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Abstract We introduce a new class of graphs which we call P3-dominated graphs.
This class properly contains all quasi-claw-free graphs, and hence all claw-free graphs.
Let G be a 2-connected P3-dominated graph. We prove that G is hamiltonian if
α(G2) ≤ κ(G), with two exceptions: K2,3 and K1,1,3. We also prove that G is hamil-
tonian, if G is 3-connected and |V (G)| ≤ 5δ(G) − 5. These results extend known
results on (quasi-)claw-free graphs.

Keywords Claw-free graph · Quasi-claw-free graph · Hamiltonian cycle ·
P3-dominated graph

Mathematics Subject Classification (2000) 05C45 · 05C38

This paper was completed when both authors visited the Center for Combinatorics, Nankai University,
Tianjin. They gratefully acknowledge the hospitality and support of the Center for Combinatorics and
Nankai University. The work of E.Vumar is sponsored by SRF for ROCS, REM.

H. J. Broersma
Center for Combinatorics,
Nankai University, 300071 Tianjin, People’s Republic of China

Present Address:
H. J. Broersma
Department of Computer Science,
Durham University, Science Labs, South Road, Durham DH1 3LE, UK
e-mail: hajo.broersma@durham.ac.uk

E. Vumar (B)
College of Mathematics and Systems Science,
Xinjiang University, 830046 Urumqi, People’s Republic of China
e-mail: vumar@xju.edu.cn

123
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1 Introduction

Throughout this paper, we consider only finite, undirected and simple graphs. Let G =
(V, E) be a graph with vertex set V = V (G) and edge set E = E(G). Throughout
we use n for |V | and we use |G| as shorthand for |V (G)|. For a vertex u, we let
N (u) = {v ∈ V (G) | uv ∈ E(G)} and N [u] = N (u) ∪ {u}. A set A ⊆ V is
independent if any vertices x, y ∈ A are nonadjacent in G. The independence number
α(G) of G is the cardinality of a maximum independent set in G.

The square G2 of G is the graph with vertex set V (G) and edge set {uv | u, v ∈
V (G) and d(u, v) ≤ 2}, where d(u, v) is the distance in G between u and v. A graph
G is called hamiltonian if G contains a Hamilton cycle, i.e., a cycle containing all
vertices of G. For terminology and concepts not defined here, we refer to Bondy and
Murty (1976).

One of the most intensively investigated classes of graphs within hamiltonian graph
theory is the class CF of claw-free graphs, i.e., graphs that do not contain an induced
subgraph isomorphic to K1,3. A large number of results have been obtained on claw-
free graphs, while some interesting problems and some conjectures remain open (see
Broersma 2002). During the last decade, several extensions of claw-free graphs have
been introduced and many known results on claw-free graphs have been extended to
these classes. We refer to Ainouche (1998), Ainouche et al. (1998), Broersma et al.
(1996), Li et al. (1999) and Li (2000, 2001, 2003) for more details. We will repeat
the definition of only one of these superclasses of claw-free graphs; the others are not
relevant for our purposes.

Following Ainouche (1998), for each pair (a, b) of vertices at distance 2, we set
J (a, b) = {u ∈ N (a)∩N (b) | N [u] ⊆ N [a]∪N [b]}. In 1998, Ainouche (1998) intro-
duced the class QC F of quasi-claw-free graphs. A graph G is in QC F , if J (a, b) �= ∅
for each pair (a, b) of vertices at distance 2 in G.

The goal of this paper is to extend some known results on QC F (hence also on CF)
to a certain superclass of it, namely the class P3D of P3-dominated graphs, which are
defined below.

Let (x, y) be a pair of vertices at distance 2 in G. We consider a common neighbor
u of x and y with the following property.

If v ∈ N (u)\{x, y} is neither adjacent to

x nor to y, then it is adjacent to all vertices of N (x) ∪ N (y) ∪ N (u)\{x, y, v}. (1)

For a pair (a, b) of vertices at distance 2 in G, analogous to J (a, b), we set
J ′(a, b) = {u ∈ N (a) ∩ N (b) | u satisfies (1)}. We say that G is in the class P3D
of P3-dominated graphs if J (a, b) ∪ J ′(a, b) �= ∅ for every pair (a, b) of vertices at
distance 2 in G. Clearly, by definition QC F ⊆ P3D.

