt = log(Xt), following the

common belief that electricity price models ‘should be built on log-prices’. We consider

a two-regime specification with the base regime dynamics given by a mean reverting

Ornstein-Uhlenbeck process:

dYt,1 = (c1 − βYt,1)dt + σ1dWt, (8)

where Wt is Brownian motion. Note that (8) can be discretized as an autoregressive

time series of order one, i.e. AR(1). The dynamics in the spike regime follow one of

two qualitatively different distributions, namely log-normal:

log(Yt,2) ∼ N(c2, σ
2
2), (9)

or Pareto:

Yt,2 ∼ FPareto(c2, σ
2
2) = 1 −

�c2

x

�σ2

2

. (10)

A specification with Gaussian spikes is left out from the analysis, because it yields

similar fits to the log-normal model, at the same time being less stable (with respect

to parameter estimates).

The estimation results for all four datasets are summarized in Tables 3 and 4. As

expected, in both models the probability of remaining in the base regime is very high:

q11 ≈ 0.96 for the log-normal model and q11 ≈ 0.98 for the Pareto specification. The

probability of remaining in the spike regime is much lower, but still relatively high:

roughly there is a 50% chance that the log-price will stay in the spike regime for the

next day. Unlike jump-diffusions, regime-switching models allow for consecutive spikes

in a very natural way.

Considering the unconditional probabilities P (R = i), the probability of being in

the spike regime (i = 2) for the log-normal model is much higher than for the model

with Pareto spikes: 0.5-0.12 vs. 0.02-0.035. Using a heavy-tailed distribution, like the

Pareto law, gives lower probabilities for being and remaining in the spike regime and

a clearly higher variance. In fact, for EEX and NEPOOL log-prices the fitted Pareto

spike distribution is so heavy-tailed (tail index ci < 2) that the variance does not exist.

This is not a problem as in all markets prices are capped. If the same price caps are

imposed on the models, the model generated prices will exhibit finite variance as well.

In Figures 4 and 5 the deseasonalized log-prices Yt and the unconditional proba-

bilities of being in the spike regime P (R = 2) for all four markets are displayed. The

log-prices classified as spikes, i.e. with P (R = 2) > 0.5, are additionally denoted by

dots. Surprisingly many very low prices are classified as spikes. What is even more

disturbing, some of the spikes are not extreme enough to be classified as such. The

extreme example is the least volatile OMEL market where practically no spikes (in

the sense: upward jumps) are identified. This undesired behavior can be also observed

in Tables 3 and 4. If we define the ‘expected spike size’ as the difference between the

expected values in the spike and base regime, i.e. E(Yt,2) − E(Yt,1), we will see that

it can be negative! Similar results were reported by De Jong (2006) for models with

Gaussian spike regime, but were not considered as evidence for wrong model specifi-

cation. Finally, we note that the model with Pareto spikes performed a little better

in this respect than the log-normal one, but only for the spiky EEX and NEPOOL

markets.
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Table 3 Calibration results of the MRS model with log-normal spike regime to the deseason-
alized log-prices from the EEX, OMEL, PJM and NEPOOL power markets. Compare with
Fig. 4.

Parameters Statistics
Regime βi ci σ2

i
E(Yt,i) V ar(Yt,i) qii P (R = i)

EEX

Base 0.2941 1.0358 0.0118 3.5220 0.0235 0.9546 0.8844
Spike 1.2296 0.0317 3.4745 0.3882 0.6530 0.1156

OMEL

Base 0.1895 0.6862 0.0132 3.6205 0.0386 0.9720 0.9041
Spike 1.2040 0.0061 3.3437 0.0682 0.7360 0.0959

PJM

Base 0.1301 0.4821 0.0157 3.7049 0.0645 0.9679 0.9465
Spike 1.2562 0.0153 3.5391 0.1937 0.4322 0.0535

NEPOOL

Base 0.1353 0.4852 0.0157 3.5863 0.0624 0.9689 0.9179
Spike 1.2711 0.0253 3.6101 0.3340 0.6525 0.0821
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Fig. 4 Calibration results of the MRS model with log-normal spike regime to the desea-
sonalized log-prices from the EEX (top left), OMEL (top right), PJM (bottom left) and
NEPOOL (bottom right) power markets. The corresponding lower panels display the prob-
ability P (R = 2) of being in the spike regime. The log-prices classified as spikes, i.e. with
P (R = 2) > 0.5, are additionally denoted by dots. Compare with Table 3.
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Table 4 Calibration results of the MRS model with Pareto spike regime to the deseasonalized
log-prices from the EEX, OMEL, PJM and NEPOOL power markets. Compare with Fig. 5.