We denote by θ and θ+, respectively, the complete bipartite graph K2,3 and the
complete tripartite graph K1,1,3. Note that K1,3, θ and θ+ are P3-dominated but not
quasi-claw-free. It is easy to extend these graphs to infinite classes of graphs with the
same property, by replacing some of the vertices by larger complete graphs and some
edges by complete joins. One such class is, e.g., K 3 ∨ (K p + Kq), where + denotes
the disjoint union, ∨ denotes the complete join, and H is the complement of H .
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On hamiltonicity of P3-dominated graphs 299

We note here that there are infinitely many graphs in P3D which are not in the
class AC F of almost claw-free graphs that was introduced in Ryjáček (1994), and vice
versa. Similarly, there are infinitely many graphs in P3D which are not in the class
DCT of dominated claw toes graphs that was introduced in Ainouche et al. (1998),
and vice versa. In fact, the graphs K 3 ∨ (K p + Kq) are not in DCT (and hence not in
AC F).

2 Properties of P3-dominated graphs

Before we present some structural results on P3-dominated graphs, we first introduce
some more terminology and notation.

For a path P with end vertices x and y, we also write P[x, y] and call P an (x, y)-
path. The (sub)graph corresponding to P will occasionally be identified by P . Given
a cycle C with a fixed cyclic orientation and x, y ∈ V (C), we use C[x, y], C[x, y),
C(x, y] and C(x, y) to denote the corresponding subpaths between x and y of C ,
respectively including both x and y (with possibly x = y), only x or only y (if x
and y are distinct), and none of x and y (if there is at least a vertex between x and
y on C). For a vertex x ∈ V (C) we use x+ and x− to denote the successor and the
predecessor of x on C , respectively. If Z ⊆ V (C), then Z+ = {u+ | u ∈ Z} and
Z− = {u− | u ∈ Z}. As usual, we call a nontrivial connected graph separable if it has
a cut vertex. For subgraphs H and K of G let G − H denote the subgraph of G which
is induced by V (G)\V (H), and let NH (K ) denote the set of vertices in H that are
adjacent to some vertex in K . Moreover, we let N (K ) := NG−K (K ). In particular, if
K consists of one vertex v, we omit the brackets, and we use dH (v) = |NH (v)| and
d(v) = |N (v)|.

In all the proofs that follow, we assume that G is a k-connected nonhamiltonian
graph (k ≥ 2). Throughout we will use the following notation without repeating
it. We denote by C a longest cycle in G with a fixed cyclic orientation and by H a
component of G −C . For s ≥ k, we label N (H) = {x1, . . . , xs} in cyclic order around
C , where the subscripts are taken modulo s. Adopting a concept that was introduced
by Ainouche (1992), we say that a vertex u ∈ C(xi , xi+1) is insertible if there exist
vertices v, v+ ∈ C − C(xi , xi+1) such that uv, uv+ ∈ E . In Ainouche (1992) it is
proved that C(xi , xi+1) contains a noninsertible vertex, for each i = 1, . . . , s. We let
yi denote the first noninsertible vertex on C(xi , xi+1) and set X = {y0, y1, . . . , ys},
where y0 ∈ V (H). The following result is due to Ainouche (1998).

Lemma 1 Let ui ∈ C(xi , yi ], i = 1, . . . , s and y ∈ V (H). Then
(a) N (ui ) ∩ V (H) = ∅;
(b) there is no vertex v ∈ C(yi , y j ) such that uiv

+, u jv ∈ E;
(c) for i �= j , N (ui ) ∩ N (u j ) ⊆ V (C) − ⋃s

i=1 C(xi , yi );
(d) any set W = {y}∪{wi ∈ C(xi , yi ] | 1 ≤ i ≤ s} (in particular X) is independent.

All the above observations can be proved by indicating a longer cycle than C
if we assume the contrary to the observation. These arguments are nowadays well-
known and pretty standard within the area of hamiltonian graph theory. In the later
proofs, we will refer to these and similar arguments as standard long cycle arguments

123



300 H. J. Broersma, E. Vumar

and abbreviate them as SLCA, omitting the tedious details of constructing the longer
cycles.

In the next three lemmas, we present some properties of P3-dominated graphs. The
following lemma also holds for (quasi-)claw-free graphs [see Ainouche (1998)]. We
use LG(a, b) to denote the length, i.e., the number of edges, of a longest (a, b)-path
P in G [so |V (P)| = LG(a, b) + 1].
Lemma 2 Let G �∈ {θ, θ+} be a 2-connected nonhamiltonian P3-dominated graph.
Then
(a) x−x+ ∈ E for all x ∈ N (H);
(b) N (H) ∩ N (H ′) = ∅ for all pairs H, H ′of distinct components of G − C;
(c) |C(xi , xi+1]| ≥ 4 + L H (v, v′), where v ∈ NH (xi ) and v′ ∈ NH (xi+1),

i = 1, . . . , s.

Proof (a). Suppose xy ∈ E , where x ∈ V (C) and y ∈ V (H). Clearly,
d(x−, y) = d(x+, y) = 2. Assume x−x+ �∈ E . Then x+ �∈ N (x−) and x+ �∈ N (y).
Hence x �∈ J (x−, y). Similarly, x �∈ J (x+, y).

Claim x ∈ J ′(x−, y) ∩ J ′(x+, y).

Proof of Claim By the definition of P3-dominated graphs, J (x−, y)∪ J ′(x−, y) �= ∅.
Suppose w �= x and w ∈ J (x−, y) ∪ J ′(x−, y). Clearly, w ∈ V (C). Using the
definitions of J and J ′, we get that w− ∈ N (x−) ∪ N (y) or w−w+ ∈ E . In both
cases, SLCA yield a contradiction to the choice of C . Hence in fact, x ∈ J ′(x−, y).
Analogously we have x ∈ J ′(x+, y). ��

Using the above claim, we deduce H = {y}; otherwise by definition, x+ ∈ N (x) is
adjacent to some y′ ∈ V (H) ∩ N (y), clearly contradicting the choice of C . Since G
is 2-connected, there is a vertex z ∈ N (H)\{x}. As x+ �∈ N (x−) ∪ N (y), we infer by
definition that x+z ∈ E . A similar argument applied to the pair x+, y yields x−z ∈ E .
Since G �∈ {θ, θ+}, x− �= z+ or x+ �= z−, say the former. By SLCA, it is clear that
z−z+ �∈ E . Thus d(z+, y) = 2. By the above claim, we get z ∈ J ′(z+, y). Since
clearly z− �∈ N (z+) ∪ N (y) and z ∈ N (x−), this in turn implies z−x− ∈ E . Now
again SLCA yield a contradiction. The other case is similar. This settles (a).

Let H ′ be a component of G − C other than H . To prove (b), we suppose that
there exists some x ∈ V (C) such that x ∈ N (y1) ∩ N (y2) for some y1 ∈ V (H) and
y2 ∈ V (H ′). Note that d(x−, y1) = 2. Since N (x−) ∩ N (y1) ⊆ V (C) and y1 y2 �∈ E ,
SLCA yield J (x−, y1) = ∅. If y ∈ J ′(x−, y1) and y �= x , then since x−x+ ∈ E
(by (a)), by definition we have x+y+ ∈ E , a contradiction (by SLCA). Hence indeed
J ′(x−, y1) = {x}. But then, since x−y2, y1 y2 �∈ E , we have x+y2 ∈ E , again a
contradiction, which settles (b). Note that (c) is an immediate consequence of (a) and
the fact that C is a longest cycle in G. ��

Using Lemma 2, we can deduce a crucial property of X .

Lemma 3 Let G �∈ {θ, θ+} be a 2-connected nonhamiltonian P3-dominated graph.
Then for any distinct y j , yk in X, we have N (y j ) ∩ N (yk) = ∅.

Proof Assuming the contrary, d(y j , yk) = 2 for some distinct y j , yk ∈ X . We distin-
guish two cases.
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Case 1 k = 0.
Since y j ∈ C(x j , x j+1) we have J (y0, y j ) ∪ J ′(y0, y j ) ⊆ N (H). Without loss of

generality, we may assume x1 ∈ J (y0, y j ) ∪ J ′(y0, y j ).
First assume j �= 1. Since y j is not insertible, we have x+

1 y j �∈ E , and hence
x1 ∈ J ′(y0, y j ). But then x+

1 y−
j ∈ E(G), a contradiction to Lemma 1(d).