Parameters Statistics
Regime βi ci σ2

i
E(Yt,i) V ar(Yt,i) qii P (R = i)

EEX

Base 0.3371 1.1883 0.0177 3.5255 0.0315 0.9769 0.9663
Spike 0.9463 1.1378 +INF +INF 0.3388 0.0337

OMEL

Base 0.2127 0.7655 0.0160 3.5984 0.0421 0.9891 0.9747
Spike 4.2728 2.5541 3.3345 1.1450 0.5821 0.0253

PJM

Base 0.1582 0.5839 0.0180 3.6904 0.0618 0.9891 0.9797
Spike 2.9025 2.4292 3.7061 5.2432 0.4752 0.0203

NEPOOL

Base 0.1701 0.6098 0.0197 3.5852 0.0634 0.9856 0.9699
Spike 1.7811 2.0149 4.5945 +INF 0.5378 0.0301
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Fig. 5 Calibration results of the MRS model with Pareto spike regime to the deseasonalized
log-prices from the EEX (top left), OMEL (top right), PJM (bottom left) and NEPOOL
(bottom right) power markets. The corresponding lower panels display the probability P (R =
2) of being in the spike regime. The log-prices classified as spikes, i.e. with P (R = 2) > 0.5,
are additionally denoted by dots. Compare with Table 4.
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Table 5 Calibration results of the MRS model with Pareto spike regime to the deseasonalized
prices from the EEX, OMEL, PJM and NEPOOL power markets. Compare with Fig. 6.

Parameters Statistics
Regime βi ci σ2

i
E(Xt,i) V ar(Xt,i) qii P (R = i)

EEX

Base 0.3393 11.4438 17.0811 33.7241 30.3112 0.9714 0.9500
Spike 0.3887 3.1200 +INF +INF 0.4563 0.0500

OMEL

Base 0.2019 7.4034 19.7234 36.6744 54.3369 0.9874 0.9730
Spike 0.9577 12.8600 +INF +INF 0.5463 0.0270

PJM

Base 0.1618 6.4045 26.0606 39.5883 87.6327 0.9802 0.9587
Spike 0.6195 11.3500 +INF +INF 0.5399 0.0413

NEPOOL

Base 0.1403 5.1072 23.9272 36.4026 91.7063 0.9777 0.9550
Spike 0.5152 7.5000 +INF +INF 0.5272 0.0450
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Fig. 6 Calibration results of the MRS model with Pareto spike regime to the deseasonalized
prices from the EEX (top left), OMEL (top right), PJM (bottom left) and NEPOOL (bottom
right) power markets. The corresponding lower panels display the probability P (R = 2) of
being in the spike regime. The prices classified as spikes, i.e. with P (R = 2) > 0.5, are
additionally denoted by dots. Compare with Table 5.
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It turns out that the calibration scheme generally assigns all extreme prices to

the spike regime, no matter whether they truly are spikes or only sudden drops. But

these ‘sudden drops’ are actually not so extreme. They appear such only because of

the logarithmic transformation which enhances low prices, at the same time dumping

high prices. More importantly, these artificial sudden drops are not that interesting

from the point of view of price modeling and derivatives valuation, because in absolute

terms the price changes are small and the related price risks are negligible. Hence, when

calibrating models to log-prices we needlessly try to match some of the insignificant

characteristics.

Having this in mind, we fitted both MRS models to deseasonalized prices Xt. The

results for the model with Pareto spikes are presented in Table 5 and Figure 6. This

time the calibration of the log-normal model failed to converge to reasonable values.

Apparently the spikes were too extreme. Comparing with the results for the Pareto

model for log-prices (Table 4 and Figure 5), we can observe that now practically all

the spikes in all four markets are identified correctly. Moreover, the number of ‘sudden

drops’ classified as spikes is much lower and, at the same time, the unconditional

probabilities of being in the spike regime P (R = 2) are 50-100% higher (except for

OMEL, but there are not too many spikes in this market anyway), which suggests

that the calibration scheme does a better job of identifying the spikes. Finally, the tail

indexes of the spike regime are lower indicating heavier tails.

5 Conclusions

In this paper we have focused on two stylized facts of electricity prices: extreme volatil-

ity and price spikes, which lead to heavy-tailed distributions of price changes. The

results reported in Section 3 show that electricity spot prices and log-prices are heavy

or semi-heavy tailed. The tail behavior differs between markets: EEX and NEPOOL

exhibit the most extreme behavior (power-law tails), while OMEL the least (hyperbolic

tails). We attribute this fact to the availability or lack of cheap hydro generation which

can be used to ‘hedge’ market imbalance in a matter of minutes. We also note that

(log-)returns (i.e. first differences of log-prices) generally exhibit lighter tails than first

differences of electricity prices themselves.

In view of this, in Section 4 we calibrate Markov regime-switching (MRS) models

with semi-heavy (log-normal) and heavy-tailed (Pareto) components, both to desea-

sonalized prices and log-prices. Contrary to the common belief that electricity price

models ‘should be built on log-prices’, we find evidence that modeling the prices them-

selves is more beneficial and methodologically sound, at least in case of MRS models. It

turns out that for log-price models the calibration scheme generally assigns all extreme

prices to the spike regime, no matter whether they truly are spikes or only artificial

sudden drops (i.e. due to taking the logarithm of small values). This is not the case

with the Pareto model calibrated to prices – now practically all the spikes in all four

markets are identified correctly.
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