We are left with the case that j = 1. Since y1 is not insertible, we have that
d(x−

1 , y1) = 2. It is again clear that x1 �∈ J (x−
1 , y1). But x1 ∈ J ′(x−

1 , y1) implies y0
is adjacent to x+

1 , an obvious contradiction.

Case 2 j, k �= 0.
Since all vertices in C(xi , yi ) (i = j, k) are insertible, we may assume J (y j , yk)∪

J ′(y j , yk) ⊆ V (C). By Lemma 1(c) we have (C(x j , y j ) ∪ C(xk, yk)) ∩ (J (y j , yk) ∪
J ′(y j , yk)) = ∅. So, without loss of generality, we may assume that there is a vertex u
of J (y j , yk)∪ J ′(y j , yk) on C[y+

j , x−
k ]. Since yk is not insertible, we have u+yk �∈ E .

Also u+y j �∈ E by Lemma 1(b). Therefore, in fact, u ∈ J ′(y j , yk). But then u+y−
j ∈

E , a contradiction to Lemma 1(b). This last contradiction settles Lemma 3. ��

In the next section, we will use the above lemmas to deduce some results on the
hamiltonicity of P3-dominated graphs.

3 Hamiltonicity of P3-dominated graphs

We start this section by stating a sufficient condition for hamiltonicity in terms of
the independence number and the connectivity, often referred to as a condition of
Chvátal-Erdős type.

Lemma 3 immediately implies the following theorem, which was proved by Ain-
ouche et al. (1990) for claw-free graphs and by Ainouche (1998) for quasi-claw-free
graphs.

Theorem 1 Let G �∈ {θ, θ+} be a 2-connected P3-dominated graph. Then G is hamil-
tonian if α(G2) ≤ κ(G).

Note that the nonhamiltonian graphs θ and θ+ clearly have to be excluded: their
square graphs are complete and they are 2-connected.

We also note here that a similar result can be obtained for traceable graphs, i.e.,
graphs that contain a Hamilton path. This of course requires analogues of the previous
lemmas. Starting with a longest path P instead of a longest cycle, and the assumption
that G is not traceable, one can define a component H of G − P and the vertices xi

and yi in a similar way. One can obtain an additional pair from the first vertex and the
first noninsertible vertex on P . For these pairs, the same observations as in Lemmas 1,
2(a), and 3 hold, if G is a connected P3-dominated graph and G �= K1,3. It is routine
to check the details by using analogous arguments as in the above proofs and using
standard long path arguments. This way we can obtain the following result for the
traceability of P3-dominated graphs.
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Theorem 2 Let G �= K1,3 be a connected P3-dominated graph. Then G is traceable
if α(G2) ≤ κ(G) + 1.

It is clear that the nontraceable graph K1,3 has to be excluded in the above theorem:
its square graph is complete and its connectivity is one.

In the following theorem, we shall extend a result on the hamiltonicity of 3-
connected claw-free graphs (see Li 1993) to P3-dominated graphs. Theorem 3 was
proved in Li (2003) for quasi-claw-free graphs.

Before we state and prove the theorem, we introduce some additional terminology
and a useful lemma due to Jung (1986).

Let H be a connected graph and let a, b ∈ V (H). Recall that L H (a, b) denotes
the length of a longest (a, b)-path in H . If H is nonseparable and |H | ≥ 2, we set
D(H) = min{L H (a, b) | a, b ∈ V (H) and a �= b}. For |H | = 1, we set D(H) = 0.
For our proof of Theorem 3 below, we need the following lemma of Jung (1986).

Lemma 4 Let H be a 2-connected graph. There exist distinct vertices v1, v2 in H
such that D(H) ≥ dH (vh) (h = 1, 2).

Our final result gives a sufficient Dirac-type condition in terms of the minimum
degree δ for the hamiltonicity of 3-connected P3-dominated graphs.

Theorem 3 Let G be a 3-connected P3-dominated graph on n vertices. If n ≤ 5δ−5,
then G is hamiltonian.

Proof Clearly, since G is 3-connected, G �∈ {θ, θ+}. Suppose n ≤ 5δ−5 and G is not
hamiltonian. As before, let C be a longest cycle in G with a fixed cyclic orientation
and let H be a component of G − C . By Lemma 3, there exists an independent set
S in G with cardinality |S| = |N (H)| + 1 ≥ 4 such that N (x) ∩ N (y) = ∅ for any
pair x, y of distinct vertices of S. This implies n ≥ (|N (H)| + 1)δ +|N (H)| + 1, and
consequently we arrive at a contradiction unless |N (H)| = 3 (since G is 3-connected
and n ≤ 5δ − 5).

We label N (H) = {x1, x2, x3} in cyclic order around C , where the subscripts
are taken modulo 3. Since G is 3-connected we have either |H | = 1 or |NH (x j ) ∪
NH (xk)| ≥ 2 for any distinct vertices x j , xk of N (H). We may assume that H is
nonseparable (for otherwise we can use similar arguments applied to an end block
of H ). Let w be a vertex with minimum degree in H . Then by Lemma 4, D(H) ≥
dH (w) ≥ d(w) − 3, and hence by Lemma 2(c),

|C | ≥ 3D(H) + 12 ≥ 3d(w) + 3 ≥ 3δ + 3.

We will use this inequality repeatedly to obtain a contradiction with the assumption
n ≤ 5δ − 5. For convenience, we abbreviate dCi (v) := |N (v) ∩ C(xi , xi+1]| for a
vertex v of G and for i = 1, 2, 3.

We prove six claims before we complete the proof of the theorem. Our first claim
states that H is hamiltonian-connected, i.e., there is a Hamilton path between any two
distinct vertices of H . We will use the known fact that every graph G with δ(G) ≥
(n + 1)/2 is hamiltonian-connected [see, e.g., Chartrand and Lesniak (1996)].
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Claim 1 H is hamiltonian-connected.

Proof of Claim 1 Assuming the contrary, we get |H | ≥ 2dH (w) ≥ 2d(w) − 6. Then
n ≥ |C | + |H | ≥ 5d(w) − 3 ≥ 5δ − 3, a contradiction. ��

Using Claim 1, by Lemma 2(c) we obtain |C | ≥ 3(|H | − 1) + 12 = 3|H | + 9. If
there exists an H ′ �= H in G − C , then by similar arguments as before |N (H ′)| = 3
and hence |H ′| ≥ δ −2, yielding n ≥ |H |+ |H ′|+ |C | ≥ 2(δ −2)+3δ +3 = 5δ −1,
a contradiction. Hence G − C = H . Since δ ≤ |H | + 2, n ≤ 5δ − 5 ≤ 5|H | + 5.
Combining this with n = |C | + |H | ≥ 4|H | + 9, we obtain |H | ≥ 4.

Suppose, for some i ∈ {1, 2, 3}, |C(xi , xi+1]| ≥ 2|H |. Then, using Lemma 2(c),
we obtain |C | ≥ 2|H | + 8 + 2|H | − 2 = 4|H | + 6, implying n ≥ 5|H | + 6 ≥ 5δ − 4,
another contradiction. Hence we get the following:

|C(xi , xi+1]| < 2|H |, i = 1, 2, 3. (2)

Suppose N (xi ) ∩ C(xi+1, xi+2) �= ∅. Then let u ∈ N (xi ) ∩ C(xi+1, xi+2). By
considering the two cycles obtained from C by deleting C(xi+1, u−) and, respectively
C(u+, xi+2), and using the edge xi u and a Hamilton path through H , we obtain a
longer cycle than C using (2). Hence we get N (xi )∩C(xi+1, xi+2) = ∅ and, by using
similar long cycle arguments, N (x+

i ) ∩ N (x−
i+1) ∩ C(xi+1, xi ) = ∅, for i = 1, 2, 3.

Moreover, using similar arguments, (2) yields the following claim.

Claim 2 Let x j , xk be distinct vertices of N (H) such that N (x+
j ) ∩ C(xk, xk+1) �= ∅

and N (x−
j+1) ∩ C(xk, xk+1) �= ∅. Let z and z′ be the first and the last neighbors of

x+
j and x−

j+1 on C(xk, xk+1), respectively. Then z ∈ C(z′, xk+1). In particular x+
j and

x−
j+1 have no common neighbor on C(xk, xk+1).

If z is the first neighbor of x+
i , and z′ is the last neighbor of x−

i+1 on C(xi+1, xi+2),
then consider the cycle obtained from C by deleting C(z′, z), xi x+

i and x−
i+1xi+1,

and using the edges x+
i z, x−

i+1z′, and a Hamilton path P through H and edges from
xi and xi+1 incident with the two end vertices of P . Then, clearly |C(z′, z)| ≥ |H |.
A similar cycle can be considered if we focus on the segment C(xi+2, xi ). Using these
cycles and the choice of C , Claim 2 yields the following claim.

Claim 3 For i = 1, 2, 3,

|C(xi+1, xi+2]| ≥ dCi+1(x+
i ) + dCi+1(x−

i+1) + |H | + 1.

|C(xi+2, xi ]| ≥ dCi+2(x+
i ) + dCi+2(x−

i+1) + |H |.

Now suppose |C(xi , xi+1]| ≥ dCi (x+
i )+dCi (x−

i+1)+1 for some i ∈ {1, 2, 3}. Then
by Claim 3 we obtain n ≥ d(x+

i ) + d(x−
i+1) + 3|H | + 2 ≥ 5δ − 4. This contradiction

shows that

|C(xi , xi+1]| ≤ dCi (x+
i ) + dCi (x−

i+1), i = 1, 2, 3.
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The last inequality clearly yields:

There exists no vertex yon C(xi , xi+1) satisfying

N (x+
i ) ∩ C(xi , xi+1) ⊆ C(xi , y] and N (x−

i+1) ∩ C(xi , xi+1) ⊆ C[y, xi + 1),

i = 1, 2, 3. (3)

Claim 4 N (x+
i ) ∩ (C(xi+1, x−

i+2) ∪ C(xi+2, x−
i )) = ∅, i = 1, 2, 3.

Proof of Claim 4 Assume the contrary, say N (x+
1 ) ∩ C(x2, x−

3 ) �= ∅. Let z and z′ be
the first and the last neighbors of x+

1 on C(x2, x−
3 ). Using similar cycle constructions

as before, the choice of C implies that |C(x2, z)| ≥ |H |. Using this in combination
with (2), we get N (x+

2 ) ∩ C(z, x3] = ∅; otherwise we can construct a longer cycle
than C . By (3) there exists a vertex u ∈ N (x−

3 ) ∩ C(x2, z) and a vertex u′ ∈ N (x+
2 ) ∩

C(u, z] such that C(u, u′) ∩ (N (x+
1 ) ∪ N (x+

2 )) = ∅. Then, with a slight abuse of
notation, C[x+

1 , x2] ∪ C[x+
2 , u] ∪ C[u′, z′] ∪ C[x−

3 , x1] ∪ x+
1 z′ ∪ x+

2 u′ ∪ x−
3 u gives

rise to a cycle which contains all vertices of H ∪ (C − C(u, u′) − C(z′, x−
3 )). Hence

|C(u, u′) ∪ C(z′, x−
3 )| ≥ |H |. Combining this with the above observations, we get:

|C(x2, x3]| ≥ dC2(x+
1 ) + dC2(x+

2 ) + |H | + 1.

Now, we consider the possible neighbors of x+
1 and x+

2 on the other segments in
order to obtain a contradiction. First note that, if z is the first neighbor of x+

1 or x+
2 on

C(x3, x1), then |C(x+
3 , z)| ≥ |H |, by similar arguments as before. If z and z′ are two

common neighbors of x+
1 and x+

2 on C(x3, x1), then a cross-over argument similar to
Lemma 1(b) yields that |C(z, z′)| ≥ |H | (if we assume that z′ ∈ C(z, x1)). Then we
obtain a contradiction with (2). Using these two observations, and the existence of the
edges x−

1 x+
1 and x−

3 x+
3 , we obtain the following inequality:

|C(x3, x1]| ≥ dC3(x+
1 ) + dC3(x+

2 ) + |H | + 1.

Standard counting using cross-over arguments yields:

|C(x1, x2]| ≥ dC1(x+
1 ) + dC1(x+

2 ).

Combining the three inequalities, we obtain n = |C | + |H | ≥ d(x+
1 ) + d(x+

2 ) +
3|H | + 2 ≥ 5δ − 4, a contradiction. The other cases are similar. ��
Claim 5 There is at most one edge of the form x+

i x−
i+2, i = 1, 2, 3.

Proof of Claim 5 Assume the contrary, say x+
1 x−

3 , x−
1 x+

2 ∈ E . Then these two edges
together with the segments C[x+

1 , x2], C[x+
2 , x−

3 ] and C[x3, x−
1 ] give rise to a cycle

C ′ which contains all vertices of H and C − {x1}. Since C is a longest cycle we have
|H | = 1, a contradiction. The other cases are similar. ��
Claim 6 There exists no edge e = z j zk with z j ∈ C(x+

j , x−
j+1) and zk ∈ C(x+

k , x−
k+1),

where x j , xk are distinct vertices of N (H).
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Proof of Claim 6 Say j = 1 = k − 1. By (3), we infer N (x+
1 ) ∩ C(z1, x2) �= ∅

or N (x−
2 ) ∩ C(x1, z1) �= ∅, say the former. Let u1 be the first vertex of N (x+

1 ) on
C(z1, x2). Again slightly abusing notation, we set R = C[x+

1 , z1]∪x+
1 u1∪C[u1, x−

2 ].
We define a (z2, x−

3 )-path Q as follows. If N (x+
2 )∩ C(z2, x3) �= ∅, then let u2 denote

the first neighbor of N (x+
2 ) on C(z2, x3) and set Q = C[x+

2 , z2] ∪ x+
2 u2 ∪ C[u2, x3].

If N (x+
2 ) ∩ C(z2, x3) = ∅, then by (3) there exist vertices u′

2 ∈ N (x−
3 ) ∩ C(x+

2 , z+
2 )

and u′′
2 ∈ N (x+

2 ) ∩ C(u′
2, z2] such that (N (x+

1 ) ∪ N (x+
2 )) ∩ C(u′

2, u′′
2) = ∅. In

this event, we set Q = C[u′′
2, z2] ∪ u′′

2x+
2 ∪ C[x+

2 , u′
2] ∪ u′

2x−
3 . Now we set L =

(C(x1, x2)− R)∪ (C(x2, x1)− Q). Note that the segment C[x−
3 , x1] together with R

and Q and the edge z1z2 give rise to a cycle which contains all vertices of H ∪ C − L .
Hence |L| ≥ |H |. Since (N (x+

1 ) ∪ N (x+
2 )) ∩ L = ∅ and x3 �∈ N (x+

1 ) ∪ N (x+
2 ) we

have

|C(x1, x3]| ≥ |N (x+
1 ) ∩ C(x1, x3]| + |N (x+

2 ) ∩ C(x1, x3]| + |H | + 1 + η13,

where η13 = 1 if x+
1 x−

3 �∈ E , and η13 = 0 otherwise.
By Claim 4, dC3(x+

1 ) = 2 and dC3(x+
2 ) = 0 or 1 (if x−

1 x+
2 ∈ E), hence we get

|C(x3, x1]| ≥ |H | + 3 ≥ dC3(x+
1 ) + dC3(x+

2 ) + |H | + η12,

where η12 = 1 if x−
1 x+

2 �∈ E and η12 = 0 otherwise. Note that η13 + η12 ≥ 1 by
Claim 5, and therefore n = |C |+|H | ≥ |C∪H | ≥ d(x+

1 )+d(x+
2 )+3|H |+2 ≥ 5δ−4,

a contradiction. The other cases are similar. ��
Now we are ready to complete the proof of Theorem 3. By (2) we have N (x3) ∩

C(x1, x2) = ∅. Since G is 3-connected, {x+
1 , x−

2 } is not a cut set of G. Using Claim 6,
clearly (N (x1) ∪ N (x2)) ∩ C(x+

1 , x−
2 ) �= ∅, say N (x1) ∩ C(x+

1 , x−
2 ) �= ∅. Let z ∈

N (x1)∩ C(x+
1 , x−

2 ). By similar long cycle arguments as before, |C(z, x2)| ≥ |H |+ 1
and z− �∈ N (x−

2 ) ∪ N (x2). If N (z−) ∩ C(z, x−
2 ) = ∅, then |C(x1, x2]| ≥ d(z−) +

|H | + 1 and n ≥ d(z−)+ 4|H | + 7 ≥ 5δ − 1, a contradiction. Now suppose N (z−)∩
C(z, x−

2 ) �= ∅, and let u be the last neighbor of z− on C(z, x2]. Since u �∈ {x−
2 , x2} we

have |C(u, x2]| ≥ |H |+2. Thus again |C(x1, x2]| ≥ d(z−)+|H |+1 and n ≥ 5δ−1,
a contradiction. The other cases are similar. ��
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